Properties

Label 51.3.g.a.8.1
Level $51$
Weight $3$
Character 51.8
Analytic conductor $1.390$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,3,Mod(2,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.2"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 51.g (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.38964934824\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 8.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 51.8
Dual form 51.3.g.a.32.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.292893 - 0.292893i) q^{2} +3.00000 q^{3} -3.82843i q^{4} +(-0.828427 + 2.00000i) q^{5} +(-0.878680 - 0.878680i) q^{6} +(1.82843 - 0.757359i) q^{7} +(-2.29289 + 2.29289i) q^{8} +9.00000 q^{9} +(0.828427 - 0.343146i) q^{10} +(-4.70711 + 1.94975i) q^{11} -11.4853i q^{12} +9.17157i q^{13} +(-0.757359 - 0.313708i) q^{14} +(-2.48528 + 6.00000i) q^{15} -13.9706 q^{16} +(-16.6066 + 3.63604i) q^{17} +(-2.63604 - 2.63604i) q^{18} +(-7.17157 + 7.17157i) q^{19} +(7.65685 + 3.17157i) q^{20} +(5.48528 - 2.27208i) q^{21} +(1.94975 + 0.807612i) q^{22} +(-19.7279 + 8.17157i) q^{23} +(-6.87868 + 6.87868i) q^{24} +(14.3640 + 14.3640i) q^{25} +(2.68629 - 2.68629i) q^{26} +27.0000 q^{27} +(-2.89949 - 7.00000i) q^{28} +(18.3848 - 44.3848i) q^{29} +(2.48528 - 1.02944i) q^{30} +(15.7279 - 37.9706i) q^{31} +(13.2635 + 13.2635i) q^{32} +(-14.1213 + 5.84924i) q^{33} +(5.92893 + 3.79899i) q^{34} +4.28427i q^{35} -34.4558i q^{36} +(3.17157 - 7.65685i) q^{37} +4.20101 q^{38} +27.5147i q^{39} +(-2.68629 - 6.48528i) q^{40} +(11.7782 + 28.4350i) q^{41} +(-2.27208 - 0.941125i) q^{42} +(-8.55635 - 8.55635i) q^{43} +(7.46447 + 18.0208i) q^{44} +(-7.45584 + 18.0000i) q^{45} +(8.17157 + 3.38478i) q^{46} +59.5391 q^{47} -41.9117 q^{48} +(-31.8787 + 31.8787i) q^{49} -8.41421i q^{50} +(-49.8198 + 10.9081i) q^{51} +35.1127 q^{52} +(-53.3553 - 53.3553i) q^{53} +(-7.90812 - 7.90812i) q^{54} -11.0294i q^{55} +(-2.45584 + 5.92893i) q^{56} +(-21.5147 + 21.5147i) q^{57} +(-18.3848 + 7.61522i) q^{58} +(79.2426 - 79.2426i) q^{59} +(22.9706 + 9.51472i) q^{60} +(-63.8995 + 26.4680i) q^{61} +(-15.7279 + 6.51472i) q^{62} +(16.4558 - 6.81623i) q^{63} +48.1127i q^{64} +(-18.3431 - 7.59798i) q^{65} +(5.84924 + 2.42284i) q^{66} +67.8995 q^{67} +(13.9203 + 63.5772i) q^{68} +(-59.1838 + 24.5147i) q^{69} +(1.25483 - 1.25483i) q^{70} +(-82.4975 - 34.1716i) q^{71} +(-20.6360 + 20.6360i) q^{72} +(-48.1630 - 19.9497i) q^{73} +(-3.17157 + 1.31371i) q^{74} +(43.0919 + 43.0919i) q^{75} +(27.4558 + 27.4558i) q^{76} +(-7.12994 + 7.12994i) q^{77} +(8.05887 - 8.05887i) q^{78} +(-32.8406 - 79.2843i) q^{79} +(11.5736 - 27.9411i) q^{80} +81.0000 q^{81} +(4.87868 - 11.7782i) q^{82} +(68.7817 + 68.7817i) q^{83} +(-8.69848 - 21.0000i) q^{84} +(6.48528 - 36.2254i) q^{85} +5.01219i q^{86} +(55.1543 - 133.154i) q^{87} +(6.32233 - 15.2635i) q^{88} -87.8406 q^{89} +(7.45584 - 3.08831i) q^{90} +(6.94618 + 16.7696i) q^{91} +(31.2843 + 75.5269i) q^{92} +(47.1838 - 113.912i) q^{93} +(-17.4386 - 17.4386i) q^{94} +(-8.40202 - 20.2843i) q^{95} +(39.7904 + 39.7904i) q^{96} +(122.418 + 50.7071i) q^{97} +18.6741 q^{98} +(-42.3640 + 17.5477i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 12 q^{3} + 8 q^{5} - 12 q^{6} - 4 q^{7} - 12 q^{8} + 36 q^{9} - 8 q^{10} - 16 q^{11} - 20 q^{14} + 24 q^{15} + 12 q^{16} - 24 q^{17} - 36 q^{18} - 40 q^{19} + 8 q^{20} - 12 q^{21} - 12 q^{22}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.292893 0.292893i −0.146447 0.146447i 0.630082 0.776529i \(-0.283021\pi\)
−0.776529 + 0.630082i \(0.783021\pi\)
\(3\) 3.00000 1.00000
\(4\) 3.82843i 0.957107i
\(5\) −0.828427 + 2.00000i −0.165685 + 0.400000i −0.984815 0.173609i \(-0.944457\pi\)
0.819129 + 0.573609i \(0.194457\pi\)
\(6\) −0.878680 0.878680i −0.146447 0.146447i
\(7\) 1.82843 0.757359i 0.261204 0.108194i −0.248239 0.968699i \(-0.579852\pi\)
0.509442 + 0.860505i \(0.329852\pi\)
\(8\) −2.29289 + 2.29289i −0.286612 + 0.286612i
\(9\) 9.00000 1.00000
\(10\) 0.828427 0.343146i 0.0828427 0.0343146i
\(11\) −4.70711 + 1.94975i −0.427919 + 0.177250i −0.586239 0.810138i \(-0.699392\pi\)
0.158320 + 0.987388i \(0.449392\pi\)
\(12\) 11.4853i 0.957107i
\(13\) 9.17157i 0.705506i 0.935717 + 0.352753i \(0.114754\pi\)
−0.935717 + 0.352753i \(0.885246\pi\)
\(14\) −0.757359 0.313708i −0.0540971 0.0224077i
\(15\) −2.48528 + 6.00000i −0.165685 + 0.400000i
\(16\) −13.9706 −0.873160
\(17\) −16.6066 + 3.63604i −0.976859 + 0.213885i
\(18\) −2.63604 2.63604i −0.146447 0.146447i
\(19\) −7.17157 + 7.17157i −0.377451 + 0.377451i −0.870182 0.492731i \(-0.835999\pi\)
0.492731 + 0.870182i \(0.335999\pi\)
\(20\) 7.65685 + 3.17157i 0.382843 + 0.158579i
\(21\) 5.48528 2.27208i 0.261204 0.108194i
\(22\) 1.94975 + 0.807612i 0.0886249 + 0.0367096i
\(23\) −19.7279 + 8.17157i −0.857736 + 0.355286i −0.767822 0.640664i \(-0.778659\pi\)
−0.0899142 + 0.995950i \(0.528659\pi\)
\(24\) −6.87868 + 6.87868i −0.286612 + 0.286612i
\(25\) 14.3640 + 14.3640i 0.574558 + 0.574558i
\(26\) 2.68629 2.68629i 0.103319 0.103319i
\(27\) 27.0000 1.00000
\(28\) −2.89949 7.00000i −0.103553 0.250000i
\(29\) 18.3848 44.3848i 0.633958 1.53051i −0.200649 0.979663i \(-0.564305\pi\)
0.834607 0.550846i \(-0.185695\pi\)
\(30\) 2.48528 1.02944i 0.0828427 0.0343146i
\(31\) 15.7279 37.9706i 0.507352 1.22486i −0.438050 0.898951i \(-0.644331\pi\)
0.945402 0.325906i \(-0.105669\pi\)
\(32\) 13.2635 + 13.2635i 0.414483 + 0.414483i
\(33\) −14.1213 + 5.84924i −0.427919 + 0.177250i
\(34\) 5.92893 + 3.79899i 0.174380 + 0.111735i
\(35\) 4.28427i 0.122408i
\(36\) 34.4558i 0.957107i
\(37\) 3.17157 7.65685i 0.0857182 0.206942i −0.875208 0.483747i \(-0.839276\pi\)
0.960926 + 0.276805i \(0.0892756\pi\)
\(38\) 4.20101 0.110553
\(39\) 27.5147i 0.705506i
\(40\) −2.68629 6.48528i −0.0671573 0.162132i
\(41\) 11.7782 + 28.4350i 0.287273 + 0.693537i 0.999969 0.00793578i \(-0.00252606\pi\)
−0.712696 + 0.701473i \(0.752526\pi\)
\(42\) −2.27208 0.941125i −0.0540971 0.0224077i
\(43\) −8.55635 8.55635i −0.198985 0.198985i 0.600580 0.799565i \(-0.294936\pi\)
−0.799565 + 0.600580i \(0.794936\pi\)
\(44\) 7.46447 + 18.0208i 0.169647 + 0.409564i
\(45\) −7.45584 + 18.0000i −0.165685 + 0.400000i
\(46\) 8.17157 + 3.38478i 0.177643 + 0.0735821i
\(47\) 59.5391 1.26679 0.633395 0.773829i \(-0.281661\pi\)
0.633395 + 0.773829i \(0.281661\pi\)
\(48\) −41.9117 −0.873160
\(49\) −31.8787 + 31.8787i −0.650585 + 0.650585i
\(50\) 8.41421i 0.168284i
\(51\) −49.8198 + 10.9081i −0.976859 + 0.213885i
\(52\) 35.1127 0.675244
\(53\) −53.3553 53.3553i −1.00670 1.00670i −0.999977 0.00672714i \(-0.997859\pi\)
−0.00672714 0.999977i \(-0.502141\pi\)
\(54\) −7.90812 7.90812i −0.146447 0.146447i
\(55\) 11.0294i 0.200535i
\(56\) −2.45584 + 5.92893i −0.0438544 + 0.105874i
\(57\) −21.5147 + 21.5147i −0.377451 + 0.377451i
\(58\) −18.3848 + 7.61522i −0.316979 + 0.131297i
\(59\) 79.2426 79.2426i 1.34310 1.34310i 0.450135 0.892960i \(-0.351376\pi\)
0.892960 0.450135i \(-0.148624\pi\)
\(60\) 22.9706 + 9.51472i 0.382843 + 0.158579i
\(61\) −63.8995 + 26.4680i −1.04753 + 0.433902i −0.839010 0.544115i \(-0.816865\pi\)
−0.208522 + 0.978018i \(0.566865\pi\)
\(62\) −15.7279 + 6.51472i −0.253676 + 0.105076i
\(63\) 16.4558 6.81623i 0.261204 0.108194i
\(64\) 48.1127i 0.751761i
\(65\) −18.3431 7.59798i −0.282202 0.116892i
\(66\) 5.84924 + 2.42284i 0.0886249 + 0.0367096i
\(67\) 67.8995 1.01343 0.506713 0.862115i \(-0.330861\pi\)
0.506713 + 0.862115i \(0.330861\pi\)
\(68\) 13.9203 + 63.5772i 0.204710 + 0.934958i
\(69\) −59.1838 + 24.5147i −0.857736 + 0.355286i
\(70\) 1.25483 1.25483i 0.0179262 0.0179262i
\(71\) −82.4975 34.1716i −1.16194 0.481290i −0.283417 0.958997i \(-0.591468\pi\)
−0.878519 + 0.477707i \(0.841468\pi\)
\(72\) −20.6360 + 20.6360i −0.286612 + 0.286612i
\(73\) −48.1630 19.9497i −0.659766 0.273284i 0.0275738 0.999620i \(-0.491222\pi\)
−0.687340 + 0.726336i \(0.741222\pi\)
\(74\) −3.17157 + 1.31371i −0.0428591 + 0.0177528i
\(75\) 43.0919 + 43.0919i 0.574558 + 0.574558i
\(76\) 27.4558 + 27.4558i 0.361261 + 0.361261i
\(77\) −7.12994 + 7.12994i −0.0925967 + 0.0925967i
\(78\) 8.05887 8.05887i 0.103319 0.103319i
\(79\) −32.8406 79.2843i −0.415704 1.00360i −0.983578 0.180483i \(-0.942234\pi\)
0.567874 0.823115i \(-0.307766\pi\)
\(80\) 11.5736 27.9411i 0.144670 0.349264i
\(81\) 81.0000 1.00000
\(82\) 4.87868 11.7782i 0.0594961 0.143636i
\(83\) 68.7817 + 68.7817i 0.828696 + 0.828696i 0.987336 0.158641i \(-0.0507111\pi\)
−0.158641 + 0.987336i \(0.550711\pi\)
\(84\) −8.69848 21.0000i −0.103553 0.250000i
\(85\) 6.48528 36.2254i 0.0762974 0.426181i
\(86\) 5.01219i 0.0582813i
\(87\) 55.1543 133.154i 0.633958 1.53051i
\(88\) 6.32233 15.2635i 0.0718447 0.173448i
\(89\) −87.8406 −0.986973 −0.493487 0.869753i \(-0.664278\pi\)
−0.493487 + 0.869753i \(0.664278\pi\)
\(90\) 7.45584 3.08831i 0.0828427 0.0343146i
\(91\) 6.94618 + 16.7696i 0.0763316 + 0.184281i
\(92\) 31.2843 + 75.5269i 0.340046 + 0.820945i
\(93\) 47.1838 113.912i 0.507352 1.22486i
\(94\) −17.4386 17.4386i −0.185517 0.185517i
\(95\) −8.40202 20.2843i −0.0884423 0.213519i
\(96\) 39.7904 + 39.7904i 0.414483 + 0.414483i
\(97\) 122.418 + 50.7071i 1.26204 + 0.522754i 0.910535 0.413433i \(-0.135670\pi\)
0.351504 + 0.936186i \(0.385670\pi\)
\(98\) 18.6741 0.190552
\(99\) −42.3640 + 17.5477i −0.427919 + 0.177250i
\(100\) 54.9914 54.9914i 0.549914 0.549914i
\(101\) 95.5147i 0.945690i 0.881146 + 0.472845i \(0.156773\pi\)
−0.881146 + 0.472845i \(0.843227\pi\)
\(102\) 17.7868 + 11.3970i 0.174380 + 0.111735i
\(103\) 45.8234 0.444887 0.222444 0.974946i \(-0.428597\pi\)
0.222444 + 0.974946i \(0.428597\pi\)
\(104\) −21.0294 21.0294i −0.202206 0.202206i
\(105\) 12.8528i 0.122408i
\(106\) 31.2548i 0.294857i
\(107\) −5.57716 + 13.4645i −0.0521230 + 0.125836i −0.947796 0.318877i \(-0.896694\pi\)
0.895673 + 0.444713i \(0.146694\pi\)
\(108\) 103.368i 0.957107i
\(109\) −92.6690 + 38.3848i −0.850175 + 0.352154i −0.764857 0.644200i \(-0.777190\pi\)
−0.0853176 + 0.996354i \(0.527190\pi\)
\(110\) −3.23045 + 3.23045i −0.0293677 + 0.0293677i
\(111\) 9.51472 22.9706i 0.0857182 0.206942i
\(112\) −25.5442 + 10.5807i −0.228073 + 0.0944709i
\(113\) −33.3345 + 13.8076i −0.294996 + 0.122191i −0.525273 0.850934i \(-0.676037\pi\)
0.230277 + 0.973125i \(0.426037\pi\)
\(114\) 12.6030 0.110553
\(115\) 46.2254i 0.401960i
\(116\) −169.924 70.3848i −1.46486 0.606765i
\(117\) 82.5442i 0.705506i
\(118\) −46.4193 −0.393384
\(119\) −27.6102 + 19.2254i −0.232018 + 0.161558i
\(120\) −8.05887 19.4558i −0.0671573 0.162132i
\(121\) −67.2046 + 67.2046i −0.555410 + 0.555410i
\(122\) 26.4680 + 10.9634i 0.216951 + 0.0898641i
\(123\) 35.3345 + 85.3051i 0.287273 + 0.693537i
\(124\) −145.368 60.2132i −1.17232 0.485590i
\(125\) −90.6274 + 37.5391i −0.725019 + 0.300313i
\(126\) −6.81623 2.82338i −0.0540971 0.0224077i
\(127\) 81.6985 + 81.6985i 0.643295 + 0.643295i 0.951364 0.308069i \(-0.0996827\pi\)
−0.308069 + 0.951364i \(0.599683\pi\)
\(128\) 67.1457 67.1457i 0.524576 0.524576i
\(129\) −25.6690 25.6690i −0.198985 0.198985i
\(130\) 3.14719 + 7.59798i 0.0242091 + 0.0584460i
\(131\) 38.6949 93.4178i 0.295381 0.713113i −0.704613 0.709592i \(-0.748879\pi\)
0.999994 0.00352085i \(-0.00112072\pi\)
\(132\) 22.3934 + 54.0624i 0.169647 + 0.409564i
\(133\) −7.68124 + 18.5442i −0.0577537 + 0.139430i
\(134\) −19.8873 19.8873i −0.148413 0.148413i
\(135\) −22.3675 + 54.0000i −0.165685 + 0.400000i
\(136\) 29.7401 46.4142i 0.218677 0.341281i
\(137\) 15.0051i 0.109526i 0.998499 + 0.0547630i \(0.0174403\pi\)
−0.998499 + 0.0547630i \(0.982560\pi\)
\(138\) 24.5147 + 10.1543i 0.177643 + 0.0735821i
\(139\) −23.6238 + 57.0330i −0.169956 + 0.410309i −0.985791 0.167974i \(-0.946277\pi\)
0.815836 + 0.578284i \(0.196277\pi\)
\(140\) 16.4020 0.117157
\(141\) 178.617 1.26679
\(142\) 14.1543 + 34.1716i 0.0996784 + 0.240645i
\(143\) −17.8823 43.1716i −0.125051 0.301899i
\(144\) −125.735 −0.873160
\(145\) 73.5391 + 73.5391i 0.507166 + 0.507166i
\(146\) 8.26346 + 19.9497i 0.0565990 + 0.136642i
\(147\) −95.6360 + 95.6360i −0.650585 + 0.650585i
\(148\) −29.3137 12.1421i −0.198066 0.0820415i
\(149\) 51.9411 0.348598 0.174299 0.984693i \(-0.444234\pi\)
0.174299 + 0.984693i \(0.444234\pi\)
\(150\) 25.2426i 0.168284i
\(151\) 2.58579 2.58579i 0.0171244 0.0171244i −0.698493 0.715617i \(-0.746146\pi\)
0.715617 + 0.698493i \(0.246146\pi\)
\(152\) 32.8873i 0.216364i
\(153\) −149.459 + 32.7244i −0.976859 + 0.213885i
\(154\) 4.17662 0.0271209
\(155\) 62.9117 + 62.9117i 0.405882 + 0.405882i
\(156\) 105.338 0.675244
\(157\) 254.770i 1.62274i −0.584536 0.811368i \(-0.698723\pi\)
0.584536 0.811368i \(-0.301277\pi\)
\(158\) −13.6030 + 32.8406i −0.0860951 + 0.207852i
\(159\) −160.066 160.066i −1.00670 1.00670i
\(160\) −37.5147 + 15.5391i −0.234467 + 0.0971194i
\(161\) −29.8823 + 29.8823i −0.185604 + 0.185604i
\(162\) −23.7244 23.7244i −0.146447 0.146447i
\(163\) 79.5355 32.9447i 0.487948 0.202115i −0.125125 0.992141i \(-0.539933\pi\)
0.613073 + 0.790026i \(0.289933\pi\)
\(164\) 108.861 45.0919i 0.663789 0.274951i
\(165\) 33.0883i 0.200535i
\(166\) 40.2914i 0.242719i
\(167\) 196.681 + 81.4680i 1.17773 + 0.487833i 0.883741 0.467976i \(-0.155017\pi\)
0.293991 + 0.955808i \(0.405017\pi\)
\(168\) −7.36753 + 17.7868i −0.0438544 + 0.105874i
\(169\) 84.8823 0.502262
\(170\) −12.5097 + 8.71068i −0.0735863 + 0.0512393i
\(171\) −64.5442 + 64.5442i −0.377451 + 0.377451i
\(172\) −32.7574 + 32.7574i −0.190450 + 0.190450i
\(173\) 64.3431 + 26.6518i 0.371926 + 0.154057i 0.560814 0.827942i \(-0.310488\pi\)
−0.188888 + 0.981999i \(0.560488\pi\)
\(174\) −55.1543 + 22.8457i −0.316979 + 0.131297i
\(175\) 37.1421 + 15.3848i 0.212241 + 0.0879130i
\(176\) 65.7609 27.2391i 0.373642 0.154767i
\(177\) 237.728 237.728i 1.34310 1.34310i
\(178\) 25.7279 + 25.7279i 0.144539 + 0.144539i
\(179\) −28.2426 + 28.2426i −0.157780 + 0.157780i −0.781582 0.623802i \(-0.785587\pi\)
0.623802 + 0.781582i \(0.285587\pi\)
\(180\) 68.9117 + 28.5442i 0.382843 + 0.158579i
\(181\) −54.8873 132.510i −0.303245 0.732098i −0.999892 0.0146839i \(-0.995326\pi\)
0.696647 0.717414i \(-0.254674\pi\)
\(182\) 2.87720 6.94618i 0.0158088 0.0381658i
\(183\) −191.698 + 79.4041i −1.04753 + 0.433902i
\(184\) 26.4975 63.9706i 0.144008 0.347666i
\(185\) 12.6863 + 12.6863i 0.0685745 + 0.0685745i
\(186\) −47.1838 + 19.5442i −0.253676 + 0.105076i
\(187\) 71.0797 49.4939i 0.380105 0.264673i
\(188\) 227.941i 1.21245i
\(189\) 49.3675 20.4487i 0.261204 0.108194i
\(190\) −3.48023 + 8.40202i −0.0183170 + 0.0442212i
\(191\) 165.681 0.867441 0.433721 0.901047i \(-0.357201\pi\)
0.433721 + 0.901047i \(0.357201\pi\)
\(192\) 144.338i 0.751761i
\(193\) 114.665 + 276.827i 0.594122 + 1.43434i 0.879489 + 0.475918i \(0.157884\pi\)
−0.285368 + 0.958418i \(0.592116\pi\)
\(194\) −21.0036 50.7071i −0.108266 0.261377i
\(195\) −55.0294 22.7939i −0.282202 0.116892i
\(196\) 122.045 + 122.045i 0.622680 + 0.622680i
\(197\) −6.24264 15.0711i −0.0316885 0.0765029i 0.907243 0.420607i \(-0.138183\pi\)
−0.938932 + 0.344104i \(0.888183\pi\)
\(198\) 17.5477 + 7.26851i 0.0886249 + 0.0367096i
\(199\) −182.497 75.5929i −0.917073 0.379864i −0.126313 0.991990i \(-0.540314\pi\)
−0.790760 + 0.612126i \(0.790314\pi\)
\(200\) −65.8701 −0.329350
\(201\) 203.698 1.01343
\(202\) 27.9756 27.9756i 0.138493 0.138493i
\(203\) 95.0782i 0.468366i
\(204\) 41.7609 + 190.731i 0.204710 + 0.934958i
\(205\) −66.6274 −0.325012
\(206\) −13.4214 13.4214i −0.0651522 0.0651522i
\(207\) −177.551 + 73.5442i −0.857736 + 0.355286i
\(208\) 128.132i 0.616019i
\(209\) 19.7746 47.7401i 0.0946153 0.228422i
\(210\) 3.76450 3.76450i 0.0179262 0.0179262i
\(211\) −285.070 + 118.080i −1.35104 + 0.559619i −0.936582 0.350449i \(-0.886029\pi\)
−0.414459 + 0.910068i \(0.636029\pi\)
\(212\) −204.267 + 204.267i −0.963524 + 0.963524i
\(213\) −247.492 102.515i −1.16194 0.481290i
\(214\) 5.57716 2.31014i 0.0260615 0.0107950i
\(215\) 24.2010 10.0244i 0.112563 0.0466251i
\(216\) −61.9081 + 61.9081i −0.286612 + 0.286612i
\(217\) 81.3381i 0.374830i
\(218\) 38.3848 + 15.8995i 0.176077 + 0.0729335i
\(219\) −144.489 59.8492i −0.659766 0.273284i
\(220\) −42.2254 −0.191934
\(221\) −33.3482 152.309i −0.150897 0.689179i
\(222\) −9.51472 + 3.94113i −0.0428591 + 0.0177528i
\(223\) −231.740 + 231.740i −1.03919 + 1.03919i −0.0399934 + 0.999200i \(0.512734\pi\)
−0.999200 + 0.0399934i \(0.987266\pi\)
\(224\) 34.2965 + 14.2061i 0.153109 + 0.0634199i
\(225\) 129.276 + 129.276i 0.574558 + 0.574558i
\(226\) 13.8076 + 5.71930i 0.0610956 + 0.0253066i
\(227\) 162.945 67.4939i 0.717818 0.297330i 0.00628269 0.999980i \(-0.498000\pi\)
0.711535 + 0.702650i \(0.248000\pi\)
\(228\) 82.3675 + 82.3675i 0.361261 + 0.361261i
\(229\) 13.5635 + 13.5635i 0.0592292 + 0.0592292i 0.736101 0.676872i \(-0.236665\pi\)
−0.676872 + 0.736101i \(0.736665\pi\)
\(230\) −13.5391 + 13.5391i −0.0588657 + 0.0588657i
\(231\) −21.3898 + 21.3898i −0.0925967 + 0.0925967i
\(232\) 59.6152 + 143.924i 0.256962 + 0.620362i
\(233\) −116.761 + 281.886i −0.501120 + 1.20981i 0.447755 + 0.894157i \(0.352224\pi\)
−0.948874 + 0.315654i \(0.897776\pi\)
\(234\) 24.1766 24.1766i 0.103319 0.103319i
\(235\) −49.3238 + 119.078i −0.209889 + 0.506716i
\(236\) −303.375 303.375i −1.28549 1.28549i
\(237\) −98.5219 237.853i −0.415704 1.00360i
\(238\) 13.7178 + 2.45584i 0.0576379 + 0.0103187i
\(239\) 178.250i 0.745815i 0.927869 + 0.372907i \(0.121639\pi\)
−0.927869 + 0.372907i \(0.878361\pi\)
\(240\) 34.7208 83.8234i 0.144670 0.349264i
\(241\) 128.629 310.538i 0.533730 1.28854i −0.395306 0.918549i \(-0.629362\pi\)
0.929036 0.369989i \(-0.120638\pi\)
\(242\) 39.3675 0.162676
\(243\) 243.000 1.00000
\(244\) 101.331 + 244.635i 0.415291 + 1.00260i
\(245\) −37.3482 90.1665i −0.152442 0.368027i
\(246\) 14.6360 35.3345i 0.0594961 0.143636i
\(247\) −65.7746 65.7746i −0.266294 0.266294i
\(248\) 51.0000 + 123.125i 0.205645 + 0.496471i
\(249\) 206.345 + 206.345i 0.828696 + 0.828696i
\(250\) 37.5391 + 15.5492i 0.150156 + 0.0621968i
\(251\) −357.037 −1.42246 −0.711228 0.702961i \(-0.751861\pi\)
−0.711228 + 0.702961i \(0.751861\pi\)
\(252\) −26.0955 63.0000i −0.103553 0.250000i
\(253\) 76.9289 76.9289i 0.304067 0.304067i
\(254\) 47.8579i 0.188417i
\(255\) 19.4558 108.676i 0.0762974 0.426181i
\(256\) 153.118 0.598116
\(257\) 137.770 + 137.770i 0.536068 + 0.536068i 0.922372 0.386303i \(-0.126248\pi\)
−0.386303 + 0.922372i \(0.626248\pi\)
\(258\) 15.0366i 0.0582813i
\(259\) 16.4020i 0.0633283i
\(260\) −29.0883 + 70.2254i −0.111878 + 0.270098i
\(261\) 165.463 399.463i 0.633958 1.53051i
\(262\) −38.6949 + 16.0280i −0.147691 + 0.0611754i
\(263\) 29.8162 29.8162i 0.113370 0.113370i −0.648146 0.761516i \(-0.724455\pi\)
0.761516 + 0.648146i \(0.224455\pi\)
\(264\) 18.9670 45.7904i 0.0718447 0.173448i
\(265\) 150.912 62.5097i 0.569478 0.235886i
\(266\) 7.68124 3.18167i 0.0288768 0.0119612i
\(267\) −263.522 −0.986973
\(268\) 259.948i 0.969956i
\(269\) 297.990 + 123.431i 1.10777 + 0.458853i 0.860169 0.510009i \(-0.170358\pi\)
0.247600 + 0.968862i \(0.420358\pi\)
\(270\) 22.3675 9.26494i 0.0828427 0.0343146i
\(271\) 149.848 0.552944 0.276472 0.961022i \(-0.410835\pi\)
0.276472 + 0.961022i \(0.410835\pi\)
\(272\) 232.004 50.7975i 0.852954 0.186756i
\(273\) 20.8385 + 50.3087i 0.0763316 + 0.184281i
\(274\) 4.39488 4.39488i 0.0160397 0.0160397i
\(275\) −95.6188 39.6066i −0.347705 0.144024i
\(276\) 93.8528 + 226.581i 0.340046 + 0.820945i
\(277\) −361.137 149.588i −1.30374 0.540028i −0.380691 0.924702i \(-0.624314\pi\)
−0.923053 + 0.384674i \(0.874314\pi\)
\(278\) 23.6238 9.78532i 0.0849779 0.0351990i
\(279\) 141.551 341.735i 0.507352 1.22486i
\(280\) −9.82338 9.82338i −0.0350835 0.0350835i
\(281\) −375.571 + 375.571i −1.33655 + 1.33655i −0.437173 + 0.899378i \(0.644020\pi\)
−0.899378 + 0.437173i \(0.855980\pi\)
\(282\) −52.3158 52.3158i −0.185517 0.185517i
\(283\) −118.329 285.673i −0.418125 1.00944i −0.982890 0.184192i \(-0.941033\pi\)
0.564765 0.825252i \(-0.308967\pi\)
\(284\) −130.823 + 315.836i −0.460646 + 1.11210i
\(285\) −25.2061 60.8528i −0.0884423 0.213519i
\(286\) −7.40707 + 17.8823i −0.0258988 + 0.0625254i
\(287\) 43.0711 + 43.0711i 0.150073 + 0.150073i
\(288\) 119.371 + 119.371i 0.414483 + 0.414483i
\(289\) 262.558 120.765i 0.908507 0.417870i
\(290\) 43.0782i 0.148546i
\(291\) 367.253 + 152.121i 1.26204 + 0.522754i
\(292\) −76.3762 + 184.388i −0.261562 + 0.631467i
\(293\) −270.485 −0.923158 −0.461579 0.887099i \(-0.652717\pi\)
−0.461579 + 0.887099i \(0.652717\pi\)
\(294\) 56.0223 0.190552
\(295\) 92.8385 + 224.132i 0.314707 + 0.759770i
\(296\) 10.2843 + 24.8284i 0.0347442 + 0.0838798i
\(297\) −127.092 + 52.6432i −0.427919 + 0.177250i
\(298\) −15.2132 15.2132i −0.0510510 0.0510510i
\(299\) −74.9462 180.936i −0.250656 0.605137i
\(300\) 164.974 164.974i 0.549914 0.549914i
\(301\) −22.1249 9.16443i −0.0735046 0.0304466i
\(302\) −1.51472 −0.00501562
\(303\) 286.544i 0.945690i
\(304\) 100.191 100.191i 0.329575 0.329575i
\(305\) 149.726i 0.490904i
\(306\) 53.3604 + 34.1909i 0.174380 + 0.111735i
\(307\) 133.549 0.435014 0.217507 0.976059i \(-0.430208\pi\)
0.217507 + 0.976059i \(0.430208\pi\)
\(308\) 27.2965 + 27.2965i 0.0886249 + 0.0886249i
\(309\) 137.470 0.444887
\(310\) 36.8528i 0.118880i
\(311\) 152.307 367.701i 0.489732 1.18232i −0.465124 0.885246i \(-0.653990\pi\)
0.954855 0.297071i \(-0.0960099\pi\)
\(312\) −63.0883 63.0883i −0.202206 0.202206i
\(313\) 207.430 85.9203i 0.662716 0.274506i −0.0258652 0.999665i \(-0.508234\pi\)
0.688581 + 0.725160i \(0.258234\pi\)
\(314\) −74.6203 + 74.6203i −0.237644 + 0.237644i
\(315\) 38.5584i 0.122408i
\(316\) −303.534 + 125.728i −0.960551 + 0.397873i
\(317\) −93.1127 + 38.5685i −0.293731 + 0.121667i −0.524683 0.851298i \(-0.675816\pi\)
0.230952 + 0.972965i \(0.425816\pi\)
\(318\) 93.7645i 0.294857i
\(319\) 244.770i 0.767303i
\(320\) −96.2254 39.8579i −0.300704 0.124556i
\(321\) −16.7315 + 40.3934i −0.0521230 + 0.125836i
\(322\) 17.5046 0.0543622
\(323\) 93.0193 145.172i 0.287986 0.449448i
\(324\) 310.103i 0.957107i
\(325\) −131.740 + 131.740i −0.405354 + 0.405354i
\(326\) −32.9447 13.6461i −0.101057 0.0418593i
\(327\) −278.007 + 115.154i −0.850175 + 0.352154i
\(328\) −92.2046 38.1924i −0.281112 0.116440i
\(329\) 108.863 45.0925i 0.330890 0.137059i
\(330\) −9.69134 + 9.69134i −0.0293677 + 0.0293677i
\(331\) 5.40916 + 5.40916i 0.0163419 + 0.0163419i 0.715231 0.698889i \(-0.246322\pi\)
−0.698889 + 0.715231i \(0.746322\pi\)
\(332\) 263.326 263.326i 0.793150 0.793150i
\(333\) 28.5442 68.9117i 0.0857182 0.206942i
\(334\) −33.7452 81.4680i −0.101033 0.243916i
\(335\) −56.2498 + 135.799i −0.167910 + 0.405370i
\(336\) −76.6325 + 31.7422i −0.228073 + 0.0944709i
\(337\) −148.371 + 358.200i −0.440270 + 1.06291i 0.535584 + 0.844482i \(0.320092\pi\)
−0.975854 + 0.218424i \(0.929908\pi\)
\(338\) −24.8614 24.8614i −0.0735545 0.0735545i
\(339\) −100.004 + 41.4228i −0.294996 + 0.122191i
\(340\) −138.686 24.8284i −0.407901 0.0730248i
\(341\) 209.397i 0.614067i
\(342\) 37.8091 0.110553
\(343\) −71.2548 + 172.024i −0.207740 + 0.501529i
\(344\) 39.2376 0.114063
\(345\) 138.676i 0.401960i
\(346\) −11.0395 26.6518i −0.0319062 0.0770283i
\(347\) −178.234 430.295i −0.513643 1.24004i −0.941750 0.336315i \(-0.890819\pi\)
0.428107 0.903728i \(-0.359181\pi\)
\(348\) −509.772 211.154i −1.46486 0.606765i
\(349\) 89.8751 + 89.8751i 0.257522 + 0.257522i 0.824045 0.566524i \(-0.191712\pi\)
−0.566524 + 0.824045i \(0.691712\pi\)
\(350\) −6.37258 15.3848i −0.0182074 0.0439565i
\(351\) 247.632i 0.705506i
\(352\) −88.2929 36.5721i −0.250832 0.103898i
\(353\) −264.208 −0.748465 −0.374233 0.927335i \(-0.622094\pi\)
−0.374233 + 0.927335i \(0.622094\pi\)
\(354\) −139.258 −0.393384
\(355\) 136.686 136.686i 0.385032 0.385032i
\(356\) 336.291i 0.944639i
\(357\) −82.8305 + 57.6762i −0.232018 + 0.161558i
\(358\) 16.5442 0.0462127
\(359\) 387.127 + 387.127i 1.07835 + 1.07835i 0.996658 + 0.0816904i \(0.0260319\pi\)
0.0816904 + 0.996658i \(0.473968\pi\)
\(360\) −24.1766 58.3675i −0.0671573 0.162132i
\(361\) 258.137i 0.715061i
\(362\) −22.7351 + 54.8873i −0.0628040 + 0.151622i
\(363\) −201.614 + 201.614i −0.555410 + 0.555410i
\(364\) 64.2010 26.5929i 0.176376 0.0730575i
\(365\) 79.7990 79.7990i 0.218627 0.218627i
\(366\) 79.4041 + 32.8903i 0.216951 + 0.0898641i
\(367\) −213.291 + 88.3482i −0.581176 + 0.240731i −0.653849 0.756625i \(-0.726847\pi\)
0.0726736 + 0.997356i \(0.476847\pi\)
\(368\) 275.610 114.161i 0.748941 0.310221i
\(369\) 106.004 + 255.915i 0.287273 + 0.693537i
\(370\) 7.43146i 0.0200850i
\(371\) −137.966 57.1472i −0.371875 0.154036i
\(372\) −436.103 180.640i −1.17232 0.485590i
\(373\) −11.3625 −0.0304624 −0.0152312 0.999884i \(-0.504848\pi\)
−0.0152312 + 0.999884i \(0.504848\pi\)
\(374\) −35.3152 6.32233i −0.0944256 0.0169046i
\(375\) −271.882 + 112.617i −0.725019 + 0.300313i
\(376\) −136.517 + 136.517i −0.363077 + 0.363077i
\(377\) 407.078 + 168.617i 1.07978 + 0.447261i
\(378\) −20.4487 8.47013i −0.0540971 0.0224077i
\(379\) 86.4939 + 35.8269i 0.228216 + 0.0945302i 0.493861 0.869541i \(-0.335585\pi\)
−0.265645 + 0.964071i \(0.585585\pi\)
\(380\) −77.6569 + 32.1665i −0.204360 + 0.0846487i
\(381\) 245.095 + 245.095i 0.643295 + 0.643295i
\(382\) −48.5269 48.5269i −0.127034 0.127034i
\(383\) 242.375 242.375i 0.632832 0.632832i −0.315945 0.948777i \(-0.602322\pi\)
0.948777 + 0.315945i \(0.102322\pi\)
\(384\) 201.437 201.437i 0.524576 0.524576i
\(385\) −8.35325 20.1665i −0.0216967 0.0523806i
\(386\) 47.4960 114.665i 0.123047 0.297061i
\(387\) −77.0071 77.0071i −0.198985 0.198985i
\(388\) 194.128 468.668i 0.500331 1.20791i
\(389\) 171.799 + 171.799i 0.441643 + 0.441643i 0.892564 0.450921i \(-0.148904\pi\)
−0.450921 + 0.892564i \(0.648904\pi\)
\(390\) 9.44156 + 22.7939i 0.0242091 + 0.0584460i
\(391\) 297.902 207.434i 0.761897 0.530521i
\(392\) 146.189i 0.372931i
\(393\) 116.085 280.253i 0.295381 0.713113i
\(394\) −2.58579 + 6.24264i −0.00656291 + 0.0158443i
\(395\) 185.775 0.470315
\(396\) 67.1802 + 162.187i 0.169647 + 0.409564i
\(397\) −105.019 253.539i −0.264532 0.638638i 0.734676 0.678418i \(-0.237334\pi\)
−0.999208 + 0.0397805i \(0.987334\pi\)
\(398\) 31.3116 + 75.5929i 0.0786724 + 0.189932i
\(399\) −23.0437 + 55.6325i −0.0577537 + 0.139430i
\(400\) −200.673 200.673i −0.501682 0.501682i
\(401\) −193.001 465.945i −0.481298 1.16196i −0.958993 0.283431i \(-0.908527\pi\)
0.477694 0.878526i \(-0.341473\pi\)
\(402\) −59.6619 59.6619i −0.148413 0.148413i
\(403\) 348.250 + 144.250i 0.864143 + 0.357940i
\(404\) 365.671 0.905127
\(405\) −67.1026 + 162.000i −0.165685 + 0.400000i
\(406\) −27.8478 + 27.8478i −0.0685905 + 0.0685905i
\(407\) 42.2254i 0.103748i
\(408\) 89.2203 139.243i 0.218677 0.341281i
\(409\) 352.340 0.861467 0.430734 0.902479i \(-0.358255\pi\)
0.430734 + 0.902479i \(0.358255\pi\)
\(410\) 19.5147 + 19.5147i 0.0475969 + 0.0475969i
\(411\) 45.0152i 0.109526i
\(412\) 175.431i 0.425805i
\(413\) 84.8742 204.905i 0.205507 0.496137i
\(414\) 73.5442 + 30.4630i 0.177643 + 0.0735821i
\(415\) −194.544 + 80.5828i −0.468781 + 0.194175i
\(416\) −121.647 + 121.647i −0.292420 + 0.292420i
\(417\) −70.8715 + 171.099i −0.169956 + 0.410309i
\(418\) −19.7746 + 8.19091i −0.0473077 + 0.0195955i
\(419\) −260.494 + 107.900i −0.621704 + 0.257518i −0.671224 0.741255i \(-0.734231\pi\)
0.0495197 + 0.998773i \(0.484231\pi\)
\(420\) 49.2061 0.117157
\(421\) 546.877i 1.29900i −0.760363 0.649498i \(-0.774979\pi\)
0.760363 0.649498i \(-0.225021\pi\)
\(422\) 118.080 + 48.9102i 0.279810 + 0.115901i
\(423\) 535.852 1.26679
\(424\) 244.676 0.577066
\(425\) −290.765 186.309i −0.684152 0.438373i
\(426\) 42.4630 + 102.515i 0.0996784 + 0.240645i
\(427\) −96.7898 + 96.7898i −0.226674 + 0.226674i
\(428\) 51.5477 + 21.3518i 0.120439 + 0.0498873i
\(429\) −53.6468 129.515i −0.125051 0.301899i
\(430\) −10.0244 4.15224i −0.0233125 0.00965636i
\(431\) −1.71068 + 0.708586i −0.00396909 + 0.00164405i −0.384667 0.923055i \(-0.625684\pi\)
0.380698 + 0.924699i \(0.375684\pi\)
\(432\) −377.205 −0.873160
\(433\) 132.794 + 132.794i 0.306683 + 0.306683i 0.843622 0.536938i \(-0.180419\pi\)
−0.536938 + 0.843622i \(0.680419\pi\)
\(434\) −23.8234 + 23.8234i −0.0548926 + 0.0548926i
\(435\) 220.617 + 220.617i 0.507166 + 0.507166i
\(436\) 146.953 + 354.777i 0.337049 + 0.813708i
\(437\) 82.8772 200.083i 0.189650 0.457856i
\(438\) 24.7904 + 59.8492i 0.0565990 + 0.136642i
\(439\) 106.466 257.032i 0.242519 0.585493i −0.755012 0.655710i \(-0.772369\pi\)
0.997532 + 0.0702172i \(0.0223692\pi\)
\(440\) 25.2893 + 25.2893i 0.0574757 + 0.0574757i
\(441\) −286.908 + 286.908i −0.650585 + 0.650585i
\(442\) −34.8427 + 54.3776i −0.0788297 + 0.123026i
\(443\) 249.071i 0.562237i 0.959673 + 0.281119i \(0.0907054\pi\)
−0.959673 + 0.281119i \(0.909295\pi\)
\(444\) −87.9411 36.4264i −0.198066 0.0820415i
\(445\) 72.7696 175.681i 0.163527 0.394789i
\(446\) 135.750 0.304373
\(447\) 155.823 0.348598
\(448\) 36.4386 + 87.9706i 0.0813362 + 0.196363i
\(449\) 6.69195 + 16.1558i 0.0149041 + 0.0359818i 0.931156 0.364620i \(-0.118801\pi\)
−0.916252 + 0.400602i \(0.868801\pi\)
\(450\) 75.7279i 0.168284i
\(451\) −110.882 110.882i −0.245859 0.245859i
\(452\) 52.8614 + 127.619i 0.116950 + 0.282342i
\(453\) 7.75736 7.75736i 0.0171244 0.0171244i
\(454\) −67.4939 27.9569i −0.148665 0.0615791i
\(455\) −39.2935 −0.0863594
\(456\) 98.6619i 0.216364i
\(457\) −570.098 + 570.098i −1.24748 + 1.24748i −0.290648 + 0.956830i \(0.593871\pi\)
−0.956830 + 0.290648i \(0.906129\pi\)
\(458\) 7.94531i 0.0173478i
\(459\) −448.378 + 98.1731i −0.976859 + 0.213885i
\(460\) −176.971 −0.384719
\(461\) −382.149 382.149i −0.828957 0.828957i 0.158415 0.987373i \(-0.449362\pi\)
−0.987373 + 0.158415i \(0.949362\pi\)
\(462\) 12.5299 0.0271209
\(463\) 46.5097i 0.100453i −0.998738 0.0502264i \(-0.984006\pi\)
0.998738 0.0502264i \(-0.0159943\pi\)
\(464\) −256.846 + 620.080i −0.553547 + 1.33638i
\(465\) 188.735 + 188.735i 0.405882 + 0.405882i
\(466\) 116.761 48.3640i 0.250560 0.103785i
\(467\) 249.394 249.394i 0.534034 0.534034i −0.387736 0.921770i \(-0.626743\pi\)
0.921770 + 0.387736i \(0.126743\pi\)
\(468\) 316.014 0.675244
\(469\) 124.149 51.4243i 0.264711 0.109647i
\(470\) 49.3238 20.4306i 0.104944 0.0434693i
\(471\) 764.309i 1.62274i
\(472\) 363.390i 0.769894i
\(473\) 56.9584 + 23.5929i 0.120419 + 0.0498793i
\(474\) −40.8091 + 98.5219i −0.0860951 + 0.207852i
\(475\) −206.024 −0.433736
\(476\) 73.6030 + 105.704i 0.154628 + 0.222066i
\(477\) −480.198 480.198i −1.00670 1.00670i
\(478\) 52.2082 52.2082i 0.109222 0.109222i
\(479\) −509.683 211.118i −1.06406 0.440747i −0.219167 0.975687i \(-0.570334\pi\)
−0.844890 + 0.534940i \(0.820334\pi\)
\(480\) −112.544 + 46.6173i −0.234467 + 0.0971194i
\(481\) 70.2254 + 29.0883i 0.145999 + 0.0604747i
\(482\) −128.629 + 53.2798i −0.266865 + 0.110539i
\(483\) −89.6468 + 89.6468i −0.185604 + 0.185604i
\(484\) 257.288 + 257.288i 0.531586 + 0.531586i
\(485\) −202.828 + 202.828i −0.418203 + 0.418203i
\(486\) −71.1731 71.1731i −0.146447 0.146447i
\(487\) −202.436 488.723i −0.415679 1.00354i −0.983585 0.180444i \(-0.942246\pi\)
0.567906 0.823093i \(-0.307754\pi\)
\(488\) 85.8263 207.203i 0.175874 0.424597i
\(489\) 238.607 98.8341i 0.487948 0.202115i
\(490\) −15.4701 + 37.3482i −0.0315717 + 0.0762208i
\(491\) −110.350 110.350i −0.224746 0.224746i 0.585748 0.810494i \(-0.300801\pi\)
−0.810494 + 0.585748i \(0.800801\pi\)
\(492\) 326.584 135.276i 0.663789 0.274951i
\(493\) −143.924 + 803.928i −0.291935 + 1.63069i
\(494\) 38.5299i 0.0779957i
\(495\) 99.2649i 0.200535i
\(496\) −219.728 + 530.470i −0.443000 + 1.06950i
\(497\) −176.721 −0.355575
\(498\) 120.874i 0.242719i
\(499\) −214.724 518.390i −0.430309 1.03886i −0.979188 0.202956i \(-0.934945\pi\)
0.548878 0.835902i \(-0.315055\pi\)
\(500\) 143.716 + 346.960i 0.287431 + 0.693921i
\(501\) 590.044 + 244.404i 1.17773 + 0.487833i
\(502\) 104.574 + 104.574i 0.208314 + 0.208314i
\(503\) 345.767 + 834.754i 0.687409 + 1.65955i 0.749938 + 0.661508i \(0.230083\pi\)
−0.0625291 + 0.998043i \(0.519917\pi\)
\(504\) −22.1026 + 53.3604i −0.0438544 + 0.105874i
\(505\) −191.029 79.1270i −0.378276 0.156687i
\(506\) −45.0639 −0.0890591
\(507\) 254.647 0.502262
\(508\) 312.777 312.777i 0.615702 0.615702i
\(509\) 543.651i 1.06808i −0.845460 0.534038i \(-0.820674\pi\)
0.845460 0.534038i \(-0.179326\pi\)
\(510\) −37.5290 + 26.1320i −0.0735863 + 0.0512393i
\(511\) −103.172 −0.201901
\(512\) −313.430 313.430i −0.612168 0.612168i
\(513\) −193.632 + 193.632i −0.377451 + 0.377451i
\(514\) 80.7035i 0.157011i
\(515\) −37.9613 + 91.6468i −0.0737113 + 0.177955i
\(516\) −98.2721 + 98.2721i −0.190450 + 0.190450i
\(517\) −280.257 + 116.086i −0.542083 + 0.224538i
\(518\) −4.80404 + 4.80404i −0.00927421 + 0.00927421i
\(519\) 193.029 + 79.9554i 0.371926 + 0.154057i
\(520\) 59.4802 24.6375i 0.114385 0.0473798i
\(521\) −301.957 + 125.075i −0.579572 + 0.240066i −0.653157 0.757222i \(-0.726556\pi\)
0.0735853 + 0.997289i \(0.476556\pi\)
\(522\) −165.463 + 68.5370i −0.316979 + 0.131297i
\(523\) 779.561i 1.49056i 0.666754 + 0.745278i \(0.267683\pi\)
−0.666754 + 0.745278i \(0.732317\pi\)
\(524\) −357.643 148.141i −0.682525 0.282711i
\(525\) 111.426 + 46.1543i 0.212241 + 0.0879130i
\(526\) −17.4659 −0.0332052
\(527\) −123.125 + 687.749i −0.233634 + 1.30503i
\(528\) 197.283 81.7172i 0.373642 0.154767i
\(529\) −51.6432 + 51.6432i −0.0976242 + 0.0976242i
\(530\) −62.5097 25.8924i −0.117943 0.0488535i
\(531\) 713.184 713.184i 1.34310 1.34310i
\(532\) 70.9949 + 29.4071i 0.133449 + 0.0552764i
\(533\) −260.794 + 108.024i −0.489294 + 0.202672i
\(534\) 77.1838 + 77.1838i 0.144539 + 0.144539i
\(535\) −22.3087 22.3087i −0.0416984 0.0416984i
\(536\) −155.686 + 155.686i −0.290459 + 0.290459i
\(537\) −84.7279 + 84.7279i −0.157780 + 0.157780i
\(538\) −51.1270 123.431i −0.0950316 0.229427i
\(539\) 87.9010 212.212i 0.163082 0.393714i
\(540\) 206.735 + 85.6325i 0.382843 + 0.158579i
\(541\) 133.019 321.137i 0.245877 0.593599i −0.751969 0.659198i \(-0.770896\pi\)
0.997846 + 0.0655991i \(0.0208958\pi\)
\(542\) −43.8894 43.8894i −0.0809767 0.0809767i
\(543\) −164.662 397.529i −0.303245 0.732098i
\(544\) −268.487 172.034i −0.493543 0.316240i
\(545\) 217.137i 0.398417i
\(546\) 8.63160 20.8385i 0.0158088 0.0381658i
\(547\) 383.971 926.988i 0.701958 1.69468i −0.0172201 0.999852i \(-0.505482\pi\)
0.719178 0.694825i \(-0.244518\pi\)
\(548\) 57.4457 0.104828
\(549\) −575.095 + 238.212i −1.04753 + 0.433902i
\(550\) 16.4056 + 39.6066i 0.0298283 + 0.0720120i
\(551\) 186.461 + 450.156i 0.338405 + 0.816981i
\(552\) 79.4924 191.912i 0.144008 0.347666i
\(553\) −120.093 120.093i −0.217167 0.217167i
\(554\) 61.9613 + 149.588i 0.111844 + 0.270014i
\(555\) 38.0589 + 38.0589i 0.0685745 + 0.0685745i
\(556\) 218.347 + 90.4422i 0.392710 + 0.162666i
\(557\) 953.823 1.71243 0.856215 0.516620i \(-0.172810\pi\)
0.856215 + 0.516620i \(0.172810\pi\)
\(558\) −141.551 + 58.6325i −0.253676 + 0.105076i
\(559\) 78.4752 78.4752i 0.140385 0.140385i
\(560\) 59.8537i 0.106882i
\(561\) 213.239 148.482i 0.380105 0.264673i
\(562\) 220.004 0.391467
\(563\) −680.973 680.973i −1.20954 1.20954i −0.971175 0.238368i \(-0.923388\pi\)
−0.238368 0.971175i \(-0.576612\pi\)
\(564\) 683.823i 1.21245i
\(565\) 78.1076i 0.138244i
\(566\) −49.0137 + 118.329i −0.0865966 + 0.209063i
\(567\) 148.103 61.3461i 0.261204 0.108194i
\(568\) 267.510 110.806i 0.470968 0.195081i
\(569\) 181.378 181.378i 0.318766 0.318766i −0.529527 0.848293i \(-0.677631\pi\)
0.848293 + 0.529527i \(0.177631\pi\)
\(570\) −10.4407 + 25.2061i −0.0183170 + 0.0442212i
\(571\) 61.8837 25.6331i 0.108378 0.0448916i −0.327836 0.944735i \(-0.606319\pi\)
0.436214 + 0.899843i \(0.356319\pi\)
\(572\) −165.279 + 68.4609i −0.288950 + 0.119687i
\(573\) 497.044 0.867441
\(574\) 25.2304i 0.0439555i
\(575\) −400.747 165.995i −0.696952 0.288687i
\(576\) 433.014i 0.751761i
\(577\) 213.937 0.370775 0.185387 0.982666i \(-0.440646\pi\)
0.185387 + 0.982666i \(0.440646\pi\)
\(578\) −112.273 41.5305i −0.194243 0.0718520i
\(579\) 343.996 + 830.481i 0.594122 + 1.43434i
\(580\) 281.539 281.539i 0.485412 0.485412i
\(581\) 177.855 + 73.6699i 0.306119 + 0.126798i
\(582\) −63.0107 152.121i −0.108266 0.261377i
\(583\) 355.179 + 147.120i 0.609226 + 0.252350i
\(584\) 156.175 64.6899i 0.267423 0.110770i
\(585\) −165.088 68.3818i −0.282202 0.116892i
\(586\) 79.2233 + 79.2233i 0.135193 + 0.135193i
\(587\) 252.524 252.524i 0.430194 0.430194i −0.458500 0.888694i \(-0.651613\pi\)
0.888694 + 0.458500i \(0.151613\pi\)
\(588\) 366.136 + 366.136i 0.622680 + 0.622680i
\(589\) 159.515 + 385.103i 0.270823 + 0.653824i
\(590\) 38.4550 92.8385i 0.0651779 0.157353i
\(591\) −18.7279 45.2132i −0.0316885 0.0765029i
\(592\) −44.3087 + 106.971i −0.0748457 + 0.180694i
\(593\) 547.715 + 547.715i 0.923634 + 0.923634i 0.997284 0.0736503i \(-0.0234649\pi\)
−0.0736503 + 0.997284i \(0.523465\pi\)
\(594\) 52.6432 + 21.8055i 0.0886249 + 0.0367096i
\(595\) −15.5778 71.1472i −0.0261811 0.119575i
\(596\) 198.853i 0.333646i
\(597\) −547.492 226.779i −0.917073 0.379864i
\(598\) −31.0437 + 74.9462i −0.0519126 + 0.125328i
\(599\) 197.456 0.329642 0.164821 0.986323i \(-0.447295\pi\)
0.164821 + 0.986323i \(0.447295\pi\)
\(600\) −197.610 −0.329350
\(601\) −106.891 258.057i −0.177855 0.429380i 0.809661 0.586898i \(-0.199651\pi\)
−0.987516 + 0.157518i \(0.949651\pi\)
\(602\) 3.79603 + 9.16443i 0.00630570 + 0.0152233i
\(603\) 611.095 1.01343
\(604\) −9.89949 9.89949i −0.0163899 0.0163899i
\(605\) −78.7351 190.083i −0.130141 0.314187i
\(606\) 83.9268 83.9268i 0.138493 0.138493i
\(607\) 56.2893 + 23.3158i 0.0927336 + 0.0384115i 0.428568 0.903510i \(-0.359018\pi\)
−0.335834 + 0.941921i \(0.609018\pi\)
\(608\) −190.240 −0.312894
\(609\) 285.235i 0.468366i
\(610\) −43.8537 + 43.8537i −0.0718913 + 0.0718913i
\(611\) 546.067i 0.893727i
\(612\) 125.283 + 572.194i 0.204710 + 0.934958i
\(613\) −763.040 −1.24476 −0.622381 0.782714i \(-0.713835\pi\)
−0.622381 + 0.782714i \(0.713835\pi\)
\(614\) −39.1157 39.1157i −0.0637063 0.0637063i
\(615\) −199.882 −0.325012
\(616\) 32.6964i 0.0530786i
\(617\) −112.410 + 271.381i −0.182188 + 0.439840i −0.988417 0.151763i \(-0.951505\pi\)
0.806229 + 0.591603i \(0.201505\pi\)
\(618\) −40.2641 40.2641i −0.0651522 0.0651522i
\(619\) 15.1924 6.29289i 0.0245434 0.0101662i −0.370378 0.928881i \(-0.620772\pi\)
0.394921 + 0.918715i \(0.370772\pi\)
\(620\) 240.853 240.853i 0.388472 0.388472i
\(621\) −532.654 + 220.632i −0.857736 + 0.355286i
\(622\) −152.307 + 63.0874i −0.244866 + 0.101427i
\(623\) −160.610 + 66.5269i −0.257801 + 0.106785i
\(624\) 384.396i 0.616019i
\(625\) 295.489i 0.472783i
\(626\) −85.9203 35.5894i −0.137253 0.0568520i
\(627\) 59.3238 143.220i 0.0946153 0.228422i
\(628\) −975.367 −1.55313
\(629\) −24.8284 + 138.686i −0.0394729 + 0.220487i
\(630\) 11.2935 11.2935i 0.0179262 0.0179262i
\(631\) 831.543 831.543i 1.31782 1.31782i 0.402318 0.915500i \(-0.368204\pi\)
0.915500 0.402318i \(-0.131796\pi\)
\(632\) 257.090 + 106.490i 0.406789 + 0.168497i
\(633\) −855.209 + 354.239i −1.35104 + 0.559619i
\(634\) 38.5685 + 15.9756i 0.0608337 + 0.0251981i
\(635\) −231.078 + 95.7157i −0.363903 + 0.150733i
\(636\) −612.801 + 612.801i −0.963524 + 0.963524i
\(637\) −292.378 292.378i −0.458992 0.458992i
\(638\) 71.6913 71.6913i 0.112369 0.112369i
\(639\) −742.477 307.544i −1.16194 0.481290i
\(640\) 78.6661 + 189.917i 0.122916 + 0.296745i
\(641\) 273.587 660.498i 0.426813 1.03042i −0.553479 0.832863i \(-0.686700\pi\)
0.980292 0.197555i \(-0.0633001\pi\)
\(642\) 16.7315 6.93041i 0.0260615 0.0107950i
\(643\) −80.3152 + 193.898i −0.124907 + 0.301552i −0.973947 0.226777i \(-0.927181\pi\)
0.849040 + 0.528329i \(0.177181\pi\)
\(644\) 114.402 + 114.402i 0.177643 + 0.177643i
\(645\) 72.6030 30.0732i 0.112563 0.0466251i
\(646\) −69.7645 + 15.2750i −0.107995 + 0.0236456i
\(647\) 66.6173i 0.102963i 0.998674 + 0.0514817i \(0.0163944\pi\)
−0.998674 + 0.0514817i \(0.983606\pi\)
\(648\) −185.724 + 185.724i −0.286612 + 0.286612i
\(649\) −218.500 + 527.507i −0.336672 + 0.812799i
\(650\) 77.1716 0.118725
\(651\) 244.014i 0.374830i
\(652\) −126.126 304.496i −0.193445 0.467018i
\(653\) 238.679 + 576.222i 0.365512 + 0.882423i 0.994474 + 0.104987i \(0.0334802\pi\)
−0.628962 + 0.777436i \(0.716520\pi\)
\(654\) 115.154 + 47.6985i 0.176077 + 0.0729335i
\(655\) 154.780 + 154.780i 0.236305 + 0.236305i
\(656\) −164.548 397.253i −0.250835 0.605569i
\(657\) −433.467 179.548i −0.659766 0.273284i
\(658\) −45.0925 18.6779i −0.0685296 0.0283859i
\(659\) 632.278 0.959451 0.479726 0.877419i \(-0.340736\pi\)
0.479726 + 0.877419i \(0.340736\pi\)
\(660\) −126.676 −0.191934
\(661\) −559.487 + 559.487i −0.846426 + 0.846426i −0.989685 0.143259i \(-0.954242\pi\)
0.143259 + 0.989685i \(0.454242\pi\)
\(662\) 3.16861i 0.00478643i
\(663\) −100.045 456.926i −0.150897 0.689179i
\(664\) −315.418 −0.475028
\(665\) −30.7250 30.7250i −0.0462030 0.0462030i
\(666\) −28.5442 + 11.8234i −0.0428591 + 0.0177528i
\(667\) 1025.85i 1.53801i
\(668\) 311.894 752.980i 0.466908 1.12722i
\(669\) −695.220 + 695.220i −1.03919 + 1.03919i
\(670\) 56.2498 23.2994i 0.0839549 0.0347753i
\(671\) 249.176 249.176i 0.371350 0.371350i
\(672\) 102.889 + 42.6182i 0.153109 + 0.0634199i
\(673\) 383.827 158.986i 0.570322 0.236235i −0.0788372 0.996888i \(-0.525121\pi\)
0.649160 + 0.760652i \(0.275121\pi\)
\(674\) 148.371 61.4573i 0.220135 0.0911830i
\(675\) 387.827 + 387.827i 0.574558 + 0.574558i
\(676\) 324.966i 0.480718i
\(677\) −253.203 104.880i −0.374008 0.154919i 0.187758 0.982215i \(-0.439878\pi\)
−0.561766 + 0.827296i \(0.689878\pi\)
\(678\) 41.4228 + 17.1579i 0.0610956 + 0.0253066i
\(679\) 262.235 0.386208
\(680\) 68.1909 + 97.9310i 0.100281 + 0.144016i
\(681\) 488.834 202.482i 0.717818 0.297330i
\(682\) 61.3310 61.3310i 0.0899281 0.0899281i
\(683\) −507.390 210.168i −0.742885 0.307713i −0.0210502 0.999778i \(-0.506701\pi\)
−0.721835 + 0.692065i \(0.756701\pi\)
\(684\) 247.103 + 247.103i 0.361261 + 0.361261i
\(685\) −30.0101 12.4306i −0.0438104 0.0181468i
\(686\) 71.2548 29.5147i 0.103870 0.0430244i
\(687\) 40.6905 + 40.6905i 0.0592292 + 0.0592292i
\(688\) 119.537 + 119.537i 0.173746 + 0.173746i
\(689\) 489.352 489.352i 0.710236 0.710236i
\(690\) −40.6173 + 40.6173i −0.0588657 + 0.0588657i
\(691\) 260.559 + 629.045i 0.377075 + 0.910340i 0.992511 + 0.122153i \(0.0389800\pi\)
−0.615436 + 0.788187i \(0.711020\pi\)
\(692\) 102.034 246.333i 0.147449 0.355973i
\(693\) −64.1695 + 64.1695i −0.0925967 + 0.0925967i
\(694\) −73.8269 + 178.234i −0.106379 + 0.256821i
\(695\) −94.4954 94.4954i −0.135965 0.135965i
\(696\) 178.846 + 431.772i 0.256962 + 0.620362i
\(697\) −298.986 429.383i −0.428962 0.616045i
\(698\) 52.6476i 0.0754264i
\(699\) −350.283 + 845.657i −0.501120 + 1.20981i
\(700\) 58.8995 142.196i 0.0841421 0.203137i
\(701\) −531.391 −0.758047 −0.379024 0.925387i \(-0.623740\pi\)
−0.379024 + 0.925387i \(0.623740\pi\)
\(702\) 72.5299 72.5299i 0.103319 0.103319i
\(703\) 32.1665 + 77.6569i 0.0457561 + 0.110465i
\(704\) −93.8076 226.472i −0.133249 0.321693i
\(705\) −147.971 + 357.235i −0.209889 + 0.506716i
\(706\) 77.3848 + 77.3848i 0.109610 + 0.109610i
\(707\) 72.3390 + 174.642i 0.102318 + 0.247018i
\(708\) −910.124 910.124i −1.28549 1.28549i
\(709\) 537.026 + 222.444i 0.757442 + 0.313743i 0.727774 0.685817i \(-0.240555\pi\)
0.0296681 + 0.999560i \(0.490555\pi\)
\(710\) −80.0690 −0.112773
\(711\) −295.566 713.558i −0.415704 1.00360i
\(712\) 201.409 201.409i 0.282878 0.282878i
\(713\) 877.602i 1.23086i
\(714\) 41.1535 + 7.36753i 0.0576379 + 0.0103187i
\(715\) 101.157 0.141479
\(716\) 108.125 + 108.125i 0.151012 + 0.151012i
\(717\) 534.749i 0.745815i
\(718\) 226.774i 0.315841i
\(719\) −25.4823 + 61.5198i −0.0354413 + 0.0855630i −0.940609 0.339491i \(-0.889745\pi\)
0.905168 + 0.425054i \(0.139745\pi\)
\(720\) 104.162 251.470i 0.144670 0.349264i
\(721\) 83.7847 34.7048i 0.116206 0.0481342i
\(722\) 75.6066 75.6066i 0.104718 0.104718i
\(723\) 385.887 931.613i 0.533730 1.28854i
\(724\) −507.304 + 210.132i −0.700696 + 0.290238i
\(725\) 901.619 373.463i 1.24361 0.515121i
\(726\) 118.103 0.162676
\(727\) 443.304i 0.609771i −0.952389 0.304886i \(-0.901382\pi\)
0.952389 0.304886i \(-0.0986182\pi\)
\(728\) −54.3776 22.5240i −0.0746946 0.0309395i
\(729\) 729.000 1.00000
\(730\) −46.7452 −0.0640345
\(731\) 173.203 + 110.981i 0.236940 + 0.151820i
\(732\) 303.993 + 733.904i 0.415291 + 1.00260i
\(733\) 472.302 472.302i 0.644340 0.644340i −0.307279 0.951619i \(-0.599418\pi\)
0.951619 + 0.307279i \(0.0994185\pi\)
\(734\) 88.3482 + 36.5950i 0.120365 + 0.0498570i
\(735\) −112.045 270.500i −0.152442 0.368027i
\(736\) −370.044 153.277i −0.502777 0.208257i
\(737\) −319.610 + 132.387i −0.433664 + 0.179629i
\(738\) 43.9081 106.004i 0.0594961 0.143636i
\(739\) −824.285 824.285i −1.11541 1.11541i −0.992407 0.123000i \(-0.960749\pi\)
−0.123000 0.992407i \(-0.539251\pi\)
\(740\) 48.5685 48.5685i 0.0656332 0.0656332i
\(741\) −197.324 197.324i −0.266294 0.266294i
\(742\) 23.6711 + 57.1472i 0.0319018 + 0.0770178i
\(743\) −169.593 + 409.434i −0.228254 + 0.551055i −0.995965 0.0897419i \(-0.971396\pi\)
0.767711 + 0.640797i \(0.221396\pi\)
\(744\) 153.000 + 369.375i 0.205645 + 0.496471i
\(745\) −43.0294 + 103.882i −0.0577576 + 0.139439i
\(746\) 3.32799 + 3.32799i 0.00446112 + 0.00446112i
\(747\) 619.036 + 619.036i 0.828696 + 0.828696i
\(748\) −189.484 272.123i −0.253321 0.363801i
\(749\) 28.8427i 0.0385083i
\(750\) 112.617 + 46.6476i 0.150156 + 0.0621968i
\(751\) −66.0366 + 159.426i −0.0879315 + 0.212285i −0.961728 0.274007i \(-0.911651\pi\)
0.873796 + 0.486292i \(0.161651\pi\)
\(752\) −831.795 −1.10611
\(753\) −1071.11 −1.42246
\(754\) −69.8436 168.617i −0.0926307 0.223630i
\(755\) 3.02944 + 7.31371i 0.00401250 + 0.00968703i
\(756\) −78.2864 189.000i −0.103553 0.250000i
\(757\) 504.686 + 504.686i 0.666693 + 0.666693i 0.956949 0.290256i \(-0.0937406\pi\)
−0.290256 + 0.956949i \(0.593741\pi\)
\(758\) −14.8400 35.8269i −0.0195778 0.0472651i
\(759\) 230.787 230.787i 0.304067 0.304067i
\(760\) 65.7746 + 27.2447i 0.0865455 + 0.0358483i
\(761\) 333.495 0.438232 0.219116 0.975699i \(-0.429683\pi\)
0.219116 + 0.975699i \(0.429683\pi\)
\(762\) 143.574i 0.188417i
\(763\) −140.368 + 140.368i −0.183968 + 0.183968i
\(764\) 634.299i 0.830234i
\(765\) 58.3675 326.029i 0.0762974 0.426181i
\(766\) −141.980 −0.185352
\(767\) 726.780 + 726.780i 0.947561 + 0.947561i
\(768\) 459.353 0.598116
\(769\) 222.073i 0.288782i 0.989521 + 0.144391i \(0.0461223\pi\)
−0.989521 + 0.144391i \(0.953878\pi\)
\(770\) −3.46003 + 8.35325i −0.00449354 + 0.0108484i
\(771\) 413.309 + 413.309i 0.536068 + 0.536068i
\(772\) 1059.81 438.988i 1.37281 0.568638i
\(773\) −283.377 + 283.377i −0.366593 + 0.366593i −0.866233 0.499640i \(-0.833466\pi\)
0.499640 + 0.866233i \(0.333466\pi\)
\(774\) 45.1097i 0.0582813i
\(775\) 771.323 319.492i 0.995255 0.412248i
\(776\) −396.957 + 164.425i −0.511542 + 0.211888i
\(777\) 49.2061i 0.0633283i
\(778\) 100.638i 0.129354i
\(779\) −288.392 119.456i −0.370208 0.153345i
\(780\) −87.2649 + 210.676i −0.111878 + 0.270098i
\(781\) 454.950 0.582523
\(782\) −148.009 26.4975i −0.189270 0.0338842i
\(783\) 496.389 1198.39i 0.633958 1.53051i
\(784\) 445.363 445.363i 0.568065 0.568065i
\(785\) 509.539 + 211.058i 0.649094 + 0.268864i
\(786\) −116.085 + 48.0839i −0.147691 + 0.0611754i
\(787\) 1185.72 + 491.140i 1.50663 + 0.624066i 0.974859 0.222823i \(-0.0715273\pi\)
0.531769 + 0.846889i \(0.321527\pi\)
\(788\) −57.6985 + 23.8995i −0.0732214 + 0.0303293i
\(789\) 89.4487 89.4487i 0.113370 0.113370i
\(790\) −54.4121 54.4121i −0.0688761 0.0688761i
\(791\) −50.4924 + 50.4924i −0.0638337 + 0.0638337i
\(792\) 56.9010 137.371i 0.0718447 0.173448i
\(793\) −242.754 586.059i −0.306120 0.739040i
\(794\) −43.5004 + 105.019i −0.0547864 + 0.132266i
\(795\) 452.735 187.529i 0.569478 0.235886i
\(796\) −289.402 + 698.678i −0.363570 + 0.877737i
\(797\) −77.0812 77.0812i −0.0967141 0.0967141i 0.657094 0.753808i \(-0.271785\pi\)
−0.753808 + 0.657094i \(0.771785\pi\)
\(798\) 23.0437 9.54502i 0.0288768 0.0119612i
\(799\) −988.742 + 216.487i −1.23747 + 0.270947i
\(800\) 381.032i 0.476289i
\(801\) −790.566 −0.986973
\(802\) −79.9435 + 193.001i −0.0996801 + 0.240649i
\(803\) 265.605 0.330766
\(804\) 779.845i 0.969956i
\(805\) −35.0092 84.5198i −0.0434897 0.104994i
\(806\) −59.7502 144.250i −0.0741318 0.178970i
\(807\) 893.970 + 370.294i 1.10777 + 0.458853i
\(808\) −219.005 219.005i −0.271046 0.271046i
\(809\) −287.561 694.233i −0.355452 0.858137i −0.995927 0.0901586i \(-0.971263\pi\)
0.640475 0.767979i \(-0.278737\pi\)
\(810\) 67.1026 27.7948i 0.0828427 0.0343146i
\(811\) −602.614 249.611i −0.743050 0.307781i −0.0211478 0.999776i \(-0.506732\pi\)
−0.721902 + 0.691995i \(0.756732\pi\)
\(812\) −364.000 −0.448276
\(813\) 449.543 0.552944
\(814\) 12.3675 12.3675i 0.0151935 0.0151935i
\(815\) 186.363i 0.228667i
\(816\) 696.011 152.393i 0.852954 0.186756i
\(817\) 122.725 0.150214
\(818\) −103.198 103.198i −0.126159 0.126159i
\(819\) 62.5156 + 150.926i 0.0763316 + 0.184281i
\(820\) 255.078i 0.311071i
\(821\) −282.247 + 681.404i −0.343784 + 0.829968i 0.653542 + 0.756890i \(0.273282\pi\)
−0.997326 + 0.0730782i \(0.976718\pi\)
\(822\) 13.1846 13.1846i 0.0160397 0.0160397i
\(823\) −412.331 + 170.793i −0.501010 + 0.207525i −0.618852 0.785507i \(-0.712402\pi\)
0.117843 + 0.993032i \(0.462402\pi\)
\(824\) −105.068 + 105.068i −0.127510 + 0.127510i
\(825\) −286.856 118.820i −0.347705 0.144024i
\(826\) −84.8742 + 35.1561i −0.102753 + 0.0425618i
\(827\) −730.907 + 302.752i −0.883806 + 0.366084i −0.777972 0.628300i \(-0.783751\pi\)
−0.105834 + 0.994384i \(0.533751\pi\)
\(828\) 281.558 + 679.742i 0.340046 + 0.820945i
\(829\) 465.176i 0.561129i 0.959835 + 0.280564i \(0.0905216\pi\)
−0.959835 + 0.280564i \(0.909478\pi\)
\(830\) 80.5828 + 33.3785i 0.0970877 + 0.0402151i
\(831\) −1083.41 448.764i −1.30374 0.540028i
\(832\) −441.269 −0.530372
\(833\) 413.484 645.309i 0.496380 0.774680i
\(834\) 70.8715 29.3560i 0.0849779 0.0351990i
\(835\) −325.872 + 325.872i −0.390266 + 0.390266i
\(836\) −182.770 75.7056i −0.218624 0.0905570i
\(837\) 424.654 1025.21i 0.507352 1.22486i
\(838\) 107.900 + 44.6937i 0.128759 + 0.0533338i
\(839\) −376.092 + 155.783i −0.448263 + 0.185677i −0.595383 0.803442i \(-0.703000\pi\)
0.147120 + 0.989119i \(0.453000\pi\)
\(840\) −29.4701 29.4701i −0.0350835 0.0350835i
\(841\) −1037.33 1037.33i −1.23345 1.23345i
\(842\) −160.177 + 160.177i −0.190234 + 0.190234i
\(843\) −1126.71 + 1126.71i −1.33655 + 1.33655i
\(844\) 452.059 + 1091.37i 0.535616 + 1.29309i
\(845\) −70.3188 + 169.765i −0.0832175 + 0.200905i
\(846\) −156.947 156.947i −0.185517 0.185517i
\(847\) −71.9807 + 173.777i −0.0849831 + 0.205167i
\(848\) 745.404 + 745.404i 0.879014 + 0.879014i
\(849\) −354.988 857.018i −0.418125 1.00944i
\(850\) 30.5944 + 139.731i 0.0359934 + 0.164390i
\(851\) 176.971i 0.207956i
\(852\) −392.470 + 947.507i −0.460646 + 1.11210i
\(853\) 199.765 482.274i 0.234191 0.565386i −0.762472 0.647022i \(-0.776014\pi\)
0.996662 + 0.0816356i \(0.0260144\pi\)
\(854\) 56.6981 0.0663912
\(855\) −75.6182 182.558i −0.0884423 0.213519i
\(856\) −18.0847 43.6604i −0.0211270 0.0510052i
\(857\) −167.607 404.640i −0.195575 0.472159i 0.795420 0.606058i \(-0.207250\pi\)
−0.990995 + 0.133899i \(0.957250\pi\)
\(858\) −22.2212 + 53.6468i −0.0258988 + 0.0625254i
\(859\) −231.551 231.551i −0.269559 0.269559i 0.559363 0.828923i \(-0.311046\pi\)
−0.828923 + 0.559363i \(0.811046\pi\)
\(860\) −38.3776 92.6518i −0.0446252 0.107735i
\(861\) 129.213 + 129.213i 0.150073 + 0.150073i
\(862\) 0.708586 + 0.293506i 0.000822026 + 0.000340494i
\(863\) −1473.72 −1.70767 −0.853835 0.520543i \(-0.825730\pi\)
−0.853835 + 0.520543i \(0.825730\pi\)
\(864\) 358.113 + 358.113i 0.414483 + 0.414483i
\(865\) −106.607 + 106.607i −0.123245 + 0.123245i
\(866\) 77.7889i 0.0898255i
\(867\) 787.675 362.294i 0.908507 0.417870i
\(868\) −311.397 −0.358752
\(869\) 309.169 + 309.169i 0.355775 + 0.355775i
\(870\) 129.235i 0.148546i
\(871\) 622.745i 0.714977i
\(872\) 124.468 300.492i 0.142739 0.344601i
\(873\) 1101.76 + 456.364i 1.26204 + 0.522754i
\(874\) −82.8772 + 34.3289i −0.0948252 + 0.0392779i
\(875\) −137.275 + 137.275i −0.156886 + 0.156886i
\(876\) −229.128 + 553.165i −0.261562 + 0.631467i
\(877\) 433.130 179.408i 0.493877 0.204570i −0.121822 0.992552i \(-0.538874\pi\)
0.615699 + 0.787981i \(0.288874\pi\)
\(878\) −106.466 + 44.0996i −0.121260 + 0.0502274i
\(879\) −811.456 −0.923158
\(880\) 154.087i 0.175099i
\(881\) 487.378 + 201.879i 0.553210 + 0.229147i 0.641735 0.766927i \(-0.278215\pi\)
−0.0885243 + 0.996074i \(0.528215\pi\)
\(882\) 168.067 0.190552
\(883\) −548.169 −0.620803 −0.310402 0.950605i \(-0.600464\pi\)
−0.310402 + 0.950605i \(0.600464\pi\)
\(884\) −583.103 + 127.671i −0.659618 + 0.144424i
\(885\) 278.516 + 672.396i 0.314707 + 0.759770i
\(886\) 72.9512 72.9512i 0.0823377 0.0823377i
\(887\) −886.966 367.393i −0.999961 0.414197i −0.178178 0.983998i \(-0.557020\pi\)
−0.821783 + 0.569801i \(0.807020\pi\)
\(888\) 30.8528 + 74.4853i 0.0347442 + 0.0838798i
\(889\) 211.255 + 87.5046i 0.237632 + 0.0984304i
\(890\) −72.7696 + 30.1421i −0.0817635 + 0.0338676i
\(891\) −381.276 + 157.930i −0.427919 + 0.177250i
\(892\) 887.200 + 887.200i 0.994619 + 0.994619i
\(893\) −426.989 + 426.989i −0.478151 + 0.478151i
\(894\) −45.6396 45.6396i −0.0510510 0.0510510i
\(895\) −33.0883 79.8823i −0.0369702 0.0892539i
\(896\) 71.9176 173.624i 0.0802652 0.193777i
\(897\) −224.839 542.808i −0.250656 0.605137i
\(898\) 2.77190 6.69195i 0.00308675 0.00745207i
\(899\) −1396.16 1396.16i −1.55302 1.55302i
\(900\) 494.922 494.922i 0.549914 0.549914i
\(901\) 1080.05 + 692.049i 1.19873 + 0.768090i
\(902\) 64.9533i 0.0720103i
\(903\) −66.3747 27.4933i −0.0735046 0.0304466i
\(904\) 44.7731 108.092i 0.0495278 0.119571i
\(905\) 310.489 0.343082
\(906\) −4.54416 −0.00501562
\(907\) −153.671 370.993i −0.169427 0.409034i 0.816245 0.577706i \(-0.196052\pi\)
−0.985672 + 0.168672i \(0.946052\pi\)
\(908\) −258.395 623.822i −0.284577 0.687029i
\(909\) 859.632i 0.945690i
\(910\) 11.5088 + 11.5088i 0.0126470 + 0.0126470i
\(911\) 412.710 + 996.370i 0.453029 + 1.09371i 0.971164 + 0.238411i \(0.0766265\pi\)
−0.518135 + 0.855299i \(0.673373\pi\)
\(912\) 300.573 300.573i 0.329575 0.329575i
\(913\) −457.870 189.656i −0.501501 0.207728i
\(914\) 333.955 0.365378
\(915\) 449.177i 0.490904i
\(916\) 51.9268 51.9268i 0.0566887 0.0566887i
\(917\) 200.114i 0.218226i
\(918\) 160.081 + 102.573i 0.174380 + 0.111735i
\(919\) −1163.94 −1.26652 −0.633262 0.773938i \(-0.718284\pi\)
−0.633262 + 0.773938i \(0.718284\pi\)
\(920\) 105.990 + 105.990i 0.115206 + 0.115206i
\(921\) 400.648 0.435014
\(922\) 223.858i 0.242796i
\(923\) 313.407 756.632i 0.339553 0.819753i
\(924\) 81.8894 + 81.8894i 0.0886249 + 0.0886249i
\(925\) 155.539 64.4264i 0.168150 0.0696502i
\(926\) −13.6224 + 13.6224i −0.0147110 + 0.0147110i
\(927\) 412.410 0.444887
\(928\) 832.541 344.850i 0.897135 0.371605i
\(929\) 1590.26 658.706i 1.71179 0.709049i 0.711817 0.702365i \(-0.247872\pi\)
0.999978 0.00668405i \(-0.00212761\pi\)
\(930\) 110.558i 0.118880i
\(931\) 457.241i 0.491128i
\(932\) 1079.18 + 447.011i 1.15792 + 0.479625i
\(933\) 456.920 1103.10i 0.489732 1.18232i
\(934\) −146.092 −0.156415
\(935\) 40.1035 + 183.161i 0.0428914 + 0.195895i
\(936\) −189.265 189.265i −0.202206 0.202206i
\(937\) 992.125 992.125i 1.05883 1.05883i 0.0606736 0.998158i \(-0.480675\pi\)
0.998158 0.0606736i \(-0.0193249\pi\)
\(938\) −51.4243 21.3006i −0.0548234 0.0227086i
\(939\) 622.290 257.761i 0.662716 0.274506i
\(940\) 455.882 + 188.833i 0.484981 + 0.200886i
\(941\) 1655.90 685.895i 1.75972 0.728900i 0.763145 0.646228i \(-0.223654\pi\)
0.996577 0.0826726i \(-0.0263456\pi\)
\(942\) −223.861 + 223.861i −0.237644 + 0.237644i
\(943\) −464.718 464.718i −0.492808 0.492808i
\(944\) −1107.06 + 1107.06i −1.17274 + 1.17274i
\(945\) 115.675i 0.122408i
\(946\) −9.77251 23.5929i −0.0103304 0.0249397i
\(947\) −464.994 + 1122.60i −0.491018 + 1.18542i 0.463184 + 0.886262i \(0.346707\pi\)
−0.954203 + 0.299161i \(0.903293\pi\)
\(948\) −910.602 + 377.184i −0.960551 + 0.397873i
\(949\) 182.971 441.730i 0.192804 0.465469i
\(950\) 60.3431 + 60.3431i 0.0635191 + 0.0635191i
\(951\) −279.338 + 115.706i −0.293731 + 0.121667i
\(952\) 19.2254 107.389i 0.0201947 0.112804i
\(953\) 1552.12i 1.62867i −0.580398 0.814333i \(-0.697103\pi\)
0.580398 0.814333i \(-0.302897\pi\)
\(954\) 281.294i 0.294857i
\(955\) −137.255 + 331.362i −0.143722 + 0.346976i
\(956\) 682.416 0.713825
\(957\) 734.309i 0.767303i
\(958\) 87.4478 + 211.118i 0.0912817 + 0.220373i
\(959\) 11.3642 + 27.4356i 0.0118501 + 0.0286086i
\(960\) −288.676 119.574i −0.300704 0.124556i
\(961\) −514.866 514.866i −0.535761 0.535761i
\(962\) −12.0488 29.0883i −0.0125247 0.0302373i
\(963\) −50.1945 + 121.180i −0.0521230 + 0.125836i
\(964\) −1188.87 492.446i −1.23327 0.510836i
\(965\) −648.646 −0.672172
\(966\) 52.5139 0.0543622
\(967\) 449.474 449.474i 0.464813 0.464813i −0.435416 0.900229i \(-0.643399\pi\)
0.900229 + 0.435416i \(0.143399\pi\)
\(968\) 308.186i 0.318374i
\(969\) 279.058 435.515i 0.287986 0.449448i
\(970\) 118.814 0.122489
\(971\) 68.4428 + 68.4428i 0.0704869 + 0.0704869i 0.741471 0.670984i \(-0.234128\pi\)
−0.670984 + 0.741471i \(0.734128\pi\)
\(972\) 930.308i 0.957107i
\(973\) 122.172i 0.125563i
\(974\) −83.8516 + 202.436i −0.0860899 + 0.207839i
\(975\) −395.220 + 395.220i −0.405354 + 0.405354i
\(976\) 892.712 369.773i 0.914664 0.378866i
\(977\) −1043.58 + 1043.58i −1.06814 + 1.06814i −0.0706425 + 0.997502i \(0.522505\pi\)
−0.997502 + 0.0706425i \(0.977495\pi\)
\(978\) −98.8341 40.9384i −0.101057 0.0418593i
\(979\) 413.475 171.267i 0.422344 0.174941i
\(980\) −345.196 + 142.985i −0.352241 + 0.145903i
\(981\) −834.021 + 345.463i −0.850175 + 0.352154i
\(982\) 64.6417i 0.0658266i
\(983\) 1317.22 + 545.610i 1.34000 + 0.555046i 0.933491 0.358601i \(-0.116746\pi\)
0.406509 + 0.913647i \(0.366746\pi\)
\(984\) −276.614 114.577i −0.281112 0.116440i
\(985\) 35.3137 0.0358515
\(986\) 277.619 193.311i 0.281561 0.196056i
\(987\) 326.589 135.277i 0.330890 0.137059i
\(988\) −251.813 + 251.813i −0.254872 + 0.254872i
\(989\) 238.718 + 98.8802i 0.241373 + 0.0999799i
\(990\) −29.0740 + 29.0740i −0.0293677 + 0.0293677i
\(991\) 44.0812 + 18.2590i 0.0444815 + 0.0184248i 0.404813 0.914399i \(-0.367337\pi\)
−0.360332 + 0.932824i \(0.617337\pi\)
\(992\) 712.227 295.014i 0.717971 0.297393i
\(993\) 16.2275 + 16.2275i 0.0163419 + 0.0163419i
\(994\) 51.7603 + 51.7603i 0.0520728 + 0.0520728i
\(995\) 302.372 302.372i 0.303891 0.303891i
\(996\) 789.978 789.978i 0.793150 0.793150i
\(997\) 377.727 + 911.914i 0.378864 + 0.914658i 0.992179 + 0.124820i \(0.0398353\pi\)
−0.613316 + 0.789838i \(0.710165\pi\)
\(998\) −88.9417 + 214.724i −0.0891200 + 0.215155i
\(999\) 85.6325 206.735i 0.0857182 0.206942i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.3.g.a.8.1 4
3.2 odd 2 51.3.g.b.8.1 yes 4
17.15 even 8 51.3.g.b.32.1 yes 4
51.32 odd 8 inner 51.3.g.a.32.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.3.g.a.8.1 4 1.1 even 1 trivial
51.3.g.a.32.1 yes 4 51.32 odd 8 inner
51.3.g.b.8.1 yes 4 3.2 odd 2
51.3.g.b.32.1 yes 4 17.15 even 8