Properties

Label 51.2.h.a.25.1
Level $51$
Weight $2$
Character 51.25
Analytic conductor $0.407$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,2,Mod(19,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 51.h (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.407237050309\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 25.1
Root \(0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 51.25
Dual form 51.2.h.a.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.541196 + 0.541196i) q^{2} +(-0.382683 + 0.923880i) q^{3} +1.41421i q^{4} +(-0.0761205 - 0.0315301i) q^{5} +(-0.292893 - 0.707107i) q^{6} +(2.55487 - 1.05826i) q^{7} +(-1.84776 - 1.84776i) q^{8} +(-0.707107 - 0.707107i) q^{9} +(0.0582601 - 0.0241321i) q^{10} +(-0.255701 - 0.617317i) q^{11} +(-1.30656 - 0.541196i) q^{12} -3.28130i q^{13} +(-0.809957 + 1.95541i) q^{14} +(0.0582601 - 0.0582601i) q^{15} -0.828427 q^{16} +(3.18585 - 2.61732i) q^{17} +0.765367 q^{18} +(-2.57420 + 2.57420i) q^{19} +(0.0445903 - 0.107651i) q^{20} +2.76537i q^{21} +(0.472474 + 0.195705i) q^{22} +(3.56226 + 8.60007i) q^{23} +(2.41421 - 1.00000i) q^{24} +(-3.53073 - 3.53073i) q^{25} +(1.77583 + 1.77583i) q^{26} +(0.923880 - 0.382683i) q^{27} +(1.49661 + 3.61313i) q^{28} +(-5.76745 - 2.38896i) q^{29} +0.0630603i q^{30} +(-1.93015 + 4.65980i) q^{31} +(4.14386 - 4.14386i) q^{32} +0.668179 q^{33} +(-0.307689 + 3.14065i) q^{34} -0.227845 q^{35} +(1.00000 - 1.00000i) q^{36} +(0.920815 - 2.22304i) q^{37} -2.78629i q^{38} +(3.03153 + 1.25570i) q^{39} +(0.0823922 + 0.198912i) q^{40} +(-0.443663 + 0.183771i) q^{41} +(-1.49661 - 1.49661i) q^{42} +(-5.85097 - 5.85097i) q^{43} +(0.873017 - 0.361616i) q^{44} +(0.0315301 + 0.0761205i) q^{45} +(-6.58221 - 2.72644i) q^{46} -8.88311i q^{47} +(0.317025 - 0.765367i) q^{48} +(0.457678 - 0.457678i) q^{49} +3.82164 q^{50} +(1.19891 + 3.94495i) q^{51} +4.64047 q^{52} +(-8.02734 + 8.02734i) q^{53} +(-0.292893 + 0.707107i) q^{54} +0.0550527i q^{55} +(-6.67619 - 2.76537i) q^{56} +(-1.39315 - 3.36335i) q^{57} +(4.41421 - 1.82843i) q^{58} +(6.78384 + 6.78384i) q^{59} +(0.0823922 + 0.0823922i) q^{60} +(2.39008 - 0.990004i) q^{61} +(-1.47727 - 3.56645i) q^{62} +(-2.55487 - 1.05826i) q^{63} +2.82843i q^{64} +(-0.103460 + 0.249774i) q^{65} +(-0.361616 + 0.361616i) q^{66} +0.944947 q^{67} +(3.70144 + 4.50548i) q^{68} -9.30864 q^{69} +(0.123309 - 0.123309i) q^{70} +(-1.25830 + 3.03780i) q^{71} +2.61313i q^{72} +(14.4882 + 6.00122i) q^{73} +(0.704761 + 1.70144i) q^{74} +(4.61313 - 1.91082i) q^{75} +(-3.64047 - 3.64047i) q^{76} +(-1.30656 - 1.30656i) q^{77} +(-2.32023 + 0.961072i) q^{78} +(3.20371 + 7.73445i) q^{79} +(0.0630603 + 0.0261204i) q^{80} +1.00000i q^{81} +(0.140652 - 0.339565i) q^{82} +(0.636303 - 0.636303i) q^{83} -3.91082 q^{84} +(-0.325033 + 0.0987810i) q^{85} +6.33304 q^{86} +(4.41421 - 4.41421i) q^{87} +(-0.668179 + 1.61313i) q^{88} -5.64431i q^{89} +(-0.0582601 - 0.0241321i) q^{90} +(-3.47247 - 8.38329i) q^{91} +(-12.1623 + 5.03780i) q^{92} +(-3.56645 - 3.56645i) q^{93} +(4.80750 + 4.80750i) q^{94} +(0.277114 - 0.114784i) q^{95} +(2.24264 + 5.41421i) q^{96} +(10.1371 + 4.19891i) q^{97} +0.495387i q^{98} +(-0.255701 + 0.617317i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} - 8 q^{6} + 8 q^{11} - 16 q^{14} + 16 q^{16} - 8 q^{17} - 8 q^{19} + 16 q^{20} - 8 q^{22} + 8 q^{23} + 8 q^{24} - 16 q^{25} + 16 q^{26} - 8 q^{28} + 8 q^{31} + 8 q^{33} - 8 q^{34} + 32 q^{35}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.541196 + 0.541196i −0.382683 + 0.382683i −0.872068 0.489385i \(-0.837221\pi\)
0.489385 + 0.872068i \(0.337221\pi\)
\(3\) −0.382683 + 0.923880i −0.220942 + 0.533402i
\(4\) 1.41421i 0.707107i
\(5\) −0.0761205 0.0315301i −0.0340421 0.0141007i 0.365597 0.930773i \(-0.380865\pi\)
−0.399640 + 0.916672i \(0.630865\pi\)
\(6\) −0.292893 0.707107i −0.119573 0.288675i
\(7\) 2.55487 1.05826i 0.965649 0.399985i 0.156558 0.987669i \(-0.449960\pi\)
0.809091 + 0.587684i \(0.199960\pi\)
\(8\) −1.84776 1.84776i −0.653281 0.653281i
\(9\) −0.707107 0.707107i −0.235702 0.235702i
\(10\) 0.0582601 0.0241321i 0.0184235 0.00763125i
\(11\) −0.255701 0.617317i −0.0770967 0.186128i 0.880632 0.473801i \(-0.157118\pi\)
−0.957729 + 0.287673i \(0.907118\pi\)
\(12\) −1.30656 0.541196i −0.377172 0.156230i
\(13\) 3.28130i 0.910070i −0.890474 0.455035i \(-0.849627\pi\)
0.890474 0.455035i \(-0.150373\pi\)
\(14\) −0.809957 + 1.95541i −0.216470 + 0.522605i
\(15\) 0.0582601 0.0582601i 0.0150427 0.0150427i
\(16\) −0.828427 −0.207107
\(17\) 3.18585 2.61732i 0.772683 0.634793i
\(18\) 0.765367 0.180399
\(19\) −2.57420 + 2.57420i −0.590561 + 0.590561i −0.937783 0.347222i \(-0.887125\pi\)
0.347222 + 0.937783i \(0.387125\pi\)
\(20\) 0.0445903 0.107651i 0.00997070 0.0240714i
\(21\) 2.76537i 0.603453i
\(22\) 0.472474 + 0.195705i 0.100732 + 0.0417244i
\(23\) 3.56226 + 8.60007i 0.742783 + 1.79324i 0.594165 + 0.804343i \(0.297483\pi\)
0.148618 + 0.988895i \(0.452517\pi\)
\(24\) 2.41421 1.00000i 0.492799 0.204124i
\(25\) −3.53073 3.53073i −0.706147 0.706147i
\(26\) 1.77583 + 1.77583i 0.348269 + 0.348269i
\(27\) 0.923880 0.382683i 0.177801 0.0736475i
\(28\) 1.49661 + 3.61313i 0.282832 + 0.682817i
\(29\) −5.76745 2.38896i −1.07099 0.443618i −0.223649 0.974670i \(-0.571797\pi\)
−0.847339 + 0.531052i \(0.821797\pi\)
\(30\) 0.0630603i 0.0115132i
\(31\) −1.93015 + 4.65980i −0.346665 + 0.836924i 0.650344 + 0.759640i \(0.274625\pi\)
−0.997009 + 0.0772842i \(0.975375\pi\)
\(32\) 4.14386 4.14386i 0.732538 0.732538i
\(33\) 0.668179 0.116315
\(34\) −0.307689 + 3.14065i −0.0527683 + 0.538617i
\(35\) −0.227845 −0.0385128
\(36\) 1.00000 1.00000i 0.166667 0.166667i
\(37\) 0.920815 2.22304i 0.151381 0.365466i −0.829937 0.557857i \(-0.811624\pi\)
0.981318 + 0.192390i \(0.0616239\pi\)
\(38\) 2.78629i 0.451996i
\(39\) 3.03153 + 1.25570i 0.485433 + 0.201073i
\(40\) 0.0823922 + 0.198912i 0.0130274 + 0.0314508i
\(41\) −0.443663 + 0.183771i −0.0692885 + 0.0287002i −0.417059 0.908880i \(-0.636939\pi\)
0.347770 + 0.937580i \(0.386939\pi\)
\(42\) −1.49661 1.49661i −0.230931 0.230931i
\(43\) −5.85097 5.85097i −0.892264 0.892264i 0.102472 0.994736i \(-0.467325\pi\)
−0.994736 + 0.102472i \(0.967325\pi\)
\(44\) 0.873017 0.361616i 0.131612 0.0545156i
\(45\) 0.0315301 + 0.0761205i 0.00470023 + 0.0113474i
\(46\) −6.58221 2.72644i −0.970493 0.401991i
\(47\) 8.88311i 1.29573i −0.761753 0.647867i \(-0.775661\pi\)
0.761753 0.647867i \(-0.224339\pi\)
\(48\) 0.317025 0.765367i 0.0457587 0.110471i
\(49\) 0.457678 0.457678i 0.0653825 0.0653825i
\(50\) 3.82164 0.540461
\(51\) 1.19891 + 3.94495i 0.167881 + 0.552403i
\(52\) 4.64047 0.643517
\(53\) −8.02734 + 8.02734i −1.10264 + 1.10264i −0.108549 + 0.994091i \(0.534620\pi\)
−0.994091 + 0.108549i \(0.965380\pi\)
\(54\) −0.292893 + 0.707107i −0.0398577 + 0.0962250i
\(55\) 0.0550527i 0.00742331i
\(56\) −6.67619 2.76537i −0.892143 0.369538i
\(57\) −1.39315 3.36335i −0.184527 0.445487i
\(58\) 4.41421 1.82843i 0.579615 0.240084i
\(59\) 6.78384 + 6.78384i 0.883180 + 0.883180i 0.993857 0.110676i \(-0.0353016\pi\)
−0.110676 + 0.993857i \(0.535302\pi\)
\(60\) 0.0823922 + 0.0823922i 0.0106368 + 0.0106368i
\(61\) 2.39008 0.990004i 0.306019 0.126757i −0.224389 0.974500i \(-0.572039\pi\)
0.530408 + 0.847743i \(0.322039\pi\)
\(62\) −1.47727 3.56645i −0.187614 0.452940i
\(63\) −2.55487 1.05826i −0.321883 0.133328i
\(64\) 2.82843i 0.353553i
\(65\) −0.103460 + 0.249774i −0.0128326 + 0.0309807i
\(66\) −0.361616 + 0.361616i −0.0445118 + 0.0445118i
\(67\) 0.944947 0.115444 0.0577218 0.998333i \(-0.481616\pi\)
0.0577218 + 0.998333i \(0.481616\pi\)
\(68\) 3.70144 + 4.50548i 0.448866 + 0.546369i
\(69\) −9.30864 −1.12063
\(70\) 0.123309 0.123309i 0.0147382 0.0147382i
\(71\) −1.25830 + 3.03780i −0.149333 + 0.360521i −0.980790 0.195068i \(-0.937507\pi\)
0.831457 + 0.555589i \(0.187507\pi\)
\(72\) 2.61313i 0.307960i
\(73\) 14.4882 + 6.00122i 1.69572 + 0.702390i 0.999875 0.0158041i \(-0.00503080\pi\)
0.695843 + 0.718194i \(0.255031\pi\)
\(74\) 0.704761 + 1.70144i 0.0819269 + 0.197789i
\(75\) 4.61313 1.91082i 0.532678 0.220642i
\(76\) −3.64047 3.64047i −0.417590 0.417590i
\(77\) −1.30656 1.30656i −0.148897 0.148897i
\(78\) −2.32023 + 0.961072i −0.262715 + 0.108820i
\(79\) 3.20371 + 7.73445i 0.360446 + 0.870193i 0.995235 + 0.0975076i \(0.0310870\pi\)
−0.634789 + 0.772686i \(0.718913\pi\)
\(80\) 0.0630603 + 0.0261204i 0.00705035 + 0.00292035i
\(81\) 1.00000i 0.111111i
\(82\) 0.140652 0.339565i 0.0155324 0.0374986i
\(83\) 0.636303 0.636303i 0.0698434 0.0698434i −0.671322 0.741166i \(-0.734273\pi\)
0.741166 + 0.671322i \(0.234273\pi\)
\(84\) −3.91082 −0.426705
\(85\) −0.325033 + 0.0987810i −0.0352548 + 0.0107143i
\(86\) 6.33304 0.682909
\(87\) 4.41421 4.41421i 0.473253 0.473253i
\(88\) −0.668179 + 1.61313i −0.0712281 + 0.171960i
\(89\) 5.64431i 0.598296i −0.954207 0.299148i \(-0.903298\pi\)
0.954207 0.299148i \(-0.0967024\pi\)
\(90\) −0.0582601 0.0241321i −0.00614115 0.00254375i
\(91\) −3.47247 8.38329i −0.364014 0.878808i
\(92\) −12.1623 + 5.03780i −1.26801 + 0.525227i
\(93\) −3.56645 3.56645i −0.369824 0.369824i
\(94\) 4.80750 + 4.80750i 0.495856 + 0.495856i
\(95\) 0.277114 0.114784i 0.0284313 0.0117766i
\(96\) 2.24264 + 5.41421i 0.228889 + 0.552586i
\(97\) 10.1371 + 4.19891i 1.02926 + 0.426335i 0.832447 0.554105i \(-0.186940\pi\)
0.196817 + 0.980440i \(0.436940\pi\)
\(98\) 0.495387i 0.0500416i
\(99\) −0.255701 + 0.617317i −0.0256989 + 0.0620426i
\(100\) 4.99321 4.99321i 0.499321 0.499321i
\(101\) 3.27677 0.326051 0.163025 0.986622i \(-0.447875\pi\)
0.163025 + 0.986622i \(0.447875\pi\)
\(102\) −2.78384 1.48614i −0.275641 0.147150i
\(103\) −12.0228 −1.18464 −0.592321 0.805702i \(-0.701788\pi\)
−0.592321 + 0.805702i \(0.701788\pi\)
\(104\) −6.06306 + 6.06306i −0.594532 + 0.594532i
\(105\) 0.0871924 0.210501i 0.00850910 0.0205428i
\(106\) 8.68873i 0.843924i
\(107\) −8.06480 3.34055i −0.779653 0.322943i −0.0428777 0.999080i \(-0.513653\pi\)
−0.736776 + 0.676137i \(0.763653\pi\)
\(108\) 0.541196 + 1.30656i 0.0520766 + 0.125724i
\(109\) −3.94495 + 1.63405i −0.377857 + 0.156514i −0.563525 0.826099i \(-0.690555\pi\)
0.185668 + 0.982613i \(0.440555\pi\)
\(110\) −0.0297943 0.0297943i −0.00284078 0.00284078i
\(111\) 1.70144 + 1.70144i 0.161494 + 0.161494i
\(112\) −2.11652 + 0.876691i −0.199992 + 0.0828395i
\(113\) −5.30237 12.8011i −0.498805 1.20422i −0.950128 0.311861i \(-0.899048\pi\)
0.451322 0.892361i \(-0.350952\pi\)
\(114\) 2.57420 + 1.06627i 0.241096 + 0.0998651i
\(115\) 0.766960i 0.0715194i
\(116\) 3.37849 8.15640i 0.313685 0.757303i
\(117\) −2.32023 + 2.32023i −0.214506 + 0.214506i
\(118\) −7.34277 −0.675957
\(119\) 5.36962 10.0584i 0.492233 0.922048i
\(120\) −0.215301 −0.0196542
\(121\) 7.46248 7.46248i 0.678407 0.678407i
\(122\) −0.757716 + 1.82929i −0.0686004 + 0.165616i
\(123\) 0.480217i 0.0432997i
\(124\) −6.58995 2.72965i −0.591795 0.245129i
\(125\) 0.315087 + 0.760688i 0.0281823 + 0.0680380i
\(126\) 1.95541 0.809957i 0.174202 0.0721567i
\(127\) 0.448077 + 0.448077i 0.0397604 + 0.0397604i 0.726707 0.686947i \(-0.241050\pi\)
−0.686947 + 0.726707i \(0.741050\pi\)
\(128\) 6.75699 + 6.75699i 0.597239 + 0.597239i
\(129\) 7.64466 3.16652i 0.673074 0.278797i
\(130\) −0.0791848 0.191169i −0.00694497 0.0167666i
\(131\) 14.0505 + 5.81990i 1.22760 + 0.508487i 0.899817 0.436267i \(-0.143700\pi\)
0.327780 + 0.944754i \(0.393700\pi\)
\(132\) 0.944947i 0.0822471i
\(133\) −3.85256 + 9.30090i −0.334059 + 0.806490i
\(134\) −0.511402 + 0.511402i −0.0441784 + 0.0441784i
\(135\) −0.0823922 −0.00709119
\(136\) −10.7229 1.05052i −0.919477 0.0900811i
\(137\) 2.38847 0.204060 0.102030 0.994781i \(-0.467466\pi\)
0.102030 + 0.994781i \(0.467466\pi\)
\(138\) 5.03780 5.03780i 0.428846 0.428846i
\(139\) 0.617926 1.49181i 0.0524118 0.126533i −0.895505 0.445052i \(-0.853185\pi\)
0.947917 + 0.318518i \(0.103185\pi\)
\(140\) 0.322221i 0.0272326i
\(141\) 8.20692 + 3.39942i 0.691147 + 0.286283i
\(142\) −0.963060 2.32503i −0.0808182 0.195112i
\(143\) −2.02560 + 0.839033i −0.169389 + 0.0701634i
\(144\) 0.585786 + 0.585786i 0.0488155 + 0.0488155i
\(145\) 0.363697 + 0.363697i 0.0302034 + 0.0302034i
\(146\) −11.0888 + 4.59313i −0.917716 + 0.380130i
\(147\) 0.247693 + 0.597985i 0.0204294 + 0.0493209i
\(148\) 3.14386 + 1.30223i 0.258424 + 0.107043i
\(149\) 10.8082i 0.885442i 0.896660 + 0.442721i \(0.145987\pi\)
−0.896660 + 0.442721i \(0.854013\pi\)
\(150\) −1.46248 + 3.53073i −0.119411 + 0.288283i
\(151\) −15.3842 + 15.3842i −1.25195 + 1.25195i −0.297109 + 0.954844i \(0.596022\pi\)
−0.954844 + 0.297109i \(0.903978\pi\)
\(152\) 9.51299 0.771606
\(153\) −4.10346 0.402015i −0.331745 0.0325010i
\(154\) 1.41421 0.113961
\(155\) 0.293848 0.293848i 0.0236024 0.0236024i
\(156\) −1.77583 + 4.28723i −0.142180 + 0.343253i
\(157\) 19.8535i 1.58448i 0.610208 + 0.792241i \(0.291086\pi\)
−0.610208 + 0.792241i \(0.708914\pi\)
\(158\) −5.91969 2.45202i −0.470945 0.195072i
\(159\) −4.34436 10.4882i −0.344531 0.831770i
\(160\) −0.446089 + 0.184776i −0.0352664 + 0.0146078i
\(161\) 18.2022 + 18.2022i 1.43454 + 1.43454i
\(162\) −0.541196 0.541196i −0.0425204 0.0425204i
\(163\) 1.62151 0.671650i 0.127006 0.0526077i −0.318275 0.947998i \(-0.603104\pi\)
0.445281 + 0.895391i \(0.353104\pi\)
\(164\) −0.259892 0.627434i −0.0202941 0.0489943i
\(165\) −0.0508621 0.0210678i −0.00395961 0.00164012i
\(166\) 0.688730i 0.0534558i
\(167\) 3.08413 7.44574i 0.238657 0.576169i −0.758487 0.651688i \(-0.774061\pi\)
0.997144 + 0.0755188i \(0.0240613\pi\)
\(168\) 5.10973 5.10973i 0.394224 0.394224i
\(169\) 2.23304 0.171772
\(170\) 0.122447 0.229366i 0.00939123 0.0175916i
\(171\) 3.64047 0.278393
\(172\) 8.27452 8.27452i 0.630926 0.630926i
\(173\) 2.20151 5.31492i 0.167378 0.404086i −0.817828 0.575463i \(-0.804822\pi\)
0.985205 + 0.171378i \(0.0548218\pi\)
\(174\) 4.77791i 0.362212i
\(175\) −12.7570 5.28412i −0.964337 0.399442i
\(176\) 0.211830 + 0.511402i 0.0159673 + 0.0385484i
\(177\) −8.86351 + 3.67139i −0.666222 + 0.275958i
\(178\) 3.05468 + 3.05468i 0.228958 + 0.228958i
\(179\) −10.3360 10.3360i −0.772548 0.772548i 0.206004 0.978551i \(-0.433954\pi\)
−0.978551 + 0.206004i \(0.933954\pi\)
\(180\) −0.107651 + 0.0445903i −0.00802380 + 0.00332357i
\(181\) −5.39584 13.0267i −0.401069 0.968267i −0.987407 0.158200i \(-0.949431\pi\)
0.586338 0.810067i \(-0.300569\pi\)
\(182\) 6.41629 + 2.65772i 0.475607 + 0.197003i
\(183\) 2.58701i 0.191237i
\(184\) 9.30864 22.4731i 0.686242 1.65674i
\(185\) −0.140186 + 0.140186i −0.0103067 + 0.0103067i
\(186\) 3.86030 0.283051
\(187\) −2.43034 1.29743i −0.177724 0.0948774i
\(188\) 12.5626 0.916222
\(189\) 1.95541 1.95541i 0.142235 0.142235i
\(190\) −0.0878521 + 0.212094i −0.00637346 + 0.0153869i
\(191\) 16.0167i 1.15893i −0.814998 0.579464i \(-0.803262\pi\)
0.814998 0.579464i \(-0.196738\pi\)
\(192\) −2.61313 1.08239i −0.188586 0.0781149i
\(193\) −1.75858 4.24558i −0.126585 0.305604i 0.847863 0.530215i \(-0.177889\pi\)
−0.974448 + 0.224611i \(0.927889\pi\)
\(194\) −7.75858 + 3.21371i −0.557033 + 0.230731i
\(195\) −0.191169 0.191169i −0.0136899 0.0136899i
\(196\) 0.647254 + 0.647254i 0.0462324 + 0.0462324i
\(197\) −19.5576 + 8.10101i −1.39342 + 0.577173i −0.948035 0.318167i \(-0.896933\pi\)
−0.445384 + 0.895340i \(0.646933\pi\)
\(198\) −0.195705 0.472474i −0.0139081 0.0335772i
\(199\) 2.14840 + 0.889895i 0.152296 + 0.0630830i 0.457529 0.889195i \(-0.348735\pi\)
−0.305234 + 0.952278i \(0.598735\pi\)
\(200\) 13.0479i 0.922625i
\(201\) −0.361616 + 0.873017i −0.0255064 + 0.0615779i
\(202\) −1.77337 + 1.77337i −0.124774 + 0.124774i
\(203\) −17.2632 −1.21164
\(204\) −5.57900 + 1.69552i −0.390608 + 0.118710i
\(205\) 0.0395661 0.00276342
\(206\) 6.50669 6.50669i 0.453343 0.453343i
\(207\) 3.56226 8.60007i 0.247594 0.597746i
\(208\) 2.71832i 0.188482i
\(209\) 2.24732 + 0.930870i 0.155450 + 0.0643896i
\(210\) 0.0667342 + 0.161111i 0.00460509 + 0.0111177i
\(211\) 7.00801 2.90281i 0.482451 0.199838i −0.128183 0.991751i \(-0.540915\pi\)
0.610634 + 0.791913i \(0.290915\pi\)
\(212\) −11.3524 11.3524i −0.779684 0.779684i
\(213\) −2.32503 2.32503i −0.159309 0.159309i
\(214\) 6.17253 2.55674i 0.421945 0.174775i
\(215\) 0.260897 + 0.629860i 0.0177930 + 0.0429561i
\(216\) −2.41421 1.00000i −0.164266 0.0680414i
\(217\) 13.9478i 0.946836i
\(218\) 1.25065 3.01933i 0.0847046 0.204495i
\(219\) −11.0888 + 11.0888i −0.749312 + 0.749312i
\(220\) −0.0778563 −0.00524907
\(221\) −8.58821 10.4538i −0.577706 0.703195i
\(222\) −1.84163 −0.123602
\(223\) 11.0750 11.0750i 0.741635 0.741635i −0.231258 0.972892i \(-0.574284\pi\)
0.972892 + 0.231258i \(0.0742841\pi\)
\(224\) 6.20172 14.9723i 0.414370 1.00038i
\(225\) 4.99321i 0.332881i
\(226\) 9.79751 + 4.05826i 0.651720 + 0.269951i
\(227\) 5.59920 + 13.5177i 0.371632 + 0.897200i 0.993474 + 0.114057i \(0.0363846\pi\)
−0.621842 + 0.783143i \(0.713615\pi\)
\(228\) 4.75650 1.97021i 0.315007 0.130480i
\(229\) 11.5577 + 11.5577i 0.763754 + 0.763754i 0.976999 0.213245i \(-0.0684031\pi\)
−0.213245 + 0.976999i \(0.568403\pi\)
\(230\) 0.415076 + 0.415076i 0.0273693 + 0.0273693i
\(231\) 1.70711 0.707107i 0.112319 0.0465242i
\(232\) 6.24264 + 15.0711i 0.409849 + 0.989464i
\(233\) 0.330574 + 0.136928i 0.0216566 + 0.00897046i 0.393485 0.919331i \(-0.371269\pi\)
−0.371829 + 0.928301i \(0.621269\pi\)
\(234\) 2.51140i 0.164175i
\(235\) −0.280085 + 0.676186i −0.0182708 + 0.0441095i
\(236\) −9.59379 + 9.59379i −0.624503 + 0.624503i
\(237\) −8.37170 −0.543801
\(238\) 2.53752 + 8.34956i 0.164483 + 0.541222i
\(239\) −9.71153 −0.628187 −0.314093 0.949392i \(-0.601701\pi\)
−0.314093 + 0.949392i \(0.601701\pi\)
\(240\) −0.0482642 + 0.0482642i −0.00311544 + 0.00311544i
\(241\) 3.58258 8.64911i 0.230774 0.557138i −0.765495 0.643442i \(-0.777506\pi\)
0.996269 + 0.0863041i \(0.0275057\pi\)
\(242\) 8.07733i 0.519230i
\(243\) −0.923880 0.382683i −0.0592669 0.0245492i
\(244\) 1.40008 + 3.38009i 0.0896308 + 0.216388i
\(245\) −0.0492693 + 0.0204080i −0.00314770 + 0.00130382i
\(246\) 0.259892 + 0.259892i 0.0165701 + 0.0165701i
\(247\) 8.44673 + 8.44673i 0.537452 + 0.537452i
\(248\) 12.1766 5.04373i 0.773217 0.320277i
\(249\) 0.344365 + 0.831370i 0.0218232 + 0.0526859i
\(250\) −0.582205 0.241157i −0.0368219 0.0152521i
\(251\) 3.28196i 0.207156i 0.994621 + 0.103578i \(0.0330291\pi\)
−0.994621 + 0.103578i \(0.966971\pi\)
\(252\) 1.49661 3.61313i 0.0942773 0.227606i
\(253\) 4.39809 4.39809i 0.276505 0.276505i
\(254\) −0.484995 −0.0304313
\(255\) 0.0331229 0.338093i 0.00207424 0.0211722i
\(256\) −12.9706 −0.810660
\(257\) −2.50669 + 2.50669i −0.156363 + 0.156363i −0.780953 0.624590i \(-0.785266\pi\)
0.624590 + 0.780953i \(0.285266\pi\)
\(258\) −2.42355 + 5.85097i −0.150884 + 0.364265i
\(259\) 6.65404i 0.413462i
\(260\) −0.353234 0.146314i −0.0219067 0.00907404i
\(261\) 2.38896 + 5.76745i 0.147873 + 0.356996i
\(262\) −10.7538 + 4.45436i −0.664371 + 0.275191i
\(263\) 9.55533 + 9.55533i 0.589207 + 0.589207i 0.937417 0.348210i \(-0.113210\pi\)
−0.348210 + 0.937417i \(0.613210\pi\)
\(264\) −1.23463 1.23463i −0.0759864 0.0759864i
\(265\) 0.864148 0.357942i 0.0530842 0.0219882i
\(266\) −2.94862 7.11860i −0.180792 0.436469i
\(267\) 5.21466 + 2.15998i 0.319132 + 0.132189i
\(268\) 1.33636i 0.0816310i
\(269\) −1.97807 + 4.77548i −0.120605 + 0.291166i −0.972640 0.232319i \(-0.925369\pi\)
0.852035 + 0.523486i \(0.175369\pi\)
\(270\) 0.0445903 0.0445903i 0.00271368 0.00271368i
\(271\) 6.68592 0.406141 0.203070 0.979164i \(-0.434908\pi\)
0.203070 + 0.979164i \(0.434908\pi\)
\(272\) −2.63925 + 2.16826i −0.160028 + 0.131470i
\(273\) 9.07401 0.549184
\(274\) −1.29263 + 1.29263i −0.0780906 + 0.0780906i
\(275\) −1.27677 + 3.08239i −0.0769920 + 0.185875i
\(276\) 13.1644i 0.792404i
\(277\) 2.68072 + 1.11039i 0.161069 + 0.0667170i 0.461761 0.887004i \(-0.347218\pi\)
−0.300692 + 0.953721i \(0.597218\pi\)
\(278\) 0.472940 + 1.14178i 0.0283651 + 0.0684793i
\(279\) 4.65980 1.93015i 0.278975 0.115555i
\(280\) 0.421002 + 0.421002i 0.0251597 + 0.0251597i
\(281\) 16.2074 + 16.2074i 0.966853 + 0.966853i 0.999468 0.0326151i \(-0.0103835\pi\)
−0.0326151 + 0.999468i \(0.510384\pi\)
\(282\) −6.28130 + 2.60180i −0.374046 + 0.154935i
\(283\) −10.6083 25.6108i −0.630600 1.52240i −0.838871 0.544331i \(-0.816784\pi\)
0.208271 0.978071i \(-0.433216\pi\)
\(284\) −4.29610 1.77950i −0.254927 0.105594i
\(285\) 0.299946i 0.0177673i
\(286\) 0.642168 1.55033i 0.0379722 0.0916729i
\(287\) −0.939021 + 0.939021i −0.0554286 + 0.0554286i
\(288\) −5.86030 −0.345322
\(289\) 3.29931 16.6768i 0.194077 0.980986i
\(290\) −0.393663 −0.0231167
\(291\) −7.75858 + 7.75858i −0.454816 + 0.454816i
\(292\) −8.48701 + 20.4894i −0.496664 + 1.19905i
\(293\) 11.4677i 0.669949i −0.942227 0.334974i \(-0.891272\pi\)
0.942227 0.334974i \(-0.108728\pi\)
\(294\) −0.457678 0.189576i −0.0266923 0.0110563i
\(295\) −0.302494 0.730284i −0.0176119 0.0425188i
\(296\) −5.80910 + 2.40621i −0.337647 + 0.139858i
\(297\) −0.472474 0.472474i −0.0274157 0.0274157i
\(298\) −5.84935 5.84935i −0.338844 0.338844i
\(299\) 28.2194 11.6889i 1.63197 0.675985i
\(300\) 2.70231 + 6.52395i 0.156018 + 0.376660i
\(301\) −21.1403 8.75659i −1.21851 0.504721i
\(302\) 16.6518i 0.958203i
\(303\) −1.25397 + 3.02734i −0.0720384 + 0.173916i
\(304\) 2.13254 2.13254i 0.122309 0.122309i
\(305\) −0.213149 −0.0122049
\(306\) 2.43835 2.00321i 0.139391 0.114516i
\(307\) 10.5245 0.600663 0.300332 0.953835i \(-0.402903\pi\)
0.300332 + 0.953835i \(0.402903\pi\)
\(308\) 1.84776 1.84776i 0.105286 0.105286i
\(309\) 4.60093 11.1076i 0.261738 0.631891i
\(310\) 0.318059i 0.0180645i
\(311\) −5.00208 2.07193i −0.283642 0.117488i 0.236327 0.971674i \(-0.424056\pi\)
−0.519969 + 0.854185i \(0.674056\pi\)
\(312\) −3.28130 7.92177i −0.185767 0.448482i
\(313\) −0.878944 + 0.364070i −0.0496808 + 0.0205785i −0.407386 0.913256i \(-0.633559\pi\)
0.357705 + 0.933835i \(0.383559\pi\)
\(314\) −10.7446 10.7446i −0.606355 0.606355i
\(315\) 0.161111 + 0.161111i 0.00907755 + 0.00907755i
\(316\) −10.9382 + 4.53073i −0.615320 + 0.254874i
\(317\) 8.25244 + 19.9232i 0.463503 + 1.11900i 0.966949 + 0.254969i \(0.0820654\pi\)
−0.503446 + 0.864027i \(0.667935\pi\)
\(318\) 8.02734 + 3.32503i 0.450151 + 0.186459i
\(319\) 4.17120i 0.233542i
\(320\) 0.0891807 0.215301i 0.00498535 0.0120357i
\(321\) 6.17253 6.17253i 0.344517 0.344517i
\(322\) −19.7019 −1.09795
\(323\) −1.46352 + 14.9385i −0.0814326 + 0.831201i
\(324\) −1.41421 −0.0785674
\(325\) −11.5854 + 11.5854i −0.642643 + 0.642643i
\(326\) −0.514059 + 1.24105i −0.0284711 + 0.0687353i
\(327\) 4.26998i 0.236130i
\(328\) 1.15935 + 0.480217i 0.0640142 + 0.0265155i
\(329\) −9.40064 22.6951i −0.518274 1.25122i
\(330\) 0.0389281 0.0161246i 0.00214292 0.000887628i
\(331\) −14.6630 14.6630i −0.805952 0.805952i 0.178067 0.984018i \(-0.443016\pi\)
−0.984018 + 0.178067i \(0.943016\pi\)
\(332\) 0.899869 + 0.899869i 0.0493867 + 0.0493867i
\(333\) −2.22304 + 0.920815i −0.121822 + 0.0504604i
\(334\) 2.36049 + 5.69873i 0.129160 + 0.311820i
\(335\) −0.0719298 0.0297943i −0.00392995 0.00162784i
\(336\) 2.29090i 0.124979i
\(337\) 5.32983 12.8674i 0.290335 0.700930i −0.709659 0.704545i \(-0.751151\pi\)
0.999993 + 0.00361586i \(0.00115097\pi\)
\(338\) −1.20851 + 1.20851i −0.0657344 + 0.0657344i
\(339\) 13.8558 0.752542
\(340\) −0.139697 0.459666i −0.00757616 0.0249289i
\(341\) 3.37011 0.182502
\(342\) −1.97021 + 1.97021i −0.106537 + 0.106537i
\(343\) −6.72286 + 16.2304i −0.363000 + 0.876360i
\(344\) 21.6224i 1.16580i
\(345\) 0.708578 + 0.293503i 0.0381486 + 0.0158017i
\(346\) 1.68496 + 4.06786i 0.0905842 + 0.218690i
\(347\) 14.8646 6.15713i 0.797975 0.330532i 0.0538302 0.998550i \(-0.482857\pi\)
0.744145 + 0.668018i \(0.232857\pi\)
\(348\) 6.24264 + 6.24264i 0.334641 + 0.334641i
\(349\) −6.57645 6.57645i −0.352029 0.352029i 0.508835 0.860864i \(-0.330076\pi\)
−0.860864 + 0.508835i \(0.830076\pi\)
\(350\) 9.76377 4.04429i 0.521896 0.216176i
\(351\) −1.25570 3.03153i −0.0670244 0.161811i
\(352\) −3.61766 1.49848i −0.192822 0.0798695i
\(353\) 27.8142i 1.48040i −0.672385 0.740201i \(-0.734730\pi\)
0.672385 0.740201i \(-0.265270\pi\)
\(354\) 2.80996 6.78384i 0.149348 0.360557i
\(355\) 0.191565 0.191565i 0.0101672 0.0101672i
\(356\) 7.98226 0.423059
\(357\) 7.23784 + 8.81005i 0.383067 + 0.466277i
\(358\) 11.1876 0.591282
\(359\) −3.28113 + 3.28113i −0.173172 + 0.173172i −0.788371 0.615200i \(-0.789075\pi\)
0.615200 + 0.788371i \(0.289075\pi\)
\(360\) 0.0823922 0.198912i 0.00434245 0.0104836i
\(361\) 5.74701i 0.302474i
\(362\) 9.97021 + 4.12979i 0.524022 + 0.217057i
\(363\) 4.03866 + 9.75020i 0.211975 + 0.511753i
\(364\) 11.8558 4.91082i 0.621411 0.257397i
\(365\) −0.913631 0.913631i −0.0478216 0.0478216i
\(366\) −1.40008 1.40008i −0.0731832 0.0731832i
\(367\) −3.99226 + 1.65365i −0.208394 + 0.0863197i −0.484439 0.874825i \(-0.660976\pi\)
0.276045 + 0.961145i \(0.410976\pi\)
\(368\) −2.95108 7.12453i −0.153835 0.371392i
\(369\) 0.443663 + 0.183771i 0.0230962 + 0.00956674i
\(370\) 0.151736i 0.00788838i
\(371\) −12.0138 + 29.0038i −0.623723 + 1.50580i
\(372\) 5.04373 5.04373i 0.261505 0.261505i
\(373\) 8.44020 0.437017 0.218509 0.975835i \(-0.429881\pi\)
0.218509 + 0.975835i \(0.429881\pi\)
\(374\) 2.01745 0.613126i 0.104320 0.0317040i
\(375\) −0.823363 −0.0425183
\(376\) −16.4138 + 16.4138i −0.846479 + 0.846479i
\(377\) −7.83889 + 18.9248i −0.403723 + 0.974674i
\(378\) 2.11652i 0.108862i
\(379\) −7.07337 2.92989i −0.363335 0.150498i 0.193545 0.981091i \(-0.438002\pi\)
−0.556880 + 0.830593i \(0.688002\pi\)
\(380\) 0.162330 + 0.391898i 0.00832733 + 0.0201040i
\(381\) −0.585441 + 0.242498i −0.0299931 + 0.0124235i
\(382\) 8.66818 + 8.66818i 0.443503 + 0.443503i
\(383\) −13.1001 13.1001i −0.669385 0.669385i 0.288188 0.957574i \(-0.406947\pi\)
−0.957574 + 0.288188i \(0.906947\pi\)
\(384\) −8.82843 + 3.65685i −0.450524 + 0.186613i
\(385\) 0.0582601 + 0.140652i 0.00296921 + 0.00716830i
\(386\) 3.24943 + 1.34596i 0.165392 + 0.0685074i
\(387\) 8.27452i 0.420617i
\(388\) −5.93816 + 14.3360i −0.301464 + 0.727799i
\(389\) 18.9592 18.9592i 0.961270 0.961270i −0.0380079 0.999277i \(-0.512101\pi\)
0.999277 + 0.0380079i \(0.0121012\pi\)
\(390\) 0.206920 0.0104778
\(391\) 33.8579 + 18.0750i 1.71227 + 0.914090i
\(392\) −1.69136 −0.0854264
\(393\) −10.7538 + 10.7538i −0.542456 + 0.542456i
\(394\) 6.20024 14.9687i 0.312364 0.754112i
\(395\) 0.689763i 0.0347058i
\(396\) −0.873017 0.361616i −0.0438708 0.0181719i
\(397\) 1.20172 + 2.90122i 0.0603128 + 0.145608i 0.951163 0.308689i \(-0.0998904\pi\)
−0.890850 + 0.454297i \(0.849890\pi\)
\(398\) −1.64431 + 0.681096i −0.0824219 + 0.0341402i
\(399\) −7.11860 7.11860i −0.356376 0.356376i
\(400\) 2.92496 + 2.92496i 0.146248 + 0.146248i
\(401\) −24.4520 + 10.1283i −1.22107 + 0.505785i −0.897751 0.440503i \(-0.854800\pi\)
−0.323323 + 0.946289i \(0.604800\pi\)
\(402\) −0.276769 0.668179i −0.0138040 0.0333257i
\(403\) 15.2902 + 6.33341i 0.761660 + 0.315490i
\(404\) 4.63405i 0.230553i
\(405\) 0.0315301 0.0761205i 0.00156674 0.00378246i
\(406\) 9.34277 9.34277i 0.463674 0.463674i
\(407\) −1.60778 −0.0796945
\(408\) 5.07401 9.50461i 0.251201 0.470548i
\(409\) −31.0443 −1.53504 −0.767521 0.641024i \(-0.778510\pi\)
−0.767521 + 0.641024i \(0.778510\pi\)
\(410\) −0.0214130 + 0.0214130i −0.00105751 + 0.00105751i
\(411\) −0.914027 + 2.20666i −0.0450856 + 0.108846i
\(412\) 17.0028i 0.837668i
\(413\) 24.5109 + 10.1527i 1.20610 + 0.499583i
\(414\) 2.72644 + 6.58221i 0.133997 + 0.323498i
\(415\) −0.0684984 + 0.0283730i −0.00336246 + 0.00139277i
\(416\) −13.5973 13.5973i −0.666661 0.666661i
\(417\) 1.14178 + 1.14178i 0.0559131 + 0.0559131i
\(418\) −1.72002 + 0.712457i −0.0841291 + 0.0348474i
\(419\) 14.8249 + 35.7906i 0.724246 + 1.74848i 0.660878 + 0.750493i \(0.270184\pi\)
0.0633678 + 0.997990i \(0.479816\pi\)
\(420\) 0.297693 + 0.123309i 0.0145260 + 0.00601685i
\(421\) 19.0379i 0.927851i −0.885874 0.463926i \(-0.846440\pi\)
0.885874 0.463926i \(-0.153560\pi\)
\(422\) −2.22172 + 5.36370i −0.108151 + 0.261101i
\(423\) −6.28130 + 6.28130i −0.305407 + 0.305407i
\(424\) 29.6652 1.44067
\(425\) −20.4894 2.00735i −0.993884 0.0973707i
\(426\) 2.51660 0.121930
\(427\) 5.05866 5.05866i 0.244806 0.244806i
\(428\) 4.72425 11.4053i 0.228355 0.551298i
\(429\) 2.19250i 0.105855i
\(430\) −0.482074 0.199682i −0.0232477 0.00962950i
\(431\) −4.55599 10.9991i −0.219454 0.529810i 0.775360 0.631520i \(-0.217569\pi\)
−0.994814 + 0.101710i \(0.967569\pi\)
\(432\) −0.765367 + 0.317025i −0.0368237 + 0.0152529i
\(433\) −15.1091 15.1091i −0.726097 0.726097i 0.243743 0.969840i \(-0.421625\pi\)
−0.969840 + 0.243743i \(0.921625\pi\)
\(434\) −7.54847 7.54847i −0.362338 0.362338i
\(435\) −0.475193 + 0.196831i −0.0227837 + 0.00943734i
\(436\) −2.31090 5.57900i −0.110672 0.267186i
\(437\) −31.3082 12.9683i −1.49768 0.620358i
\(438\) 12.0024i 0.573499i
\(439\) −8.10801 + 19.5745i −0.386974 + 0.934238i 0.603603 + 0.797285i \(0.293731\pi\)
−0.990577 + 0.136953i \(0.956269\pi\)
\(440\) 0.101724 0.101724i 0.00484951 0.00484951i
\(441\) −0.647254 −0.0308216
\(442\) 10.3054 + 1.00962i 0.490180 + 0.0480228i
\(443\) −21.5467 −1.02372 −0.511858 0.859070i \(-0.671043\pi\)
−0.511858 + 0.859070i \(0.671043\pi\)
\(444\) −2.40621 + 2.40621i −0.114193 + 0.114193i
\(445\) −0.177966 + 0.429648i −0.00843639 + 0.0203672i
\(446\) 11.9875i 0.567623i
\(447\) −9.98547 4.13612i −0.472296 0.195632i
\(448\) 2.99321 + 7.22625i 0.141416 + 0.341408i
\(449\) 33.4231 13.8443i 1.57733 0.653352i 0.589344 0.807882i \(-0.299386\pi\)
0.987988 + 0.154530i \(0.0493863\pi\)
\(450\) −2.70231 2.70231i −0.127388 0.127388i
\(451\) 0.226890 + 0.226890i 0.0106838 + 0.0106838i
\(452\) 18.1034 7.49869i 0.851514 0.352709i
\(453\) −8.32589 20.1005i −0.391185 0.944403i
\(454\) −10.3460 4.28544i −0.485561 0.201126i
\(455\) 0.747628i 0.0350493i
\(456\) −3.64047 + 8.78886i −0.170480 + 0.411576i
\(457\) 19.9517 19.9517i 0.933299 0.933299i −0.0646113 0.997911i \(-0.520581\pi\)
0.997911 + 0.0646113i \(0.0205808\pi\)
\(458\) −12.5100 −0.584552
\(459\) 1.94174 3.63726i 0.0906327 0.169773i
\(460\) 1.08464 0.0505718
\(461\) 20.1202 20.1202i 0.937091 0.937091i −0.0610442 0.998135i \(-0.519443\pi\)
0.998135 + 0.0610442i \(0.0194431\pi\)
\(462\) −0.541196 + 1.30656i −0.0251787 + 0.0607868i
\(463\) 6.05277i 0.281296i 0.990060 + 0.140648i \(0.0449186\pi\)
−0.990060 + 0.140648i \(0.955081\pi\)
\(464\) 4.77791 + 1.97908i 0.221809 + 0.0918763i
\(465\) 0.159029 + 0.383931i 0.00737481 + 0.0178044i
\(466\) −0.253010 + 0.104800i −0.0117205 + 0.00485478i
\(467\) −22.7284 22.7284i −1.05175 1.05175i −0.998586 0.0531594i \(-0.983071\pi\)
−0.0531594 0.998586i \(-0.516929\pi\)
\(468\) −3.28130 3.28130i −0.151678 0.151678i
\(469\) 2.41421 1.00000i 0.111478 0.0461757i
\(470\) −0.214368 0.517531i −0.00988807 0.0238719i
\(471\) −18.3423 7.59761i −0.845167 0.350079i
\(472\) 25.0698i 1.15393i
\(473\) −2.11580 + 5.10800i −0.0972846 + 0.234866i
\(474\) 4.53073 4.53073i 0.208103 0.208103i
\(475\) 18.1776 0.834046
\(476\) 14.2247 + 7.59379i 0.651986 + 0.348061i
\(477\) 11.3524 0.519789
\(478\) 5.25584 5.25584i 0.240397 0.240397i
\(479\) −5.95122 + 14.3675i −0.271918 + 0.656468i −0.999565 0.0294832i \(-0.990614\pi\)
0.727647 + 0.685952i \(0.240614\pi\)
\(480\) 0.482843i 0.0220387i
\(481\) −7.29449 3.02148i −0.332600 0.137767i
\(482\) 2.74199 + 6.61974i 0.124894 + 0.301521i
\(483\) −23.7823 + 9.85097i −1.08213 + 0.448234i
\(484\) 10.5535 + 10.5535i 0.479706 + 0.479706i
\(485\) −0.639246 0.639246i −0.0290267 0.0290267i
\(486\) 0.707107 0.292893i 0.0320750 0.0132859i
\(487\) 7.68112 + 18.5439i 0.348065 + 0.840302i 0.996848 + 0.0793296i \(0.0252780\pi\)
−0.648784 + 0.760973i \(0.724722\pi\)
\(488\) −6.24558 2.58701i −0.282724 0.117108i
\(489\) 1.75511i 0.0793687i
\(490\) 0.0156196 0.0377091i 0.000705622 0.00170352i
\(491\) 3.79777 3.79777i 0.171391 0.171391i −0.616199 0.787590i \(-0.711328\pi\)
0.787590 + 0.616199i \(0.211328\pi\)
\(492\) 0.679129 0.0306175
\(493\) −24.6269 + 7.48438i −1.10914 + 0.337079i
\(494\) −9.14267 −0.411348
\(495\) 0.0389281 0.0389281i 0.00174969 0.00174969i
\(496\) 1.59899 3.86030i 0.0717968 0.173333i
\(497\) 9.09278i 0.407867i
\(498\) −0.636303 0.263565i −0.0285134 0.0118106i
\(499\) 10.7403 + 25.9294i 0.480802 + 1.16076i 0.959228 + 0.282632i \(0.0912074\pi\)
−0.478426 + 0.878128i \(0.658793\pi\)
\(500\) −1.07578 + 0.445601i −0.0481101 + 0.0199279i
\(501\) 5.69873 + 5.69873i 0.254600 + 0.254600i
\(502\) −1.77619 1.77619i −0.0792751 0.0792751i
\(503\) −8.10170 + 3.35583i −0.361237 + 0.149629i −0.555917 0.831238i \(-0.687633\pi\)
0.194681 + 0.980867i \(0.437633\pi\)
\(504\) 2.76537 + 6.67619i 0.123179 + 0.297381i
\(505\) −0.249429 0.103317i −0.0110995 0.00459754i
\(506\) 4.76046i 0.211628i
\(507\) −0.854548 + 2.06306i −0.0379518 + 0.0916237i
\(508\) −0.633677 + 0.633677i −0.0281149 + 0.0281149i
\(509\) 13.5248 0.599475 0.299737 0.954022i \(-0.403101\pi\)
0.299737 + 0.954022i \(0.403101\pi\)
\(510\) 0.165049 + 0.200901i 0.00730848 + 0.00889603i
\(511\) 43.3663 1.91841
\(512\) −6.49435 + 6.49435i −0.287013 + 0.287013i
\(513\) −1.39315 + 3.36335i −0.0615089 + 0.148496i
\(514\) 2.71323i 0.119675i
\(515\) 0.915181 + 0.379081i 0.0403277 + 0.0167043i
\(516\) 4.47814 + 10.8112i 0.197139 + 0.475935i
\(517\) −5.48369 + 2.27142i −0.241172 + 0.0998969i
\(518\) 3.60114 + 3.60114i 0.158225 + 0.158225i
\(519\) 4.06786 + 4.06786i 0.178559 + 0.178559i
\(520\) 0.652692 0.270354i 0.0286224 0.0118558i
\(521\) 3.56799 + 8.61389i 0.156316 + 0.377381i 0.982564 0.185926i \(-0.0595286\pi\)
−0.826247 + 0.563308i \(0.809529\pi\)
\(522\) −4.41421 1.82843i −0.193205 0.0800281i
\(523\) 17.0634i 0.746129i −0.927805 0.373065i \(-0.878307\pi\)
0.927805 0.373065i \(-0.121693\pi\)
\(524\) −8.23059 + 19.8704i −0.359555 + 0.868042i
\(525\) 9.76377 9.76377i 0.426126 0.426126i
\(526\) −10.3426 −0.450960
\(527\) 6.04699 + 19.8972i 0.263411 + 0.866737i
\(528\) −0.553537 −0.0240896
\(529\) −45.0080 + 45.0080i −1.95687 + 1.95687i
\(530\) −0.273957 + 0.661390i −0.0118999 + 0.0287290i
\(531\) 9.59379i 0.416335i
\(532\) −13.1535 5.44834i −0.570275 0.236216i
\(533\) 0.603009 + 1.45579i 0.0261192 + 0.0630574i
\(534\) −3.99113 + 1.65318i −0.172713 + 0.0715401i
\(535\) 0.508568 + 0.508568i 0.0219873 + 0.0219873i
\(536\) −1.74603 1.74603i −0.0754172 0.0754172i
\(537\) 13.5046 5.59379i 0.582767 0.241390i
\(538\) −1.51395 3.65500i −0.0652710 0.157578i
\(539\) −0.399561 0.165503i −0.0172103 0.00712874i
\(540\) 0.116520i 0.00501423i
\(541\) −1.45834 + 3.52074i −0.0626988 + 0.151368i −0.952124 0.305713i \(-0.901105\pi\)
0.889425 + 0.457081i \(0.151105\pi\)
\(542\) −3.61839 + 3.61839i −0.155423 + 0.155423i
\(543\) 14.1000 0.605089
\(544\) 2.35593 24.0475i 0.101010 1.03103i
\(545\) 0.351813 0.0150700
\(546\) −4.91082 + 4.91082i −0.210164 + 0.210164i
\(547\) 9.98266 24.1003i 0.426828 1.03045i −0.553460 0.832876i \(-0.686693\pi\)
0.980287 0.197577i \(-0.0633072\pi\)
\(548\) 3.37780i 0.144293i
\(549\) −2.39008 0.990004i −0.102006 0.0422523i
\(550\) −0.977196 2.35916i −0.0416678 0.100595i
\(551\) 20.9962 8.69691i 0.894468 0.370501i
\(552\) 17.2001 + 17.2001i 0.732086 + 0.732086i
\(553\) 16.3701 + 16.3701i 0.696128 + 0.696128i
\(554\) −2.05174 + 0.849857i −0.0871699 + 0.0361070i
\(555\) −0.0758680 0.183162i −0.00322042 0.00777477i
\(556\) 2.10973 + 0.873879i 0.0894726 + 0.0370607i
\(557\) 2.00763i 0.0850662i 0.999095 + 0.0425331i \(0.0135428\pi\)
−0.999095 + 0.0425331i \(0.986457\pi\)
\(558\) −1.47727 + 3.56645i −0.0625380 + 0.150980i
\(559\) −19.1988 + 19.1988i −0.812023 + 0.812023i
\(560\) 0.188753 0.00797626
\(561\) 2.12872 1.74884i 0.0898746 0.0738359i
\(562\) −17.5428 −0.739997
\(563\) 19.7305 19.7305i 0.831541 0.831541i −0.156187 0.987728i \(-0.549920\pi\)
0.987728 + 0.156187i \(0.0499201\pi\)
\(564\) −4.80750 + 11.6063i −0.202432 + 0.488715i
\(565\) 1.14161i 0.0480278i
\(566\) 19.6016 + 8.11926i 0.823918 + 0.341278i
\(567\) 1.05826 + 2.55487i 0.0444427 + 0.107294i
\(568\) 7.93816 3.28809i 0.333078 0.137965i
\(569\) −16.1310 16.1310i −0.676246 0.676246i 0.282903 0.959149i \(-0.408703\pi\)
−0.959149 + 0.282903i \(0.908703\pi\)
\(570\) −0.162330 0.162330i −0.00679924 0.00679924i
\(571\) 14.5140 6.01188i 0.607391 0.251590i −0.0577217 0.998333i \(-0.518384\pi\)
0.665112 + 0.746743i \(0.268384\pi\)
\(572\) −1.18657 2.86464i −0.0496130 0.119776i
\(573\) 14.7975 + 6.12933i 0.618175 + 0.256056i
\(574\) 1.01639i 0.0424233i
\(575\) 17.7871 42.9419i 0.741775 1.79080i
\(576\) 2.00000 2.00000i 0.0833333 0.0833333i
\(577\) −29.1062 −1.21171 −0.605853 0.795577i \(-0.707168\pi\)
−0.605853 + 0.795577i \(0.707168\pi\)
\(578\) 7.23983 + 10.8110i 0.301137 + 0.449677i
\(579\) 4.59539 0.190978
\(580\) −0.514345 + 0.514345i −0.0213570 + 0.0213570i
\(581\) 0.952295 2.29904i 0.0395079 0.0953804i
\(582\) 8.39782i 0.348101i
\(583\) 7.00801 + 2.90281i 0.290242 + 0.120222i
\(584\) −15.6819 37.8596i −0.648923 1.56664i
\(585\) 0.249774 0.103460i 0.0103269 0.00427754i
\(586\) 6.20626 + 6.20626i 0.256378 + 0.256378i
\(587\) −13.4482 13.4482i −0.555067 0.555067i 0.372832 0.927899i \(-0.378387\pi\)
−0.927899 + 0.372832i \(0.878387\pi\)
\(588\) −0.845678 + 0.350291i −0.0348752 + 0.0144458i
\(589\) −7.02665 16.9638i −0.289528 0.698982i
\(590\) 0.558935 + 0.231519i 0.0230110 + 0.00953147i
\(591\) 21.1689i 0.870774i
\(592\) −0.762828 + 1.84163i −0.0313520 + 0.0756905i
\(593\) −7.38393 + 7.38393i −0.303222 + 0.303222i −0.842273 0.539051i \(-0.818783\pi\)
0.539051 + 0.842273i \(0.318783\pi\)
\(594\) 0.511402 0.0209831
\(595\) −0.725879 + 0.596342i −0.0297582 + 0.0244476i
\(596\) −15.2851 −0.626102
\(597\) −1.64431 + 1.64431i −0.0672972 + 0.0672972i
\(598\) −8.94628 + 21.5982i −0.365840 + 0.883217i
\(599\) 22.1338i 0.904361i 0.891927 + 0.452180i \(0.149354\pi\)
−0.891927 + 0.452180i \(0.850646\pi\)
\(600\) −12.0547 4.99321i −0.492130 0.203847i
\(601\) 1.13638 + 2.74347i 0.0463539 + 0.111908i 0.945361 0.326027i \(-0.105710\pi\)
−0.899007 + 0.437935i \(0.855710\pi\)
\(602\) 16.1801 6.70200i 0.659450 0.273153i
\(603\) −0.668179 0.668179i −0.0272103 0.0272103i
\(604\) −21.7566 21.7566i −0.885264 0.885264i
\(605\) −0.803340 + 0.332754i −0.0326604 + 0.0135284i
\(606\) −0.959743 2.31703i −0.0389869 0.0941227i
\(607\) −27.3900 11.3453i −1.11172 0.460491i −0.250193 0.968196i \(-0.580494\pi\)
−0.861531 + 0.507705i \(0.830494\pi\)
\(608\) 21.3342i 0.865217i
\(609\) 6.60634 15.9491i 0.267702 0.646291i
\(610\) 0.115355 0.115355i 0.00467061 0.00467061i
\(611\) −29.1482 −1.17921
\(612\) 0.568536 5.80317i 0.0229817 0.234579i
\(613\) 30.3538 1.22598 0.612988 0.790092i \(-0.289967\pi\)
0.612988 + 0.790092i \(0.289967\pi\)
\(614\) −5.69580 + 5.69580i −0.229864 + 0.229864i
\(615\) −0.0151413 + 0.0365543i −0.000610556 + 0.00147401i
\(616\) 4.82843i 0.194543i
\(617\) 32.7767 + 13.5765i 1.31954 + 0.546571i 0.927653 0.373443i \(-0.121823\pi\)
0.391886 + 0.920014i \(0.371823\pi\)
\(618\) 3.52140 + 8.50141i 0.141651 + 0.341977i
\(619\) −24.2079 + 10.0272i −0.972997 + 0.403028i −0.811827 0.583898i \(-0.801527\pi\)
−0.161170 + 0.986927i \(0.551527\pi\)
\(620\) 0.415564 + 0.415564i 0.0166894 + 0.0166894i
\(621\) 6.58221 + 6.58221i 0.264135 + 0.264135i
\(622\) 3.82843 1.58579i 0.153506 0.0635842i
\(623\) −5.97315 14.4205i −0.239309 0.577743i
\(624\) −2.51140 1.04026i −0.100537 0.0416436i
\(625\) 24.8982i 0.995929i
\(626\) 0.278647 0.672715i 0.0111370 0.0268871i
\(627\) −1.72002 + 1.72002i −0.0686911 + 0.0686911i
\(628\) −28.0771 −1.12040
\(629\) −2.88483 9.49236i −0.115026 0.378485i
\(630\) −0.174385 −0.00694765
\(631\) 0.310259 0.310259i 0.0123512 0.0123512i −0.700904 0.713255i \(-0.747220\pi\)
0.713255 + 0.700904i \(0.247220\pi\)
\(632\) 8.37170 20.2111i 0.333009 0.803954i
\(633\) 7.58541i 0.301493i
\(634\) −15.2485 6.31615i −0.605596 0.250846i
\(635\) −0.0199799 0.0482358i −0.000792879 0.00191418i
\(636\) 14.8326 6.14386i 0.588150 0.243620i
\(637\) −1.50178 1.50178i −0.0595027 0.0595027i
\(638\) −2.25744 2.25744i −0.0893728 0.0893728i
\(639\) 3.03780 1.25830i 0.120174 0.0497775i
\(640\) −0.301296 0.727394i −0.0119098 0.0287528i
\(641\) −4.42347 1.83226i −0.174717 0.0723699i 0.293611 0.955925i \(-0.405143\pi\)
−0.468327 + 0.883555i \(0.655143\pi\)
\(642\) 6.68110i 0.263682i
\(643\) 7.85802 18.9709i 0.309890 0.748141i −0.689818 0.723983i \(-0.742310\pi\)
0.999708 0.0241580i \(-0.00769048\pi\)
\(644\) −25.7418 + 25.7418i −1.01437 + 1.01437i
\(645\) −0.681756 −0.0268441
\(646\) −7.29261 8.87671i −0.286924 0.349250i
\(647\) 18.7594 0.737508 0.368754 0.929527i \(-0.379784\pi\)
0.368754 + 0.929527i \(0.379784\pi\)
\(648\) 1.84776 1.84776i 0.0725868 0.0725868i
\(649\) 2.45314 5.92241i 0.0962942 0.232475i
\(650\) 12.5400i 0.491858i
\(651\) −12.8860 5.33758i −0.505044 0.209196i
\(652\) 0.949857 + 2.29316i 0.0371993 + 0.0898070i
\(653\) 13.1354 5.44085i 0.514027 0.212917i −0.110564 0.993869i \(-0.535266\pi\)
0.624591 + 0.780952i \(0.285266\pi\)
\(654\) 2.31090 + 2.31090i 0.0903632 + 0.0903632i
\(655\) −0.886027 0.886027i −0.0346200 0.0346200i
\(656\) 0.367542 0.152241i 0.0143501 0.00594401i
\(657\) −6.00122 14.4882i −0.234130 0.565239i
\(658\) 17.3701 + 7.19494i 0.677157 + 0.280488i
\(659\) 34.5061i 1.34417i 0.740475 + 0.672084i \(0.234601\pi\)
−0.740475 + 0.672084i \(0.765399\pi\)
\(660\) 0.0297943 0.0719298i 0.00115974 0.00279986i
\(661\) 9.03386 9.03386i 0.351377 0.351377i −0.509245 0.860622i \(-0.670075\pi\)
0.860622 + 0.509245i \(0.170075\pi\)
\(662\) 15.8711 0.616849
\(663\) 12.9446 3.93400i 0.502726 0.152784i
\(664\) −2.35147 −0.0912547
\(665\) 0.586517 0.586517i 0.0227442 0.0227442i
\(666\) 0.704761 1.70144i 0.0273090 0.0659296i
\(667\) 58.1105i 2.25005i
\(668\) 10.5299 + 4.36162i 0.407413 + 0.168756i
\(669\) 5.99373 + 14.4701i 0.231731 + 0.559448i
\(670\) 0.0550527 0.0228036i 0.00212687 0.000880979i
\(671\) −1.22229 1.22229i −0.0471861 0.0471861i
\(672\) 11.4593 + 11.4593i 0.442052 + 0.442052i
\(673\) −31.2863 + 12.9592i −1.20600 + 0.499541i −0.892933 0.450190i \(-0.851356\pi\)
−0.313066 + 0.949731i \(0.601356\pi\)
\(674\) 4.07928 + 9.84825i 0.157128 + 0.379340i
\(675\) −4.61313 1.91082i −0.177559 0.0735475i
\(676\) 3.15800i 0.121461i
\(677\) 13.6588 32.9752i 0.524950 1.26734i −0.409845 0.912155i \(-0.634417\pi\)
0.934795 0.355186i \(-0.115583\pi\)
\(678\) −7.49869 + 7.49869i −0.287985 + 0.287985i
\(679\) 30.3424 1.16443
\(680\) 0.783106 + 0.418059i 0.0300307 + 0.0160318i
\(681\) −14.6314 −0.560677
\(682\) −1.82389 + 1.82389i −0.0698404 + 0.0698404i
\(683\) −8.52097 + 20.5715i −0.326046 + 0.787145i 0.672832 + 0.739795i \(0.265078\pi\)
−0.998878 + 0.0473497i \(0.984922\pi\)
\(684\) 5.14840i 0.196854i
\(685\) −0.181811 0.0753087i −0.00694665 0.00287740i
\(686\) −5.14545 12.4222i −0.196454 0.474283i
\(687\) −15.1009 + 6.25498i −0.576134 + 0.238642i
\(688\) 4.84710 + 4.84710i 0.184794 + 0.184794i
\(689\) 26.3401 + 26.3401i 1.00348 + 1.00348i
\(690\) −0.542322 + 0.224637i −0.0206459 + 0.00855180i
\(691\) 11.1052 + 26.8103i 0.422462 + 1.01991i 0.981619 + 0.190851i \(0.0611247\pi\)
−0.559157 + 0.829061i \(0.688875\pi\)
\(692\) 7.51643 + 3.11341i 0.285732 + 0.118354i
\(693\) 1.84776i 0.0701906i
\(694\) −4.71247 + 11.3769i −0.178883 + 0.431861i
\(695\) −0.0940736 + 0.0940736i −0.00356842 + 0.00356842i
\(696\) −16.3128 −0.618335
\(697\) −0.932456 + 1.74667i −0.0353193 + 0.0661600i
\(698\) 7.11830 0.269432
\(699\) −0.253010 + 0.253010i −0.00956973 + 0.00956973i
\(700\) 7.47287 18.0411i 0.282448 0.681890i
\(701\) 33.5632i 1.26766i 0.773471 + 0.633832i \(0.218519\pi\)
−0.773471 + 0.633832i \(0.781481\pi\)
\(702\) 2.32023 + 0.961072i 0.0875715 + 0.0362733i
\(703\) 3.35220 + 8.09292i 0.126430 + 0.305230i
\(704\) 1.74603 0.723231i 0.0658062 0.0272578i
\(705\) −0.517531 0.517531i −0.0194913 0.0194913i
\(706\) 15.0530 + 15.0530i 0.566525 + 0.566525i
\(707\) 8.37170 3.46767i 0.314850 0.130415i
\(708\) −5.19212 12.5349i −0.195132 0.471090i
\(709\) 38.5480 + 15.9671i 1.44770 + 0.599657i 0.961651 0.274275i \(-0.0884380\pi\)
0.486048 + 0.873932i \(0.338438\pi\)
\(710\) 0.207348i 0.00778163i
\(711\) 3.20371 7.73445i 0.120149 0.290064i
\(712\) −10.4293 + 10.4293i −0.390856 + 0.390856i
\(713\) −46.9503 −1.75830
\(714\) −8.68506 0.850874i −0.325030 0.0318431i
\(715\) 0.180645 0.00675573
\(716\) 14.6173 14.6173i 0.546274 0.546274i
\(717\) 3.71644 8.97229i 0.138793 0.335076i
\(718\) 3.55147i 0.132540i
\(719\) −46.8015 19.3858i −1.74540 0.722969i −0.998302 0.0582565i \(-0.981446\pi\)
−0.747099 0.664712i \(-0.768554\pi\)
\(720\) −0.0261204 0.0630603i −0.000973450 0.00235012i
\(721\) −30.7167 + 12.7233i −1.14395 + 0.473839i
\(722\) −3.11026 3.11026i −0.115752 0.115752i
\(723\) 6.61974 + 6.61974i 0.246191 + 0.246191i
\(724\) 18.4225 7.63087i 0.684668 0.283599i
\(725\) 11.9286 + 28.7981i 0.443016 + 1.06953i
\(726\) −7.46248 3.09106i −0.276959 0.114720i
\(727\) 11.4948i 0.426317i 0.977018 + 0.213159i \(0.0683751\pi\)
−0.977018 + 0.213159i \(0.931625\pi\)
\(728\) −9.07401 + 21.9066i −0.336305 + 0.811913i
\(729\) 0.707107 0.707107i 0.0261891 0.0261891i
\(730\) 0.988907 0.0366011
\(731\) −33.9541 3.32648i −1.25584 0.123034i
\(732\) −3.65858 −0.135225
\(733\) 34.2720 34.2720i 1.26587 1.26587i 0.317663 0.948204i \(-0.397102\pi\)
0.948204 0.317663i \(-0.102898\pi\)
\(734\) 1.26565 3.05554i 0.0467159 0.112782i
\(735\) 0.0533287i 0.00196706i
\(736\) 50.3990 + 20.8759i 1.85773 + 0.769498i
\(737\) −0.241624 0.583332i −0.00890033 0.0214873i
\(738\) −0.339565 + 0.140652i −0.0124995 + 0.00517748i
\(739\) 1.77139 + 1.77139i 0.0651615 + 0.0651615i 0.738937 0.673775i \(-0.235328\pi\)
−0.673775 + 0.738937i \(0.735328\pi\)
\(740\) −0.198253 0.198253i −0.00728791 0.00728791i
\(741\) −11.0362 + 4.57134i −0.405424 + 0.167932i
\(742\) −9.19494 22.1985i −0.337557 0.814934i
\(743\) 13.0270 + 5.39595i 0.477913 + 0.197958i 0.608618 0.793463i \(-0.291724\pi\)
−0.130705 + 0.991421i \(0.541724\pi\)
\(744\) 13.1799i 0.483198i
\(745\) 0.340784 0.822725i 0.0124853 0.0301423i
\(746\) −4.56780 + 4.56780i −0.167239 + 0.167239i
\(747\) −0.899869 −0.0329245
\(748\) 1.83484 3.43702i 0.0670885 0.125670i
\(749\) −24.1396 −0.882043
\(750\) 0.445601 0.445601i 0.0162710 0.0162710i
\(751\) −8.55723 + 20.6590i −0.312258 + 0.753857i 0.687363 + 0.726314i \(0.258768\pi\)
−0.999621 + 0.0275426i \(0.991232\pi\)
\(752\) 7.35901i 0.268355i
\(753\) −3.03214 1.25595i −0.110497 0.0457695i
\(754\) −5.99963 14.4844i −0.218494 0.527490i
\(755\) 1.65612 0.685989i 0.0602725 0.0249657i
\(756\) 2.76537 + 2.76537i 0.100575 + 0.100575i
\(757\) 6.47088 + 6.47088i 0.235188 + 0.235188i 0.814854 0.579666i \(-0.196817\pi\)
−0.579666 + 0.814854i \(0.696817\pi\)
\(758\) 5.41373 2.24244i 0.196635 0.0814490i
\(759\) 2.38023 + 5.74638i 0.0863968 + 0.208580i
\(760\) −0.724134 0.299946i −0.0262671 0.0108802i
\(761\) 29.3561i 1.06416i −0.846694 0.532079i \(-0.821411\pi\)
0.846694 0.532079i \(-0.178589\pi\)
\(762\) 0.185600 0.448077i 0.00672357 0.0162321i
\(763\) −8.34956 + 8.34956i −0.302274 + 0.302274i
\(764\) 22.6510 0.819486
\(765\) 0.299682 + 0.159984i 0.0108350 + 0.00578424i
\(766\) 14.1795 0.512325
\(767\) 22.2598 22.2598i 0.803756 0.803756i
\(768\) 4.96362 11.9832i 0.179109 0.432408i
\(769\) 17.3301i 0.624939i 0.949928 + 0.312470i \(0.101156\pi\)
−0.949928 + 0.312470i \(0.898844\pi\)
\(770\) −0.107651 0.0445903i −0.00387946 0.00160692i
\(771\) −1.35661 3.27515i −0.0488572 0.117952i
\(772\) 6.00416 2.48701i 0.216095 0.0895093i
\(773\) 32.2079 + 32.2079i 1.15844 + 1.15844i 0.984812 + 0.173626i \(0.0555483\pi\)
0.173626 + 0.984812i \(0.444452\pi\)
\(774\) −4.47814 4.47814i −0.160963 0.160963i
\(775\) 23.2674 9.63765i 0.835788 0.346195i
\(776\) −10.9723 26.4894i −0.393882 0.950916i
\(777\) 6.14753 + 2.54639i 0.220542 + 0.0913513i
\(778\) 20.5213i 0.735724i
\(779\) 0.669012 1.61514i 0.0239698 0.0578683i
\(780\) 0.270354 0.270354i 0.00968022 0.00968022i
\(781\) 2.19703 0.0786160
\(782\) −28.1059 + 8.54168i −1.00506 + 0.305450i
\(783\) −6.24264 −0.223094
\(784\) −0.379153 + 0.379153i −0.0135412 + 0.0135412i
\(785\) 0.625984 1.51126i 0.0223423 0.0539391i
\(786\) 11.6398i 0.415178i
\(787\) −30.8805 12.7911i −1.10077 0.455954i −0.243020 0.970021i \(-0.578138\pi\)
−0.857750 + 0.514067i \(0.828138\pi\)
\(788\) −11.4566 27.6586i −0.408123 0.985295i
\(789\) −12.4846 + 5.17131i −0.444465 + 0.184103i
\(790\) 0.373297 + 0.373297i 0.0132813 + 0.0132813i
\(791\) −27.0937 27.0937i −0.963341 0.963341i
\(792\) 1.61313 0.668179i 0.0573199 0.0237427i
\(793\) −3.24851 7.84259i −0.115358 0.278498i
\(794\) −2.22050 0.919760i −0.0788025 0.0326411i
\(795\) 0.935347i 0.0331733i
\(796\) −1.25850 + 3.03829i −0.0446064 + 0.107689i
\(797\) −7.00506 + 7.00506i −0.248132 + 0.248132i −0.820204 0.572072i \(-0.806140\pi\)
0.572072 + 0.820204i \(0.306140\pi\)
\(798\) 7.70512 0.272758
\(799\) −23.2499 28.3003i −0.822522 1.00119i
\(800\) −29.2617 −1.03456
\(801\) −3.99113 + 3.99113i −0.141020 + 0.141020i
\(802\) 7.75190 18.7147i 0.273729 0.660840i
\(803\) 10.4783i 0.369773i
\(804\) −1.23463 0.511402i −0.0435422 0.0180358i
\(805\) −0.811643 1.95948i −0.0286066 0.0690626i
\(806\) −11.7026 + 4.84739i −0.412207 + 0.170742i
\(807\) −3.65500 3.65500i −0.128662 0.128662i
\(808\) −6.05468 6.05468i −0.213003 0.213003i
\(809\) −3.89409 + 1.61298i −0.136909 + 0.0567095i −0.450086 0.892985i \(-0.648607\pi\)
0.313177 + 0.949695i \(0.398607\pi\)
\(810\) 0.0241321 + 0.0582601i 0.000847916 + 0.00204705i
\(811\) 23.1219 + 9.57741i 0.811920 + 0.336308i 0.749720 0.661756i \(-0.230188\pi\)
0.0622001 + 0.998064i \(0.480188\pi\)
\(812\) 24.4138i 0.856758i
\(813\) −2.55859 + 6.17698i −0.0897337 + 0.216636i
\(814\) 0.870122 0.870122i 0.0304978 0.0304978i
\(815\) −0.144607 −0.00506537
\(816\) −0.993212 3.26810i −0.0347694 0.114406i
\(817\) 30.1231 1.05387
\(818\) 16.8010 16.8010i 0.587435 0.587435i
\(819\) −3.47247 + 8.38329i −0.121338 + 0.292936i
\(820\) 0.0559550i 0.00195403i
\(821\) −19.5063 8.07979i −0.680776 0.281987i 0.0153751 0.999882i \(-0.495106\pi\)
−0.696151 + 0.717895i \(0.745106\pi\)
\(822\) −0.699566 1.68890i −0.0244002 0.0589072i
\(823\) −23.3711 + 9.68061i −0.814664 + 0.337445i −0.750813 0.660515i \(-0.770338\pi\)
−0.0638509 + 0.997959i \(0.520338\pi\)
\(824\) 22.2152 + 22.2152i 0.773905 + 0.773905i
\(825\) −2.35916 2.35916i −0.0821354 0.0821354i
\(826\) −18.7598 + 7.77056i −0.652737 + 0.270372i
\(827\) −6.83057 16.4904i −0.237522 0.573429i 0.759503 0.650504i \(-0.225442\pi\)
−0.997025 + 0.0770744i \(0.975442\pi\)
\(828\) 12.1623 + 5.03780i 0.422670 + 0.175076i
\(829\) 8.81114i 0.306023i 0.988224 + 0.153012i \(0.0488972\pi\)
−0.988224 + 0.153012i \(0.951103\pi\)
\(830\) 0.0217157 0.0524264i 0.000753764 0.00181975i
\(831\) −2.05174 + 2.05174i −0.0711739 + 0.0711739i
\(832\) 9.28093 0.321758
\(833\) 0.260206 2.65598i 0.00901560 0.0920243i
\(834\) −1.23585 −0.0427941
\(835\) −0.469531 + 0.469531i −0.0162488 + 0.0162488i
\(836\) −1.31645 + 3.17819i −0.0455304 + 0.109920i
\(837\) 5.04373i 0.174337i
\(838\) −27.3929 11.3465i −0.946273 0.391959i
\(839\) 3.76419 + 9.08756i 0.129954 + 0.313737i 0.975442 0.220258i \(-0.0706899\pi\)
−0.845487 + 0.533995i \(0.820690\pi\)
\(840\) −0.550066 + 0.227845i −0.0189791 + 0.00786139i
\(841\) 7.05025 + 7.05025i 0.243112 + 0.243112i
\(842\) 10.3032 + 10.3032i 0.355073 + 0.355073i
\(843\) −21.1760 + 8.77139i −0.729340 + 0.302103i
\(844\) 4.10520 + 9.91082i 0.141307 + 0.341144i
\(845\) −0.169980 0.0704081i −0.00584749 0.00242211i
\(846\) 6.79884i 0.233749i
\(847\) 11.1684 26.9629i 0.383750 0.926455i
\(848\) 6.65007 6.65007i 0.228364 0.228364i
\(849\) 27.7209 0.951379
\(850\) 12.1752 10.0024i 0.417605 0.343081i
\(851\) 22.3985 0.767811
\(852\) 3.28809 3.28809i 0.112648 0.112648i
\(853\) 20.2420 48.8685i 0.693073 1.67323i −0.0454226 0.998968i \(-0.514463\pi\)
0.738496 0.674258i \(-0.235537\pi\)
\(854\) 5.47545i 0.187366i
\(855\) −0.277114 0.114784i −0.00947710 0.00392554i
\(856\) 8.72927 + 21.0743i 0.298360 + 0.720306i
\(857\) −44.3924 + 18.3879i −1.51641 + 0.628119i −0.976869 0.213837i \(-0.931404\pi\)
−0.539545 + 0.841957i \(0.681404\pi\)
\(858\) 1.18657 + 1.18657i 0.0405089 + 0.0405089i
\(859\) −12.7938 12.7938i −0.436518 0.436518i 0.454320 0.890838i \(-0.349882\pi\)
−0.890838 + 0.454320i \(0.849882\pi\)
\(860\) −0.890757 + 0.368963i −0.0303745 + 0.0125815i
\(861\) −0.508194 1.22689i −0.0173192 0.0418123i
\(862\) 8.41838 + 3.48701i 0.286731 + 0.118768i
\(863\) 29.4477i 1.00241i 0.865328 + 0.501206i \(0.167110\pi\)
−0.865328 + 0.501206i \(0.832890\pi\)
\(864\) 2.24264 5.41421i 0.0762962 0.184195i
\(865\) −0.335160 + 0.335160i −0.0113958 + 0.0113958i
\(866\) 16.3540 0.555730
\(867\) 14.1447 + 9.43009i 0.480380 + 0.320262i
\(868\) −19.7251 −0.669514
\(869\) 3.95541 3.95541i 0.134178 0.134178i
\(870\) 0.150648 0.363697i 0.00510745 0.0123305i
\(871\) 3.10066i 0.105062i
\(872\) 10.3086 + 4.26998i 0.349095 + 0.144600i
\(873\) −4.19891 10.1371i −0.142112 0.343088i
\(874\) 23.9623 9.92551i 0.810537 0.335735i
\(875\) 1.61001 + 1.61001i 0.0544283 + 0.0544283i
\(876\) −15.6819 15.6819i −0.529844 0.529844i
\(877\) −32.9977 + 13.6681i −1.11425 + 0.461539i −0.862401 0.506227i \(-0.831040\pi\)
−0.251853 + 0.967765i \(0.581040\pi\)
\(878\) −6.20560 14.9816i −0.209429 0.505606i
\(879\) 10.5947 + 4.38849i 0.357352 + 0.148020i
\(880\) 0.0456072i 0.00153742i
\(881\) 3.11758 7.52651i 0.105034 0.253575i −0.862621 0.505850i \(-0.831179\pi\)
0.967655 + 0.252275i \(0.0811789\pi\)
\(882\) 0.350291 0.350291i 0.0117949 0.0117949i
\(883\) −28.3255 −0.953228 −0.476614 0.879113i \(-0.658136\pi\)
−0.476614 + 0.879113i \(0.658136\pi\)
\(884\) 14.7838 12.1456i 0.497234 0.408500i
\(885\) 0.790454 0.0265708
\(886\) 11.6610 11.6610i 0.391760 0.391760i
\(887\) −15.4177 + 37.2216i −0.517675 + 1.24978i 0.421653 + 0.906757i \(0.361450\pi\)
−0.939328 + 0.343020i \(0.888550\pi\)
\(888\) 6.28772i 0.211002i
\(889\) 1.61896 + 0.670595i 0.0542982 + 0.0224910i
\(890\) −0.136209 0.328838i −0.00456574 0.0110227i
\(891\) 0.617317 0.255701i 0.0206809 0.00856630i
\(892\) 15.6624 + 15.6624i 0.524415 + 0.524415i
\(893\) 22.8669 + 22.8669i 0.765211 + 0.765211i
\(894\) 7.64255 3.16565i 0.255605 0.105875i
\(895\) 0.460885 + 1.11267i 0.0154057 + 0.0371926i
\(896\) 24.4138 + 10.1125i 0.815609 + 0.337836i
\(897\) 30.5445i 1.01985i
\(898\) −10.5960 + 25.5809i −0.353592 + 0.853646i
\(899\) 22.2641 22.2641i 0.742549 0.742549i
\(900\) −7.06147 −0.235382
\(901\) −4.56383 + 46.5840i −0.152043 + 1.55194i
\(902\) −0.245584 −0.00817705
\(903\) 16.1801 16.1801i 0.538439 0.538439i
\(904\) −13.8558 + 33.4508i −0.460836 + 1.11256i
\(905\) 1.16173i 0.0386172i
\(906\) 15.3842 + 6.37236i 0.511107 + 0.211708i
\(907\) −16.6247 40.1356i −0.552015 1.33268i −0.915963 0.401262i \(-0.868572\pi\)
0.363949 0.931419i \(-0.381428\pi\)
\(908\) −19.1169 + 7.91847i −0.634416 + 0.262784i
\(909\) −2.31703 2.31703i −0.0768509 0.0768509i
\(910\) −0.404613 0.404613i −0.0134128 0.0134128i
\(911\) 2.05540 0.851374i 0.0680984 0.0282073i −0.348374 0.937356i \(-0.613266\pi\)
0.416473 + 0.909148i \(0.363266\pi\)
\(912\) 1.15412 + 2.78629i 0.0382167 + 0.0922633i
\(913\) −0.555504 0.230097i −0.0183845 0.00761511i
\(914\) 21.5955i 0.714316i
\(915\) 0.0815686 0.196924i 0.00269658 0.00651011i
\(916\) −16.3451 + 16.3451i −0.540056 + 0.540056i
\(917\) 42.0561 1.38881
\(918\) 0.917608 + 3.01933i 0.0302856 + 0.0996528i
\(919\) −47.4595 −1.56554 −0.782772 0.622308i \(-0.786195\pi\)
−0.782772 + 0.622308i \(0.786195\pi\)
\(920\) −1.41716 + 1.41716i −0.0467223 + 0.0467223i
\(921\) −4.02754 + 9.72335i −0.132712 + 0.320395i
\(922\) 21.7779i 0.717218i
\(923\) 9.96795 + 4.12886i 0.328099 + 0.135903i
\(924\) 1.00000 + 2.41421i 0.0328976 + 0.0794218i
\(925\) −11.1001 + 4.59782i −0.364970 + 0.151176i
\(926\) −3.27574 3.27574i −0.107647 0.107647i
\(927\) 8.50141 + 8.50141i 0.279223 + 0.279223i
\(928\) −33.7990 + 14.0000i −1.10951 + 0.459573i
\(929\) 12.2687 + 29.6194i 0.402525 + 0.971780i 0.987051 + 0.160406i \(0.0512803\pi\)
−0.584527 + 0.811375i \(0.698720\pi\)
\(930\) −0.293848 0.121716i −0.00963566 0.00399122i
\(931\) 2.35631i 0.0772248i
\(932\) −0.193646 + 0.467502i −0.00634307 + 0.0153135i
\(933\) 3.82843 3.82843i 0.125337 0.125337i
\(934\) 24.6011 0.804971
\(935\) 0.144090 + 0.175390i 0.00471226 + 0.00573586i
\(936\) 8.57446 0.280265
\(937\) −12.0024 + 12.0024i −0.392103 + 0.392103i −0.875436 0.483334i \(-0.839426\pi\)
0.483334 + 0.875436i \(0.339426\pi\)
\(938\) −0.765367 + 1.84776i −0.0249901 + 0.0603315i
\(939\) 0.951362i 0.0310465i
\(940\) −0.956272 0.396101i −0.0311901 0.0129194i
\(941\) −5.44777 13.1521i −0.177592 0.428745i 0.809868 0.586612i \(-0.199538\pi\)
−0.987460 + 0.157866i \(0.949538\pi\)
\(942\) 14.0386 5.81496i 0.457401 0.189462i
\(943\) −3.16089 3.16089i −0.102933 0.102933i
\(944\) −5.61991 5.61991i −0.182913 0.182913i
\(945\) −0.210501 + 0.0871924i −0.00684760 + 0.00283637i
\(946\) −1.61936 3.90949i −0.0526501 0.127109i
\(947\) 35.5955 + 14.7441i 1.15670 + 0.479120i 0.876774 0.480902i \(-0.159691\pi\)
0.279924 + 0.960022i \(0.409691\pi\)
\(948\) 11.8394i 0.384525i
\(949\) 19.6918 47.5403i 0.639224 1.54322i
\(950\) −9.83765 + 9.83765i −0.319176 + 0.319176i
\(951\) −21.5647 −0.699282
\(952\) −28.5072 + 8.66364i −0.923923 + 0.280790i
\(953\) 17.8637 0.578663 0.289331 0.957229i \(-0.406567\pi\)
0.289331 + 0.957229i \(0.406567\pi\)
\(954\) −6.14386 + 6.14386i −0.198915 + 0.198915i
\(955\) −0.505009 + 1.21920i −0.0163417 + 0.0394524i
\(956\) 13.7342i 0.444195i
\(957\) −3.85369 1.59625i −0.124572 0.0515994i
\(958\) −4.55487 10.9964i −0.147161 0.355278i
\(959\) 6.10221 2.52762i 0.197051 0.0816211i
\(960\) 0.164784 + 0.164784i 0.00531839 + 0.00531839i
\(961\) 3.93208 + 3.93208i 0.126841 + 0.126841i
\(962\) 5.58296 2.31254i 0.180002 0.0745592i
\(963\) 3.34055 + 8.06480i 0.107648 + 0.259884i
\(964\) 12.2317 + 5.06653i 0.393956 + 0.163182i
\(965\) 0.378624i 0.0121883i
\(966\) 7.53960 18.2022i 0.242583 0.585647i
\(967\) 15.7440 15.7440i 0.506294 0.506294i −0.407093 0.913387i \(-0.633457\pi\)
0.913387 + 0.407093i \(0.133457\pi\)
\(968\) −27.5777 −0.886382
\(969\) −13.2413 7.06884i −0.425372 0.227084i
\(970\) 0.691915 0.0222161
\(971\) 3.09891 3.09891i 0.0994488 0.0994488i −0.655632 0.755081i \(-0.727598\pi\)
0.755081 + 0.655632i \(0.227598\pi\)
\(972\) 0.541196 1.30656i 0.0173589 0.0419080i
\(973\) 4.46529i 0.143151i
\(974\) −14.1929 5.87887i −0.454768 0.188371i
\(975\) −6.26998 15.1371i −0.200800 0.484774i
\(976\) −1.98001 + 0.820146i −0.0633785 + 0.0262522i
\(977\) −19.4485 19.4485i −0.622211 0.622211i 0.323885 0.946096i \(-0.395011\pi\)
−0.946096 + 0.323885i \(0.895011\pi\)
\(978\) −0.949857 0.949857i −0.0303731 0.0303731i
\(979\) −3.48433 + 1.44326i −0.111360 + 0.0461266i
\(980\) −0.0288613 0.0696773i −0.000921939 0.00222576i
\(981\) 3.94495 + 1.63405i 0.125952 + 0.0521712i
\(982\) 4.11068i 0.131177i
\(983\) −11.9157 + 28.7670i −0.380052 + 0.917526i 0.611903 + 0.790933i \(0.290404\pi\)
−0.991955 + 0.126593i \(0.959596\pi\)
\(984\) −0.887325 + 0.887325i −0.0282869 + 0.0282869i
\(985\) 1.74416 0.0555734
\(986\) 9.27746 17.3785i 0.295454 0.553444i
\(987\) 24.5650 0.781914
\(988\) −11.9455 + 11.9455i −0.380036 + 0.380036i
\(989\) 29.4760 71.1614i 0.937283 2.26280i
\(990\) 0.0421355i 0.00133915i
\(991\) −0.706469 0.292629i −0.0224417 0.00929567i 0.371434 0.928459i \(-0.378866\pi\)
−0.393876 + 0.919164i \(0.628866\pi\)
\(992\) 11.3113 + 27.3078i 0.359133 + 0.867024i
\(993\) 19.1581 7.93556i 0.607965 0.251827i
\(994\) −4.92098 4.92098i −0.156084 0.156084i
\(995\) −0.135478 0.135478i −0.00429495 0.00429495i
\(996\) −1.17574 + 0.487005i −0.0372546 + 0.0154314i
\(997\) 0.458984 + 1.10809i 0.0145362 + 0.0350934i 0.930981 0.365068i \(-0.118954\pi\)
−0.916445 + 0.400161i \(0.868954\pi\)
\(998\) −19.8455 8.22028i −0.628199 0.260208i
\(999\) 2.40621i 0.0761290i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.2.h.a.25.1 8
3.2 odd 2 153.2.l.e.127.2 8
4.3 odd 2 816.2.bq.a.433.2 8
17.2 even 8 867.2.h.g.712.1 8
17.3 odd 16 867.2.e.i.616.3 8
17.4 even 4 867.2.h.f.757.2 8
17.5 odd 16 867.2.e.i.829.2 8
17.6 odd 16 867.2.d.e.577.4 8
17.7 odd 16 867.2.a.n.1.3 4
17.8 even 8 867.2.h.f.733.2 8
17.9 even 8 867.2.h.b.733.2 8
17.10 odd 16 867.2.a.m.1.3 4
17.11 odd 16 867.2.d.e.577.3 8
17.12 odd 16 867.2.e.h.829.2 8
17.13 even 4 867.2.h.b.757.2 8
17.14 odd 16 867.2.e.h.616.3 8
17.15 even 8 inner 51.2.h.a.49.1 yes 8
17.16 even 2 867.2.h.g.688.1 8
51.32 odd 8 153.2.l.e.100.2 8
51.41 even 16 2601.2.a.bd.1.2 4
51.44 even 16 2601.2.a.bc.1.2 4
68.15 odd 8 816.2.bq.a.49.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.h.a.25.1 8 1.1 even 1 trivial
51.2.h.a.49.1 yes 8 17.15 even 8 inner
153.2.l.e.100.2 8 51.32 odd 8
153.2.l.e.127.2 8 3.2 odd 2
816.2.bq.a.49.2 8 68.15 odd 8
816.2.bq.a.433.2 8 4.3 odd 2
867.2.a.m.1.3 4 17.10 odd 16
867.2.a.n.1.3 4 17.7 odd 16
867.2.d.e.577.3 8 17.11 odd 16
867.2.d.e.577.4 8 17.6 odd 16
867.2.e.h.616.3 8 17.14 odd 16
867.2.e.h.829.2 8 17.12 odd 16
867.2.e.i.616.3 8 17.3 odd 16
867.2.e.i.829.2 8 17.5 odd 16
867.2.h.b.733.2 8 17.9 even 8
867.2.h.b.757.2 8 17.13 even 4
867.2.h.f.733.2 8 17.8 even 8
867.2.h.f.757.2 8 17.4 even 4
867.2.h.g.688.1 8 17.16 even 2
867.2.h.g.712.1 8 17.2 even 8
2601.2.a.bc.1.2 4 51.44 even 16
2601.2.a.bd.1.2 4 51.41 even 16