Properties

Label 5082.2.a.cd
Level $5082$
Weight $2$
Character orbit 5082.a
Self dual yes
Analytic conductor $40.580$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5082,2,Mod(1,5082)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5082.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5082, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5082 = 2 \cdot 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5082.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,-4,4,4,-4,4,4,4,4,0,-4,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.5799743072\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.28400.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 17x^{2} + 71 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 462)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} + (\beta_1 + 1) q^{5} - q^{6} + q^{7} + q^{8} + q^{9} + (\beta_1 + 1) q^{10} - q^{12} + ( - \beta_{3} + \beta_{2} + 3) q^{13} + q^{14} + ( - \beta_1 - 1) q^{15} + q^{16}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 4 q^{3} + 4 q^{4} + 4 q^{5} - 4 q^{6} + 4 q^{7} + 4 q^{8} + 4 q^{9} + 4 q^{10} - 4 q^{12} + 10 q^{13} + 4 q^{14} - 4 q^{15} + 4 q^{16} + 6 q^{17} + 4 q^{18} + 4 q^{19} + 4 q^{20} - 4 q^{21}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 17x^{2} + 71 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 9 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 9\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 9 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 9\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.10130
−2.71698
2.71698
3.10130
1.00000 −1.00000 1.00000 −2.10130 −1.00000 1.00000 1.00000 1.00000 −2.10130
1.2 1.00000 −1.00000 1.00000 −1.71698 −1.00000 1.00000 1.00000 1.00000 −1.71698
1.3 1.00000 −1.00000 1.00000 3.71698 −1.00000 1.00000 1.00000 1.00000 3.71698
1.4 1.00000 −1.00000 1.00000 4.10130 −1.00000 1.00000 1.00000 1.00000 4.10130
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5082.2.a.cd 4
11.b odd 2 1 5082.2.a.by 4
11.d odd 10 2 462.2.j.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
462.2.j.h 8 11.d odd 10 2
5082.2.a.by 4 11.b odd 2 1
5082.2.a.cd 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5082))\):

\( T_{5}^{4} - 4T_{5}^{3} - 11T_{5}^{2} + 30T_{5} + 55 \) Copy content Toggle raw display
\( T_{13}^{4} - 10T_{13}^{3} + 12T_{13}^{2} + 100T_{13} - 164 \) Copy content Toggle raw display
\( T_{17}^{2} - 3T_{17} - 9 \) Copy content Toggle raw display
\( T_{19}^{4} - 4T_{19}^{3} - 17T_{19}^{2} + 42T_{19} + 49 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( (T + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 4 T^{3} + \cdots + 55 \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 10 T^{3} + \cdots - 164 \) Copy content Toggle raw display
$17$ \( (T^{2} - 3 T - 9)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 4 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$23$ \( T^{4} - 57 T^{2} + \cdots + 131 \) Copy content Toggle raw display
$29$ \( T^{4} + 4 T^{3} + \cdots + 20 \) Copy content Toggle raw display
$31$ \( T^{4} - 8 T^{3} + \cdots - 181 \) Copy content Toggle raw display
$37$ \( T^{4} - 107 T^{2} + \cdots + 1331 \) Copy content Toggle raw display
$41$ \( T^{4} + 18 T^{3} + \cdots - 5011 \) Copy content Toggle raw display
$43$ \( T^{4} - 10 T^{3} + \cdots - 604 \) Copy content Toggle raw display
$47$ \( T^{4} - 12 T^{3} + \cdots - 316 \) Copy content Toggle raw display
$53$ \( T^{4} + 18 T^{3} + \cdots - 8020 \) Copy content Toggle raw display
$59$ \( T^{4} - 12 T^{3} + \cdots - 2636 \) Copy content Toggle raw display
$61$ \( T^{4} - 6 T^{3} + \cdots + 596 \) Copy content Toggle raw display
$67$ \( T^{4} + 6 T^{3} + \cdots + 1516 \) Copy content Toggle raw display
$71$ \( T^{4} + 28 T^{3} + \cdots - 880 \) Copy content Toggle raw display
$73$ \( T^{4} - 12 T^{3} + \cdots - 2156 \) Copy content Toggle raw display
$79$ \( T^{4} - 16 T^{3} + \cdots - 19580 \) Copy content Toggle raw display
$83$ \( T^{4} - 14 T^{3} + \cdots + 836 \) Copy content Toggle raw display
$89$ \( T^{4} - 22 T^{3} + \cdots - 4895 \) Copy content Toggle raw display
$97$ \( T^{4} - 6 T^{3} + \cdots + 20 \) Copy content Toggle raw display
show more
show less