Properties

Label 5082.2.a
Level $5082$
Weight $2$
Character orbit 5082.a
Rep. character $\chi_{5082}(1,\cdot)$
Character field $\Q$
Dimension $110$
Newform subspaces $59$
Sturm bound $2112$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 5082 = 2 \cdot 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5082.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 59 \)
Sturm bound: \(2112\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(13\), \(17\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5082))\).

Total New Old
Modular forms 1104 110 994
Cusp forms 1009 110 899
Eisenstein series 95 0 95

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)\(11\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(+\)\(7\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(6\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(8\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(6\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(8\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(7\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(6\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(10\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(5\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(9\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(5\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(9\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(10\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(4\)
Plus space\(+\)\(44\)
Minus space\(-\)\(66\)

Trace form

\( 110 q + 2 q^{2} + 110 q^{4} + 4 q^{5} + 2 q^{8} + 110 q^{9} + 4 q^{10} - 12 q^{13} - 8 q^{15} + 110 q^{16} + 4 q^{17} + 2 q^{18} + 4 q^{20} - 2 q^{21} + 114 q^{25} + 4 q^{26} + 28 q^{29} - 8 q^{30} - 32 q^{31}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5082))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7 11
5082.2.a.a 5082.a 1.a $1$ $40.580$ \(\Q\) None 462.2.a.e \(-1\) \(-1\) \(-4\) \(-1\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-4q^{5}+q^{6}-q^{7}+\cdots\)
5082.2.a.b 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.b \(-1\) \(-1\) \(-4\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-4q^{5}+q^{6}+q^{7}+\cdots\)
5082.2.a.c 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.c \(-1\) \(-1\) \(-3\) \(-1\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-3q^{5}+q^{6}-q^{7}+\cdots\)
5082.2.a.d 5082.a 1.a $1$ $40.580$ \(\Q\) None 42.2.a.a \(-1\) \(-1\) \(-2\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-2q^{5}+q^{6}+q^{7}+\cdots\)
5082.2.a.e 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.e \(-1\) \(-1\) \(0\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}-q^{7}-q^{8}+\cdots\)
5082.2.a.f 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.f \(-1\) \(-1\) \(1\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\)
5082.2.a.g 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.g \(-1\) \(-1\) \(2\) \(-1\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+2q^{5}+q^{6}-q^{7}+\cdots\)
5082.2.a.h 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.h \(-1\) \(-1\) \(2\) \(-1\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+2q^{5}+q^{6}-q^{7}+\cdots\)
5082.2.a.i 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.i \(-1\) \(-1\) \(4\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+4q^{5}+q^{6}+q^{7}+\cdots\)
5082.2.a.j 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.j \(-1\) \(1\) \(-3\) \(-1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-3q^{5}-q^{6}-q^{7}+\cdots\)
5082.2.a.k 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.k \(-1\) \(1\) \(-2\) \(1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-2q^{5}-q^{6}+q^{7}+\cdots\)
5082.2.a.l 5082.a 1.a $1$ $40.580$ \(\Q\) None 462.2.a.f \(-1\) \(1\) \(0\) \(-1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}-q^{7}-q^{8}+\cdots\)
5082.2.a.m 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.m \(-1\) \(1\) \(2\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+2q^{5}-q^{6}+q^{7}+\cdots\)
5082.2.a.n 5082.a 1.a $1$ $40.580$ \(\Q\) None 462.2.a.g \(-1\) \(1\) \(2\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+2q^{5}-q^{6}+q^{7}+\cdots\)
5082.2.a.o 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.b \(1\) \(-1\) \(-4\) \(-1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-4q^{5}-q^{6}-q^{7}+\cdots\)
5082.2.a.p 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.c \(1\) \(-1\) \(-3\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-3q^{5}-q^{6}+q^{7}+\cdots\)
5082.2.a.q 5082.a 1.a $1$ $40.580$ \(\Q\) None 462.2.a.a \(1\) \(-1\) \(-2\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-2q^{5}-q^{6}-q^{7}+\cdots\)
5082.2.a.r 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.e \(1\) \(-1\) \(0\) \(1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}+q^{7}+q^{8}+\cdots\)
5082.2.a.s 5082.a 1.a $1$ $40.580$ \(\Q\) None 462.2.a.b \(1\) \(-1\) \(0\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}+q^{7}+q^{8}+\cdots\)
5082.2.a.t 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.f \(1\) \(-1\) \(1\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\)
5082.2.a.u 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.h \(1\) \(-1\) \(2\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+2q^{5}-q^{6}+q^{7}+\cdots\)
5082.2.a.v 5082.a 1.a $1$ $40.580$ \(\Q\) None 462.2.a.c \(1\) \(-1\) \(2\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+2q^{5}-q^{6}+q^{7}+\cdots\)
5082.2.a.w 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.g \(1\) \(-1\) \(2\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+2q^{5}-q^{6}+q^{7}+\cdots\)
5082.2.a.x 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.i \(1\) \(-1\) \(4\) \(-1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+4q^{5}-q^{6}-q^{7}+\cdots\)
5082.2.a.y 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.j \(1\) \(1\) \(-3\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-3q^{5}+q^{6}+q^{7}+\cdots\)
5082.2.a.z 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.k \(1\) \(1\) \(-2\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-2q^{5}+q^{6}-q^{7}+\cdots\)
5082.2.a.ba 5082.a 1.a $1$ $40.580$ \(\Q\) None 462.2.a.d \(1\) \(1\) \(0\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{6}+q^{7}+q^{8}+\cdots\)
5082.2.a.bb 5082.a 1.a $1$ $40.580$ \(\Q\) None 5082.2.a.m \(1\) \(1\) \(2\) \(-1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+2q^{5}+q^{6}-q^{7}+\cdots\)
5082.2.a.bc 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{3}) \) None 5082.2.a.bc \(-2\) \(-2\) \(-4\) \(2\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-2q^{5}+q^{6}+q^{7}+\cdots\)
5082.2.a.bd 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{5}) \) None 462.2.j.b \(-2\) \(-2\) \(-3\) \(-2\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+(-1-\beta )q^{5}+q^{6}+\cdots\)
5082.2.a.be 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{3}) \) None 5082.2.a.be \(-2\) \(-2\) \(0\) \(-2\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+\beta q^{5}+q^{6}-q^{7}+\cdots\)
5082.2.a.bf 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{5}) \) None 462.2.j.d \(-2\) \(-2\) \(1\) \(2\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+\beta q^{5}+q^{6}+q^{7}+\cdots\)
5082.2.a.bg 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{3}) \) None 5082.2.a.bg \(-2\) \(-2\) \(4\) \(2\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+(2+\beta )q^{5}+q^{6}+\cdots\)
5082.2.a.bh 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{5}) \) None 462.2.j.c \(-2\) \(2\) \(-5\) \(-2\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+(-2-\beta )q^{5}-q^{6}+\cdots\)
5082.2.a.bi 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{3}) \) None 5082.2.a.bi \(-2\) \(2\) \(-4\) \(2\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+(-2+\beta )q^{5}-q^{6}+\cdots\)
5082.2.a.bj 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{5}) \) None 462.2.j.a \(-2\) \(2\) \(-1\) \(2\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-\beta q^{5}-q^{6}+q^{7}+\cdots\)
5082.2.a.bk 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{5}) \) None 5082.2.a.bk \(-2\) \(2\) \(2\) \(-2\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+(1+\beta )q^{5}-q^{6}+\cdots\)
5082.2.a.bl 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{33}) \) None 5082.2.a.bl \(-2\) \(2\) \(3\) \(2\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+(1+\beta )q^{5}-q^{6}+\cdots\)
5082.2.a.bm 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{3}) \) None 5082.2.a.bc \(2\) \(-2\) \(-4\) \(-2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-2q^{5}-q^{6}-q^{7}+\cdots\)
5082.2.a.bn 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{5}) \) None 462.2.j.b \(2\) \(-2\) \(-3\) \(2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+(-1-\beta )q^{5}-q^{6}+\cdots\)
5082.2.a.bo 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{3}) \) None 5082.2.a.be \(2\) \(-2\) \(0\) \(2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+\beta q^{5}-q^{6}+q^{7}+\cdots\)
5082.2.a.bp 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{5}) \) None 462.2.j.d \(2\) \(-2\) \(1\) \(-2\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+\beta q^{5}-q^{6}-q^{7}+\cdots\)
5082.2.a.bq 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{3}) \) None 5082.2.a.bg \(2\) \(-2\) \(4\) \(-2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+(2+\beta )q^{5}-q^{6}+\cdots\)
5082.2.a.br 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{5}) \) None 462.2.j.c \(2\) \(2\) \(-5\) \(2\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+(-2-\beta )q^{5}+q^{6}+\cdots\)
5082.2.a.bs 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{3}) \) None 5082.2.a.bi \(2\) \(2\) \(-4\) \(-2\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+(-2+\beta )q^{5}+q^{6}+\cdots\)
5082.2.a.bt 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{5}) \) None 462.2.j.a \(2\) \(2\) \(-1\) \(-2\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-\beta q^{5}+q^{6}-q^{7}+\cdots\)
5082.2.a.bu 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{3}) \) None 462.2.a.h \(2\) \(2\) \(0\) \(-2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+\beta q^{5}+q^{6}-q^{7}+\cdots\)
5082.2.a.bv 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{5}) \) None 5082.2.a.bk \(2\) \(2\) \(2\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+(1+\beta )q^{5}+q^{6}+\cdots\)
5082.2.a.bw 5082.a 1.a $2$ $40.580$ \(\Q(\sqrt{33}) \) None 5082.2.a.bl \(2\) \(2\) \(3\) \(-2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+(1+\beta )q^{5}+q^{6}+\cdots\)
5082.2.a.bx 5082.a 1.a $4$ $40.580$ 4.4.8000.1 None 462.2.j.f \(-4\) \(-4\) \(2\) \(4\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+(1+\beta _{2}+\beta _{3})q^{5}+\cdots\)
5082.2.a.by 5082.a 1.a $4$ $40.580$ 4.4.28400.1 None 462.2.j.h \(-4\) \(-4\) \(4\) \(-4\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+(1+\beta _{1})q^{5}+q^{6}+\cdots\)
5082.2.a.bz 5082.a 1.a $4$ $40.580$ \(\Q(\sqrt{3}, \sqrt{5})\) None 462.2.j.g \(-4\) \(4\) \(0\) \(4\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+(\beta _{1}+\beta _{3})q^{5}-q^{6}+\cdots\)
5082.2.a.ca 5082.a 1.a $4$ $40.580$ 4.4.4400.1 None 462.2.j.e \(-4\) \(4\) \(2\) \(-4\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+(1+\beta _{2}+\beta _{3})q^{5}+\cdots\)
5082.2.a.cb 5082.a 1.a $4$ $40.580$ 4.4.69264.1 None 5082.2.a.cb \(-4\) \(4\) \(4\) \(-4\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+(1+\beta _{1}-\beta _{2})q^{5}+\cdots\)
5082.2.a.cc 5082.a 1.a $4$ $40.580$ 4.4.8000.1 None 462.2.j.f \(4\) \(-4\) \(2\) \(-4\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+(1+\beta _{2}+\beta _{3})q^{5}+\cdots\)
5082.2.a.cd 5082.a 1.a $4$ $40.580$ 4.4.28400.1 None 462.2.j.h \(4\) \(-4\) \(4\) \(4\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+(1+\beta _{1})q^{5}-q^{6}+\cdots\)
5082.2.a.ce 5082.a 1.a $4$ $40.580$ \(\Q(\sqrt{3}, \sqrt{5})\) None 462.2.j.g \(4\) \(4\) \(0\) \(-4\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+(\beta _{1}+\beta _{3})q^{5}+q^{6}+\cdots\)
5082.2.a.cf 5082.a 1.a $4$ $40.580$ 4.4.4400.1 None 462.2.j.e \(4\) \(4\) \(2\) \(4\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+(1+\beta _{2}+\beta _{3})q^{5}+\cdots\)
5082.2.a.cg 5082.a 1.a $4$ $40.580$ 4.4.69264.1 None 5082.2.a.cb \(4\) \(4\) \(4\) \(4\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+(1+\beta _{1}-\beta _{2})q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5082))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(5082)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(231))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(363))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(462))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(726))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(847))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1694))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2541))\)\(^{\oplus 2}\)