Properties

Label 5070.2.b.d
Level $5070$
Weight $2$
Character orbit 5070.b
Analytic conductor $40.484$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 5070 = 2 \cdot 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5070.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(40.4841538248\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -i q^{2} - q^{3} - q^{4} -i q^{5} + i q^{6} + i q^{8} + q^{9} +O(q^{10})\) \( q -i q^{2} - q^{3} - q^{4} -i q^{5} + i q^{6} + i q^{8} + q^{9} - q^{10} + 4 i q^{11} + q^{12} + i q^{15} + q^{16} + 6 q^{17} -i q^{18} -4 i q^{19} + i q^{20} + 4 q^{22} -8 q^{23} -i q^{24} - q^{25} - q^{27} + 6 q^{29} + q^{30} + 8 i q^{31} -i q^{32} -4 i q^{33} -6 i q^{34} - q^{36} -10 i q^{37} -4 q^{38} + q^{40} + 6 i q^{41} -4 q^{43} -4 i q^{44} -i q^{45} + 8 i q^{46} - q^{48} + 7 q^{49} + i q^{50} -6 q^{51} -10 q^{53} + i q^{54} + 4 q^{55} + 4 i q^{57} -6 i q^{58} + 4 i q^{59} -i q^{60} -2 q^{61} + 8 q^{62} - q^{64} -4 q^{66} + 12 i q^{67} -6 q^{68} + 8 q^{69} -16 i q^{71} + i q^{72} + 2 i q^{73} -10 q^{74} + q^{75} + 4 i q^{76} -16 q^{79} -i q^{80} + q^{81} + 6 q^{82} + 12 i q^{83} -6 i q^{85} + 4 i q^{86} -6 q^{87} -4 q^{88} + 10 i q^{89} - q^{90} + 8 q^{92} -8 i q^{93} -4 q^{95} + i q^{96} + 6 i q^{97} -7 i q^{98} + 4 i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{3} - 2q^{4} + 2q^{9} + O(q^{10}) \) \( 2q - 2q^{3} - 2q^{4} + 2q^{9} - 2q^{10} + 2q^{12} + 2q^{16} + 12q^{17} + 8q^{22} - 16q^{23} - 2q^{25} - 2q^{27} + 12q^{29} + 2q^{30} - 2q^{36} - 8q^{38} + 2q^{40} - 8q^{43} - 2q^{48} + 14q^{49} - 12q^{51} - 20q^{53} + 8q^{55} - 4q^{61} + 16q^{62} - 2q^{64} - 8q^{66} - 12q^{68} + 16q^{69} - 20q^{74} + 2q^{75} - 32q^{79} + 2q^{81} + 12q^{82} - 12q^{87} - 8q^{88} - 2q^{90} + 16q^{92} - 8q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5070\mathbb{Z}\right)^\times\).

\(n\) \(1691\) \(1861\) \(4057\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1351.1
1.00000i
1.00000i
1.00000i −1.00000 −1.00000 1.00000i 1.00000i 0 1.00000i 1.00000 −1.00000
1351.2 1.00000i −1.00000 −1.00000 1.00000i 1.00000i 0 1.00000i 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5070.2.b.d 2
13.b even 2 1 inner 5070.2.b.d 2
13.d odd 4 1 390.2.a.f 1
13.d odd 4 1 5070.2.a.a 1
39.f even 4 1 1170.2.a.a 1
52.f even 4 1 3120.2.a.w 1
65.f even 4 1 1950.2.e.g 2
65.g odd 4 1 1950.2.a.k 1
65.k even 4 1 1950.2.e.g 2
156.l odd 4 1 9360.2.a.p 1
195.j odd 4 1 5850.2.e.e 2
195.n even 4 1 5850.2.a.bo 1
195.u odd 4 1 5850.2.e.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.a.f 1 13.d odd 4 1
1170.2.a.a 1 39.f even 4 1
1950.2.a.k 1 65.g odd 4 1
1950.2.e.g 2 65.f even 4 1
1950.2.e.g 2 65.k even 4 1
3120.2.a.w 1 52.f even 4 1
5070.2.a.a 1 13.d odd 4 1
5070.2.b.d 2 1.a even 1 1 trivial
5070.2.b.d 2 13.b even 2 1 inner
5850.2.a.bo 1 195.n even 4 1
5850.2.e.e 2 195.j odd 4 1
5850.2.e.e 2 195.u odd 4 1
9360.2.a.p 1 156.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5070, [\chi])\):

\( T_{7} \)
\( T_{11}^{2} + 16 \)
\( T_{17} - 6 \)
\( T_{31}^{2} + 64 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ \( ( 1 + T )^{2} \)
$5$ \( 1 + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 16 + T^{2} \)
$13$ \( T^{2} \)
$17$ \( ( -6 + T )^{2} \)
$19$ \( 16 + T^{2} \)
$23$ \( ( 8 + T )^{2} \)
$29$ \( ( -6 + T )^{2} \)
$31$ \( 64 + T^{2} \)
$37$ \( 100 + T^{2} \)
$41$ \( 36 + T^{2} \)
$43$ \( ( 4 + T )^{2} \)
$47$ \( T^{2} \)
$53$ \( ( 10 + T )^{2} \)
$59$ \( 16 + T^{2} \)
$61$ \( ( 2 + T )^{2} \)
$67$ \( 144 + T^{2} \)
$71$ \( 256 + T^{2} \)
$73$ \( 4 + T^{2} \)
$79$ \( ( 16 + T )^{2} \)
$83$ \( 144 + T^{2} \)
$89$ \( 100 + T^{2} \)
$97$ \( 36 + T^{2} \)
show more
show less