Defining parameters
Level: | \( N \) | \(=\) | \( 5070 = 2 \cdot 3 \cdot 5 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5070.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 27 \) | ||
Sturm bound: | \(2184\) | ||
Trace bound: | \(22\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(17\), \(31\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5070, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1148 | 100 | 1048 |
Cusp forms | 1036 | 100 | 936 |
Eisenstein series | 112 | 0 | 112 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(5070, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(5070, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5070, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(845, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1014, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1690, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2535, [\chi])\)\(^{\oplus 2}\)