Properties

Label 5070.2.b.ba.1351.4
Level $5070$
Weight $2$
Character 5070.1351
Analytic conductor $40.484$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5070,2,Mod(1351,5070)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5070, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5070.1351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5070 = 2 \cdot 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5070.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,8,-8,0,0,0,0,8,8,0,-8,0,4,0,8,-32,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(22)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.4841538248\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.17284886784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 30x^{5} + 185x^{4} + 36x^{3} + 8x^{2} + 208x + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.4
Root \(-1.70006 - 1.70006i\) of defining polynomial
Character \(\chi\) \(=\) 5070.1351
Dual form 5070.2.b.ba.1351.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +1.00000 q^{3} -1.00000 q^{4} +1.00000i q^{5} -1.00000i q^{6} +4.64466i q^{7} +1.00000i q^{8} +1.00000 q^{9} +1.00000 q^{10} -4.40013i q^{11} -1.00000 q^{12} +4.64466 q^{14} +1.00000i q^{15} +1.00000 q^{16} -4.00000 q^{17} -1.00000i q^{18} -8.04479i q^{19} -1.00000i q^{20} +4.64466i q^{21} -4.40013 q^{22} +0.976584 q^{23} +1.00000i q^{24} -1.00000 q^{25} +1.00000 q^{27} -4.64466i q^{28} -4.31274 q^{29} +1.00000 q^{30} -6.44069i q^{31} -1.00000i q^{32} -4.40013i q^{33} +4.00000i q^{34} -4.64466 q^{35} -1.00000 q^{36} -3.79603i q^{37} -8.04479 q^{38} -1.00000 q^{40} +7.28932i q^{41} +4.64466 q^{42} -0.716456 q^{43} +4.40013i q^{44} +1.00000i q^{45} -0.976584i q^{46} -9.75342i q^{47} +1.00000 q^{48} -14.5729 q^{49} +1.00000i q^{50} -4.00000 q^{51} +13.5089 q^{53} -1.00000i q^{54} +4.40013 q^{55} -4.64466 q^{56} -8.04479i q^{57} +4.31274i q^{58} -2.18056i q^{59} -1.00000i q^{60} +7.46410 q^{61} -6.44069 q^{62} +4.64466i q^{63} -1.00000 q^{64} -4.40013 q^{66} +1.82522i q^{67} +4.00000 q^{68} +0.976584 q^{69} +4.64466i q^{70} -7.95317i q^{71} +1.00000i q^{72} +4.36112i q^{73} -3.79603 q^{74} -1.00000 q^{75} +8.04479i q^{76} +20.4371 q^{77} -14.9340 q^{79} +1.00000i q^{80} +1.00000 q^{81} +7.28932 q^{82} -3.51093i q^{83} -4.64466i q^{84} -4.00000i q^{85} +0.716456i q^{86} -4.31274 q^{87} +4.40013 q^{88} -8.17274i q^{89} +1.00000 q^{90} -0.976584 q^{92} -6.44069i q^{93} -9.75342 q^{94} +8.04479 q^{95} -1.00000i q^{96} +13.8252i q^{97} +14.5729i q^{98} -4.40013i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} - 8 q^{4} + 8 q^{9} + 8 q^{10} - 8 q^{12} + 4 q^{14} + 8 q^{16} - 32 q^{17} - 4 q^{22} - 8 q^{23} - 8 q^{25} + 8 q^{27} + 16 q^{29} + 8 q^{30} - 4 q^{35} - 8 q^{36} - 8 q^{40} + 4 q^{42} - 28 q^{43}+ \cdots + 16 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5070\mathbb{Z}\right)^\times\).

\(n\) \(1691\) \(1861\) \(4057\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) 1.00000 0.577350
\(4\) −1.00000 −0.500000
\(5\) 1.00000i 0.447214i
\(6\) − 1.00000i − 0.408248i
\(7\) 4.64466i 1.75552i 0.479104 + 0.877758i \(0.340962\pi\)
−0.479104 + 0.877758i \(0.659038\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.00000 0.333333
\(10\) 1.00000 0.316228
\(11\) − 4.40013i − 1.32669i −0.748315 0.663344i \(-0.769137\pi\)
0.748315 0.663344i \(-0.230863\pi\)
\(12\) −1.00000 −0.288675
\(13\) 0 0
\(14\) 4.64466 1.24134
\(15\) 1.00000i 0.258199i
\(16\) 1.00000 0.250000
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) − 1.00000i − 0.235702i
\(19\) − 8.04479i − 1.84560i −0.385279 0.922800i \(-0.625895\pi\)
0.385279 0.922800i \(-0.374105\pi\)
\(20\) − 1.00000i − 0.223607i
\(21\) 4.64466i 1.01355i
\(22\) −4.40013 −0.938110
\(23\) 0.976584 0.203632 0.101816 0.994803i \(-0.467535\pi\)
0.101816 + 0.994803i \(0.467535\pi\)
\(24\) 1.00000i 0.204124i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) − 4.64466i − 0.877758i
\(29\) −4.31274 −0.800855 −0.400427 0.916328i \(-0.631138\pi\)
−0.400427 + 0.916328i \(0.631138\pi\)
\(30\) 1.00000 0.182574
\(31\) − 6.44069i − 1.15678i −0.815760 0.578391i \(-0.803681\pi\)
0.815760 0.578391i \(-0.196319\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) − 4.40013i − 0.765964i
\(34\) 4.00000i 0.685994i
\(35\) −4.64466 −0.785091
\(36\) −1.00000 −0.166667
\(37\) − 3.79603i − 0.624063i −0.950072 0.312031i \(-0.898991\pi\)
0.950072 0.312031i \(-0.101009\pi\)
\(38\) −8.04479 −1.30504
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) 7.28932i 1.13840i 0.822199 + 0.569200i \(0.192747\pi\)
−0.822199 + 0.569200i \(0.807253\pi\)
\(42\) 4.64466 0.716687
\(43\) −0.716456 −0.109259 −0.0546293 0.998507i \(-0.517398\pi\)
−0.0546293 + 0.998507i \(0.517398\pi\)
\(44\) 4.40013i 0.663344i
\(45\) 1.00000i 0.149071i
\(46\) − 0.976584i − 0.143989i
\(47\) − 9.75342i − 1.42268i −0.702847 0.711341i \(-0.748088\pi\)
0.702847 0.711341i \(-0.251912\pi\)
\(48\) 1.00000 0.144338
\(49\) −14.5729 −2.08184
\(50\) 1.00000i 0.141421i
\(51\) −4.00000 −0.560112
\(52\) 0 0
\(53\) 13.5089 1.85559 0.927794 0.373092i \(-0.121703\pi\)
0.927794 + 0.373092i \(0.121703\pi\)
\(54\) − 1.00000i − 0.136083i
\(55\) 4.40013 0.593313
\(56\) −4.64466 −0.620669
\(57\) − 8.04479i − 1.06556i
\(58\) 4.31274i 0.566290i
\(59\) − 2.18056i − 0.283884i −0.989875 0.141942i \(-0.954665\pi\)
0.989875 0.141942i \(-0.0453347\pi\)
\(60\) − 1.00000i − 0.129099i
\(61\) 7.46410 0.955680 0.477840 0.878447i \(-0.341420\pi\)
0.477840 + 0.878447i \(0.341420\pi\)
\(62\) −6.44069 −0.817968
\(63\) 4.64466i 0.585172i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −4.40013 −0.541618
\(67\) 1.82522i 0.222986i 0.993765 + 0.111493i \(0.0355632\pi\)
−0.993765 + 0.111493i \(0.964437\pi\)
\(68\) 4.00000 0.485071
\(69\) 0.976584 0.117567
\(70\) 4.64466i 0.555143i
\(71\) − 7.95317i − 0.943867i −0.881634 0.471934i \(-0.843556\pi\)
0.881634 0.471934i \(-0.156444\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 4.36112i 0.510430i 0.966884 + 0.255215i \(0.0821463\pi\)
−0.966884 + 0.255215i \(0.917854\pi\)
\(74\) −3.79603 −0.441279
\(75\) −1.00000 −0.115470
\(76\) 8.04479i 0.922800i
\(77\) 20.4371 2.32902
\(78\) 0 0
\(79\) −14.9340 −1.68020 −0.840102 0.542429i \(-0.817505\pi\)
−0.840102 + 0.542429i \(0.817505\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 1.00000 0.111111
\(82\) 7.28932 0.804971
\(83\) − 3.51093i − 0.385375i −0.981260 0.192688i \(-0.938280\pi\)
0.981260 0.192688i \(-0.0617204\pi\)
\(84\) − 4.64466i − 0.506774i
\(85\) − 4.00000i − 0.433861i
\(86\) 0.716456i 0.0772575i
\(87\) −4.31274 −0.462374
\(88\) 4.40013 0.469055
\(89\) − 8.17274i − 0.866308i −0.901320 0.433154i \(-0.857401\pi\)
0.901320 0.433154i \(-0.142599\pi\)
\(90\) 1.00000 0.105409
\(91\) 0 0
\(92\) −0.976584 −0.101816
\(93\) − 6.44069i − 0.667868i
\(94\) −9.75342 −1.00599
\(95\) 8.04479 0.825378
\(96\) − 1.00000i − 0.102062i
\(97\) 13.8252i 1.40374i 0.712306 + 0.701869i \(0.247651\pi\)
−0.712306 + 0.701869i \(0.752349\pi\)
\(98\) 14.5729i 1.47208i
\(99\) − 4.40013i − 0.442229i
\(100\) 1.00000 0.100000
\(101\) 6.80025 0.676651 0.338325 0.941029i \(-0.390140\pi\)
0.338325 + 0.941029i \(0.390140\pi\)
\(102\) 4.00000i 0.396059i
\(103\) −5.29137 −0.521374 −0.260687 0.965423i \(-0.583949\pi\)
−0.260687 + 0.965423i \(0.583949\pi\)
\(104\) 0 0
\(105\) −4.64466 −0.453272
\(106\) − 13.5089i − 1.31210i
\(107\) 16.9282 1.63651 0.818256 0.574855i \(-0.194941\pi\)
0.818256 + 0.574855i \(0.194941\pi\)
\(108\) −1.00000 −0.0962250
\(109\) − 12.8003i − 1.22604i −0.790067 0.613021i \(-0.789954\pi\)
0.790067 0.613021i \(-0.210046\pi\)
\(110\) − 4.40013i − 0.419536i
\(111\) − 3.79603i − 0.360303i
\(112\) 4.64466i 0.438879i
\(113\) 13.0662 1.22916 0.614580 0.788854i \(-0.289325\pi\)
0.614580 + 0.788854i \(0.289325\pi\)
\(114\) −8.04479 −0.753463
\(115\) 0.976584i 0.0910669i
\(116\) 4.31274 0.400427
\(117\) 0 0
\(118\) −2.18056 −0.200737
\(119\) − 18.5786i − 1.70310i
\(120\) −1.00000 −0.0912871
\(121\) −8.36112 −0.760101
\(122\) − 7.46410i − 0.675768i
\(123\) 7.28932i 0.657256i
\(124\) 6.44069i 0.578391i
\(125\) − 1.00000i − 0.0894427i
\(126\) 4.64466 0.413779
\(127\) −12.2196 −1.08431 −0.542156 0.840278i \(-0.682392\pi\)
−0.542156 + 0.840278i \(0.682392\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −0.716456 −0.0630805
\(130\) 0 0
\(131\) −0.378757 −0.0330921 −0.0165461 0.999863i \(-0.505267\pi\)
−0.0165461 + 0.999863i \(0.505267\pi\)
\(132\) 4.40013i 0.382982i
\(133\) 37.3653 3.23998
\(134\) 1.82522 0.157675
\(135\) 1.00000i 0.0860663i
\(136\) − 4.00000i − 0.342997i
\(137\) − 1.25235i − 0.106996i −0.998568 0.0534979i \(-0.982963\pi\)
0.998568 0.0534979i \(-0.0170371\pi\)
\(138\) − 0.976584i − 0.0831323i
\(139\) 3.35534 0.284596 0.142298 0.989824i \(-0.454551\pi\)
0.142298 + 0.989824i \(0.454551\pi\)
\(140\) 4.64466 0.392545
\(141\) − 9.75342i − 0.821386i
\(142\) −7.95317 −0.667415
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) − 4.31274i − 0.358153i
\(146\) 4.36112 0.360929
\(147\) −14.5729 −1.20195
\(148\) 3.79603i 0.312031i
\(149\) − 4.61970i − 0.378460i −0.981933 0.189230i \(-0.939401\pi\)
0.981933 0.189230i \(-0.0605992\pi\)
\(150\) 1.00000i 0.0816497i
\(151\) − 11.2425i − 0.914901i −0.889235 0.457450i \(-0.848763\pi\)
0.889235 0.457450i \(-0.151237\pi\)
\(152\) 8.04479 0.652518
\(153\) −4.00000 −0.323381
\(154\) − 20.4371i − 1.64687i
\(155\) 6.44069 0.517328
\(156\) 0 0
\(157\) −1.50311 −0.119961 −0.0599807 0.998200i \(-0.519104\pi\)
−0.0599807 + 0.998200i \(0.519104\pi\)
\(158\) 14.9340i 1.18808i
\(159\) 13.5089 1.07132
\(160\) 1.00000 0.0790569
\(161\) 4.53590i 0.357479i
\(162\) − 1.00000i − 0.0785674i
\(163\) − 0.176330i − 0.0138112i −0.999976 0.00690561i \(-0.997802\pi\)
0.999976 0.00690561i \(-0.00219814\pi\)
\(164\) − 7.28932i − 0.569200i
\(165\) 4.40013 0.342549
\(166\) −3.51093 −0.272501
\(167\) − 8.68162i − 0.671804i −0.941897 0.335902i \(-0.890959\pi\)
0.941897 0.335902i \(-0.109041\pi\)
\(168\) −4.64466 −0.358343
\(169\) 0 0
\(170\) −4.00000 −0.306786
\(171\) − 8.04479i − 0.615200i
\(172\) 0.716456 0.0546293
\(173\) −1.78043 −0.135364 −0.0676818 0.997707i \(-0.521560\pi\)
−0.0676818 + 0.997707i \(0.521560\pi\)
\(174\) 4.31274i 0.326948i
\(175\) − 4.64466i − 0.351103i
\(176\) − 4.40013i − 0.331672i
\(177\) − 2.18056i − 0.163901i
\(178\) −8.17274 −0.612572
\(179\) 17.4157 1.30171 0.650856 0.759201i \(-0.274410\pi\)
0.650856 + 0.759201i \(0.274410\pi\)
\(180\) − 1.00000i − 0.0745356i
\(181\) −10.3611 −0.770136 −0.385068 0.922888i \(-0.625822\pi\)
−0.385068 + 0.922888i \(0.625822\pi\)
\(182\) 0 0
\(183\) 7.46410 0.551762
\(184\) 0.976584i 0.0719947i
\(185\) 3.79603 0.279089
\(186\) −6.44069 −0.472254
\(187\) 17.6005i 1.28708i
\(188\) 9.75342i 0.711341i
\(189\) 4.64466i 0.337849i
\(190\) − 8.04479i − 0.583630i
\(191\) −0.897014 −0.0649057 −0.0324528 0.999473i \(-0.510332\pi\)
−0.0324528 + 0.999473i \(0.510332\pi\)
\(192\) −1.00000 −0.0721688
\(193\) − 20.2644i − 1.45866i −0.684162 0.729330i \(-0.739832\pi\)
0.684162 0.729330i \(-0.260168\pi\)
\(194\) 13.8252 0.992593
\(195\) 0 0
\(196\) 14.5729 1.04092
\(197\) − 9.18056i − 0.654088i −0.945009 0.327044i \(-0.893948\pi\)
0.945009 0.327044i \(-0.106052\pi\)
\(198\) −4.40013 −0.312703
\(199\) 16.2175 1.14963 0.574815 0.818284i \(-0.305074\pi\)
0.574815 + 0.818284i \(0.305074\pi\)
\(200\) − 1.00000i − 0.0707107i
\(201\) 1.82522i 0.128741i
\(202\) − 6.80025i − 0.478464i
\(203\) − 20.0312i − 1.40591i
\(204\) 4.00000 0.280056
\(205\) −7.28932 −0.509108
\(206\) 5.29137i 0.368667i
\(207\) 0.976584 0.0678773
\(208\) 0 0
\(209\) −35.3981 −2.44854
\(210\) 4.64466i 0.320512i
\(211\) −1.61970 −0.111504 −0.0557522 0.998445i \(-0.517756\pi\)
−0.0557522 + 0.998445i \(0.517756\pi\)
\(212\) −13.5089 −0.927794
\(213\) − 7.95317i − 0.544942i
\(214\) − 16.9282i − 1.15719i
\(215\) − 0.716456i − 0.0488619i
\(216\) 1.00000i 0.0680414i
\(217\) 29.9148 2.03075
\(218\) −12.8003 −0.866943
\(219\) 4.36112i 0.294697i
\(220\) −4.40013 −0.296656
\(221\) 0 0
\(222\) −3.79603 −0.254773
\(223\) − 2.23671i − 0.149781i −0.997192 0.0748906i \(-0.976139\pi\)
0.997192 0.0748906i \(-0.0238608\pi\)
\(224\) 4.64466 0.310334
\(225\) −1.00000 −0.0666667
\(226\) − 13.0662i − 0.869148i
\(227\) − 15.3205i − 1.01686i −0.861104 0.508429i \(-0.830226\pi\)
0.861104 0.508429i \(-0.169774\pi\)
\(228\) 8.04479i 0.532779i
\(229\) 10.1279i 0.669274i 0.942347 + 0.334637i \(0.108614\pi\)
−0.942347 + 0.334637i \(0.891386\pi\)
\(230\) 0.976584 0.0643940
\(231\) 20.4371 1.34466
\(232\) − 4.31274i − 0.283145i
\(233\) 20.7519 1.35950 0.679750 0.733444i \(-0.262088\pi\)
0.679750 + 0.733444i \(0.262088\pi\)
\(234\) 0 0
\(235\) 9.75342 0.636243
\(236\) 2.18056i 0.141942i
\(237\) −14.9340 −0.970066
\(238\) −18.5786 −1.20427
\(239\) 24.3539i 1.57532i 0.616107 + 0.787662i \(0.288709\pi\)
−0.616107 + 0.787662i \(0.711291\pi\)
\(240\) 1.00000i 0.0645497i
\(241\) − 19.8685i − 1.27984i −0.768442 0.639920i \(-0.778968\pi\)
0.768442 0.639920i \(-0.221032\pi\)
\(242\) 8.36112i 0.537473i
\(243\) 1.00000 0.0641500
\(244\) −7.46410 −0.477840
\(245\) − 14.5729i − 0.931026i
\(246\) 7.28932 0.464750
\(247\) 0 0
\(248\) 6.44069 0.408984
\(249\) − 3.51093i − 0.222496i
\(250\) −1.00000 −0.0632456
\(251\) −13.5713 −0.856614 −0.428307 0.903633i \(-0.640890\pi\)
−0.428307 + 0.903633i \(0.640890\pi\)
\(252\) − 4.64466i − 0.292586i
\(253\) − 4.29709i − 0.270156i
\(254\) 12.2196i 0.766724i
\(255\) − 4.00000i − 0.250490i
\(256\) 1.00000 0.0625000
\(257\) −0.662300 −0.0413132 −0.0206566 0.999787i \(-0.506576\pi\)
−0.0206566 + 0.999787i \(0.506576\pi\)
\(258\) 0.716456i 0.0446046i
\(259\) 17.6312 1.09555
\(260\) 0 0
\(261\) −4.31274 −0.266952
\(262\) 0.378757i 0.0233997i
\(263\) 30.7498 1.89612 0.948058 0.318098i \(-0.103044\pi\)
0.948058 + 0.318098i \(0.103044\pi\)
\(264\) 4.40013 0.270809
\(265\) 13.5089i 0.829844i
\(266\) − 37.3653i − 2.29101i
\(267\) − 8.17274i − 0.500163i
\(268\) − 1.82522i − 0.111493i
\(269\) −3.74410 −0.228282 −0.114141 0.993465i \(-0.536412\pi\)
−0.114141 + 0.993465i \(0.536412\pi\)
\(270\) 1.00000 0.0608581
\(271\) − 27.7612i − 1.68637i −0.537622 0.843186i \(-0.680677\pi\)
0.537622 0.843186i \(-0.319323\pi\)
\(272\) −4.00000 −0.242536
\(273\) 0 0
\(274\) −1.25235 −0.0756575
\(275\) 4.40013i 0.265338i
\(276\) −0.976584 −0.0587834
\(277\) −11.9922 −0.720540 −0.360270 0.932848i \(-0.617315\pi\)
−0.360270 + 0.932848i \(0.617315\pi\)
\(278\) − 3.35534i − 0.201240i
\(279\) − 6.44069i − 0.385594i
\(280\) − 4.64466i − 0.277572i
\(281\) − 3.63888i − 0.217078i −0.994092 0.108539i \(-0.965383\pi\)
0.994092 0.108539i \(-0.0346172\pi\)
\(282\) −9.75342 −0.580808
\(283\) −4.84441 −0.287970 −0.143985 0.989580i \(-0.545992\pi\)
−0.143985 + 0.989580i \(0.545992\pi\)
\(284\) 7.95317i 0.471934i
\(285\) 8.04479 0.476532
\(286\) 0 0
\(287\) −33.8564 −1.99848
\(288\) − 1.00000i − 0.0589256i
\(289\) −1.00000 −0.0588235
\(290\) −4.31274 −0.253253
\(291\) 13.8252i 0.810449i
\(292\) − 4.36112i − 0.255215i
\(293\) 3.70081i 0.216204i 0.994140 + 0.108102i \(0.0344773\pi\)
−0.994140 + 0.108102i \(0.965523\pi\)
\(294\) 14.5729i 0.849907i
\(295\) 2.18056 0.126957
\(296\) 3.79603 0.220640
\(297\) − 4.40013i − 0.255321i
\(298\) −4.61970 −0.267612
\(299\) 0 0
\(300\) 1.00000 0.0577350
\(301\) − 3.32770i − 0.191805i
\(302\) −11.2425 −0.646932
\(303\) 6.80025 0.390664
\(304\) − 8.04479i − 0.461400i
\(305\) 7.46410i 0.427393i
\(306\) 4.00000i 0.228665i
\(307\) 7.11454i 0.406048i 0.979174 + 0.203024i \(0.0650770\pi\)
−0.979174 + 0.203024i \(0.934923\pi\)
\(308\) −20.4371 −1.16451
\(309\) −5.29137 −0.301015
\(310\) − 6.44069i − 0.365806i
\(311\) −19.9148 −1.12926 −0.564632 0.825343i \(-0.690982\pi\)
−0.564632 + 0.825343i \(0.690982\pi\)
\(312\) 0 0
\(313\) 6.13950 0.347025 0.173513 0.984832i \(-0.444488\pi\)
0.173513 + 0.984832i \(0.444488\pi\)
\(314\) 1.50311i 0.0848255i
\(315\) −4.64466 −0.261697
\(316\) 14.9340 0.840102
\(317\) − 7.85286i − 0.441061i −0.975380 0.220530i \(-0.929221\pi\)
0.975380 0.220530i \(-0.0707788\pi\)
\(318\) − 13.5089i − 0.757541i
\(319\) 18.9766i 1.06248i
\(320\) − 1.00000i − 0.0559017i
\(321\) 16.9282 0.944840
\(322\) 4.53590 0.252776
\(323\) 32.1791i 1.79050i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −0.176330 −0.00976601
\(327\) − 12.8003i − 0.707856i
\(328\) −7.28932 −0.402485
\(329\) 45.3013 2.49754
\(330\) − 4.40013i − 0.242219i
\(331\) 31.9959i 1.75865i 0.476218 + 0.879327i \(0.342007\pi\)
−0.476218 + 0.879327i \(0.657993\pi\)
\(332\) 3.51093i 0.192688i
\(333\) − 3.79603i − 0.208021i
\(334\) −8.68162 −0.475037
\(335\) −1.82522 −0.0997223
\(336\) 4.64466i 0.253387i
\(337\) −35.6432 −1.94161 −0.970806 0.239867i \(-0.922896\pi\)
−0.970806 + 0.239867i \(0.922896\pi\)
\(338\) 0 0
\(339\) 13.0662 0.709656
\(340\) 4.00000i 0.216930i
\(341\) −28.3398 −1.53469
\(342\) −8.04479 −0.435012
\(343\) − 35.1734i − 1.89918i
\(344\) − 0.716456i − 0.0386287i
\(345\) 0.976584i 0.0525775i
\(346\) 1.78043i 0.0957166i
\(347\) −6.89701 −0.370251 −0.185126 0.982715i \(-0.559269\pi\)
−0.185126 + 0.982715i \(0.559269\pi\)
\(348\) 4.31274 0.231187
\(349\) − 19.3205i − 1.03420i −0.855924 0.517102i \(-0.827011\pi\)
0.855924 0.517102i \(-0.172989\pi\)
\(350\) −4.64466 −0.248267
\(351\) 0 0
\(352\) −4.40013 −0.234528
\(353\) 27.4173i 1.45927i 0.683835 + 0.729637i \(0.260311\pi\)
−0.683835 + 0.729637i \(0.739689\pi\)
\(354\) −2.18056 −0.115895
\(355\) 7.95317 0.422110
\(356\) 8.17274i 0.433154i
\(357\) − 18.5786i − 0.983286i
\(358\) − 17.4157i − 0.920449i
\(359\) − 14.3611i − 0.757951i −0.925407 0.378975i \(-0.876277\pi\)
0.925407 0.378975i \(-0.123723\pi\)
\(360\) −1.00000 −0.0527046
\(361\) −45.7186 −2.40624
\(362\) 10.3611i 0.544568i
\(363\) −8.36112 −0.438845
\(364\) 0 0
\(365\) −4.36112 −0.228271
\(366\) − 7.46410i − 0.390155i
\(367\) −13.7753 −0.719064 −0.359532 0.933133i \(-0.617064\pi\)
−0.359532 + 0.933133i \(0.617064\pi\)
\(368\) 0.976584 0.0509079
\(369\) 7.28932i 0.379467i
\(370\) − 3.79603i − 0.197346i
\(371\) 62.7442i 3.25752i
\(372\) 6.44069i 0.333934i
\(373\) −33.4627 −1.73263 −0.866316 0.499496i \(-0.833519\pi\)
−0.866316 + 0.499496i \(0.833519\pi\)
\(374\) 17.6005 0.910101
\(375\) − 1.00000i − 0.0516398i
\(376\) 9.75342 0.502994
\(377\) 0 0
\(378\) 4.64466 0.238896
\(379\) 33.3768i 1.71445i 0.514939 + 0.857227i \(0.327814\pi\)
−0.514939 + 0.857227i \(0.672186\pi\)
\(380\) −8.04479 −0.412689
\(381\) −12.2196 −0.626027
\(382\) 0.897014i 0.0458952i
\(383\) 7.33038i 0.374565i 0.982306 + 0.187282i \(0.0599679\pi\)
−0.982306 + 0.187282i \(0.940032\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 20.4371i 1.04157i
\(386\) −20.2644 −1.03143
\(387\) −0.716456 −0.0364195
\(388\) − 13.8252i − 0.701869i
\(389\) −32.6198 −1.65389 −0.826946 0.562282i \(-0.809924\pi\)
−0.826946 + 0.562282i \(0.809924\pi\)
\(390\) 0 0
\(391\) −3.90633 −0.197552
\(392\) − 14.5729i − 0.736041i
\(393\) −0.378757 −0.0191058
\(394\) −9.18056 −0.462510
\(395\) − 14.9340i − 0.751410i
\(396\) 4.40013i 0.221115i
\(397\) 14.4683i 0.726145i 0.931761 + 0.363072i \(0.118272\pi\)
−0.931761 + 0.363072i \(0.881728\pi\)
\(398\) − 16.2175i − 0.812911i
\(399\) 37.3653 1.87060
\(400\) −1.00000 −0.0500000
\(401\) 7.28727i 0.363909i 0.983307 + 0.181955i \(0.0582424\pi\)
−0.983307 + 0.181955i \(0.941758\pi\)
\(402\) 1.82522 0.0910336
\(403\) 0 0
\(404\) −6.80025 −0.338325
\(405\) 1.00000i 0.0496904i
\(406\) −20.0312 −0.994131
\(407\) −16.7030 −0.827937
\(408\) − 4.00000i − 0.198030i
\(409\) − 24.5766i − 1.21523i −0.794230 0.607617i \(-0.792126\pi\)
0.794230 0.607617i \(-0.207874\pi\)
\(410\) 7.28932i 0.359994i
\(411\) − 1.25235i − 0.0617741i
\(412\) 5.29137 0.260687
\(413\) 10.1279 0.498364
\(414\) − 0.976584i − 0.0479965i
\(415\) 3.51093 0.172345
\(416\) 0 0
\(417\) 3.35534 0.164312
\(418\) 35.3981i 1.73138i
\(419\) 15.5537 0.759847 0.379923 0.925018i \(-0.375950\pi\)
0.379923 + 0.925018i \(0.375950\pi\)
\(420\) 4.64466 0.226636
\(421\) 22.3143i 1.08753i 0.839237 + 0.543766i \(0.183002\pi\)
−0.839237 + 0.543766i \(0.816998\pi\)
\(422\) 1.61970i 0.0788456i
\(423\) − 9.75342i − 0.474228i
\(424\) 13.5089i 0.656050i
\(425\) 4.00000 0.194029
\(426\) −7.95317 −0.385332
\(427\) 34.6682i 1.67771i
\(428\) −16.9282 −0.818256
\(429\) 0 0
\(430\) −0.716456 −0.0345506
\(431\) − 24.2644i − 1.16877i −0.811476 0.584386i \(-0.801335\pi\)
0.811476 0.584386i \(-0.198665\pi\)
\(432\) 1.00000 0.0481125
\(433\) 23.0989 1.11006 0.555031 0.831830i \(-0.312706\pi\)
0.555031 + 0.831830i \(0.312706\pi\)
\(434\) − 29.9148i − 1.43596i
\(435\) − 4.31274i − 0.206780i
\(436\) 12.8003i 0.613021i
\(437\) − 7.85641i − 0.375823i
\(438\) 4.36112 0.208382
\(439\) 39.9959 1.90890 0.954450 0.298370i \(-0.0964430\pi\)
0.954450 + 0.298370i \(0.0964430\pi\)
\(440\) 4.40013i 0.209768i
\(441\) −14.5729 −0.693946
\(442\) 0 0
\(443\) −15.6036 −0.741350 −0.370675 0.928763i \(-0.620874\pi\)
−0.370675 + 0.928763i \(0.620874\pi\)
\(444\) 3.79603i 0.180151i
\(445\) 8.17274 0.387425
\(446\) −2.23671 −0.105911
\(447\) − 4.61970i − 0.218504i
\(448\) − 4.64466i − 0.219440i
\(449\) 27.0042i 1.27441i 0.770696 + 0.637203i \(0.219909\pi\)
−0.770696 + 0.637203i \(0.780091\pi\)
\(450\) 1.00000i 0.0471405i
\(451\) 32.0739 1.51030
\(452\) −13.0662 −0.614580
\(453\) − 11.2425i − 0.528218i
\(454\) −15.3205 −0.719027
\(455\) 0 0
\(456\) 8.04479 0.376732
\(457\) − 17.7868i − 0.832033i −0.909357 0.416017i \(-0.863426\pi\)
0.909357 0.416017i \(-0.136574\pi\)
\(458\) 10.1279 0.473248
\(459\) −4.00000 −0.186704
\(460\) − 0.976584i − 0.0455334i
\(461\) 24.9652i 1.16274i 0.813638 + 0.581372i \(0.197484\pi\)
−0.813638 + 0.581372i \(0.802516\pi\)
\(462\) − 20.4371i − 0.950820i
\(463\) − 15.6389i − 0.726801i −0.931633 0.363400i \(-0.881616\pi\)
0.931633 0.363400i \(-0.118384\pi\)
\(464\) −4.31274 −0.200214
\(465\) 6.44069 0.298680
\(466\) − 20.7519i − 0.961312i
\(467\) −2.43914 −0.112870 −0.0564349 0.998406i \(-0.517973\pi\)
−0.0564349 + 0.998406i \(0.517973\pi\)
\(468\) 0 0
\(469\) −8.47751 −0.391455
\(470\) − 9.75342i − 0.449892i
\(471\) −1.50311 −0.0692598
\(472\) 2.18056 0.100368
\(473\) 3.15250i 0.144952i
\(474\) 14.9340i 0.685940i
\(475\) 8.04479i 0.369120i
\(476\) 18.5786i 0.851550i
\(477\) 13.5089 0.618529
\(478\) 24.3539 1.11392
\(479\) − 14.1863i − 0.648190i −0.946025 0.324095i \(-0.894940\pi\)
0.946025 0.324095i \(-0.105060\pi\)
\(480\) 1.00000 0.0456435
\(481\) 0 0
\(482\) −19.8685 −0.904983
\(483\) 4.53590i 0.206391i
\(484\) 8.36112 0.380051
\(485\) −13.8252 −0.627771
\(486\) − 1.00000i − 0.0453609i
\(487\) 5.76329i 0.261160i 0.991438 + 0.130580i \(0.0416839\pi\)
−0.991438 + 0.130580i \(0.958316\pi\)
\(488\) 7.46410i 0.337884i
\(489\) − 0.176330i − 0.00797392i
\(490\) −14.5729 −0.658335
\(491\) 1.07534 0.0485295 0.0242647 0.999706i \(-0.492276\pi\)
0.0242647 + 0.999706i \(0.492276\pi\)
\(492\) − 7.28932i − 0.328628i
\(493\) 17.2509 0.776943
\(494\) 0 0
\(495\) 4.40013 0.197771
\(496\) − 6.44069i − 0.289195i
\(497\) 36.9398 1.65697
\(498\) −3.51093 −0.157329
\(499\) − 14.7534i − 0.660454i −0.943902 0.330227i \(-0.892875\pi\)
0.943902 0.330227i \(-0.107125\pi\)
\(500\) 1.00000i 0.0447214i
\(501\) − 8.68162i − 0.387866i
\(502\) 13.5713i 0.605717i
\(503\) −26.6618 −1.18879 −0.594395 0.804173i \(-0.702609\pi\)
−0.594395 + 0.804173i \(0.702609\pi\)
\(504\) −4.64466 −0.206890
\(505\) 6.80025i 0.302607i
\(506\) −4.29709 −0.191029
\(507\) 0 0
\(508\) 12.2196 0.542156
\(509\) − 14.1806i − 0.628542i −0.949333 0.314271i \(-0.898240\pi\)
0.949333 0.314271i \(-0.101760\pi\)
\(510\) −4.00000 −0.177123
\(511\) −20.2559 −0.896068
\(512\) − 1.00000i − 0.0441942i
\(513\) − 8.04479i − 0.355186i
\(514\) 0.662300i 0.0292128i
\(515\) − 5.29137i − 0.233165i
\(516\) 0.716456 0.0315402
\(517\) −42.9163 −1.88746
\(518\) − 17.6312i − 0.774673i
\(519\) −1.78043 −0.0781523
\(520\) 0 0
\(521\) 23.7476 1.04040 0.520202 0.854043i \(-0.325857\pi\)
0.520202 + 0.854043i \(0.325857\pi\)
\(522\) 4.31274i 0.188763i
\(523\) 13.8506 0.605646 0.302823 0.953047i \(-0.402071\pi\)
0.302823 + 0.953047i \(0.402071\pi\)
\(524\) 0.378757 0.0165461
\(525\) − 4.64466i − 0.202710i
\(526\) − 30.7498i − 1.34076i
\(527\) 25.7627i 1.12224i
\(528\) − 4.40013i − 0.191491i
\(529\) −22.0463 −0.958534
\(530\) 13.5089 0.586789
\(531\) − 2.18056i − 0.0946282i
\(532\) −37.3653 −1.61999
\(533\) 0 0
\(534\) −8.17274 −0.353669
\(535\) 16.9282i 0.731870i
\(536\) −1.82522 −0.0788374
\(537\) 17.4157 0.751544
\(538\) 3.74410i 0.161420i
\(539\) 64.1224i 2.76195i
\(540\) − 1.00000i − 0.0430331i
\(541\) − 14.8898i − 0.640164i −0.947390 0.320082i \(-0.896290\pi\)
0.947390 0.320082i \(-0.103710\pi\)
\(542\) −27.7612 −1.19245
\(543\) −10.3611 −0.444638
\(544\) 4.00000i 0.171499i
\(545\) 12.8003 0.548303
\(546\) 0 0
\(547\) −22.2019 −0.949284 −0.474642 0.880179i \(-0.657422\pi\)
−0.474642 + 0.880179i \(0.657422\pi\)
\(548\) 1.25235i 0.0534979i
\(549\) 7.46410 0.318560
\(550\) 4.40013 0.187622
\(551\) 34.6950i 1.47806i
\(552\) 0.976584i 0.0415662i
\(553\) − 69.3632i − 2.94963i
\(554\) 11.9922i 0.509499i
\(555\) 3.79603 0.161132
\(556\) −3.35534 −0.142298
\(557\) − 1.89969i − 0.0804927i −0.999190 0.0402463i \(-0.987186\pi\)
0.999190 0.0402463i \(-0.0128143\pi\)
\(558\) −6.44069 −0.272656
\(559\) 0 0
\(560\) −4.64466 −0.196273
\(561\) 17.6005i 0.743094i
\(562\) −3.63888 −0.153497
\(563\) 1.72000 0.0724894 0.0362447 0.999343i \(-0.488460\pi\)
0.0362447 + 0.999343i \(0.488460\pi\)
\(564\) 9.75342i 0.410693i
\(565\) 13.0662i 0.549697i
\(566\) 4.84441i 0.203626i
\(567\) 4.64466i 0.195057i
\(568\) 7.95317 0.333707
\(569\) 0.601920 0.0252338 0.0126169 0.999920i \(-0.495984\pi\)
0.0126169 + 0.999920i \(0.495984\pi\)
\(570\) − 8.04479i − 0.336959i
\(571\) 11.9808 0.501381 0.250691 0.968067i \(-0.419342\pi\)
0.250691 + 0.968067i \(0.419342\pi\)
\(572\) 0 0
\(573\) −0.897014 −0.0374733
\(574\) 33.8564i 1.41314i
\(575\) −0.976584 −0.0407264
\(576\) −1.00000 −0.0416667
\(577\) 43.0293i 1.79133i 0.444725 + 0.895667i \(0.353301\pi\)
−0.444725 + 0.895667i \(0.646699\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) − 20.2644i − 0.842158i
\(580\) 4.31274i 0.179077i
\(581\) 16.3071 0.676532
\(582\) 13.8252 0.573074
\(583\) − 59.4408i − 2.46179i
\(584\) −4.36112 −0.180464
\(585\) 0 0
\(586\) 3.70081 0.152879
\(587\) 17.9148i 0.739423i 0.929147 + 0.369711i \(0.120543\pi\)
−0.929147 + 0.369711i \(0.879457\pi\)
\(588\) 14.5729 0.600975
\(589\) −51.8139 −2.13496
\(590\) − 2.18056i − 0.0897722i
\(591\) − 9.18056i − 0.377638i
\(592\) − 3.79603i − 0.156016i
\(593\) − 0.669624i − 0.0274981i −0.999905 0.0137491i \(-0.995623\pi\)
0.999905 0.0137491i \(-0.00437660\pi\)
\(594\) −4.40013 −0.180539
\(595\) 18.5786 0.761650
\(596\) 4.61970i 0.189230i
\(597\) 16.2175 0.663739
\(598\) 0 0
\(599\) 1.29241 0.0528066 0.0264033 0.999651i \(-0.491595\pi\)
0.0264033 + 0.999651i \(0.491595\pi\)
\(600\) − 1.00000i − 0.0408248i
\(601\) −11.4734 −0.468011 −0.234005 0.972235i \(-0.575183\pi\)
−0.234005 + 0.972235i \(0.575183\pi\)
\(602\) −3.32770 −0.135627
\(603\) 1.82522i 0.0743286i
\(604\) 11.2425i 0.457450i
\(605\) − 8.36112i − 0.339928i
\(606\) − 6.80025i − 0.276241i
\(607\) −24.1344 −0.979583 −0.489792 0.871839i \(-0.662927\pi\)
−0.489792 + 0.871839i \(0.662927\pi\)
\(608\) −8.04479 −0.326259
\(609\) − 20.0312i − 0.811705i
\(610\) 7.46410 0.302213
\(611\) 0 0
\(612\) 4.00000 0.161690
\(613\) − 28.9502i − 1.16929i −0.811290 0.584644i \(-0.801234\pi\)
0.811290 0.584644i \(-0.198766\pi\)
\(614\) 7.11454 0.287119
\(615\) −7.28932 −0.293934
\(616\) 20.4371i 0.823434i
\(617\) − 0.841311i − 0.0338699i −0.999857 0.0169349i \(-0.994609\pi\)
0.999857 0.0169349i \(-0.00539082\pi\)
\(618\) 5.29137i 0.212850i
\(619\) 6.25076i 0.251239i 0.992078 + 0.125620i \(0.0400919\pi\)
−0.992078 + 0.125620i \(0.959908\pi\)
\(620\) −6.44069 −0.258664
\(621\) 0.976584 0.0391889
\(622\) 19.9148i 0.798510i
\(623\) 37.9596 1.52082
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) − 6.13950i − 0.245384i
\(627\) −35.3981 −1.41366
\(628\) 1.50311 0.0599807
\(629\) 15.1841i 0.605430i
\(630\) 4.64466i 0.185048i
\(631\) 3.02496i 0.120422i 0.998186 + 0.0602110i \(0.0191773\pi\)
−0.998186 + 0.0602110i \(0.980823\pi\)
\(632\) − 14.9340i − 0.594042i
\(633\) −1.61970 −0.0643771
\(634\) −7.85286 −0.311877
\(635\) − 12.2196i − 0.484919i
\(636\) −13.5089 −0.535662
\(637\) 0 0
\(638\) 18.9766 0.751290
\(639\) − 7.95317i − 0.314622i
\(640\) −1.00000 −0.0395285
\(641\) −0.772609 −0.0305162 −0.0152581 0.999884i \(-0.504857\pi\)
−0.0152581 + 0.999884i \(0.504857\pi\)
\(642\) − 16.9282i − 0.668103i
\(643\) 19.3745i 0.764057i 0.924151 + 0.382028i \(0.124774\pi\)
−0.924151 + 0.382028i \(0.875226\pi\)
\(644\) − 4.53590i − 0.178739i
\(645\) − 0.716456i − 0.0282104i
\(646\) 32.1791 1.26607
\(647\) 27.1905 1.06897 0.534485 0.845178i \(-0.320506\pi\)
0.534485 + 0.845178i \(0.320506\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) −9.59473 −0.376626
\(650\) 0 0
\(651\) 29.9148 1.17245
\(652\) 0.176330i 0.00690561i
\(653\) 15.7960 0.618144 0.309072 0.951039i \(-0.399982\pi\)
0.309072 + 0.951039i \(0.399982\pi\)
\(654\) −12.8003 −0.500530
\(655\) − 0.378757i − 0.0147993i
\(656\) 7.28932i 0.284600i
\(657\) 4.36112i 0.170143i
\(658\) − 45.3013i − 1.76603i
\(659\) 30.4762 1.18719 0.593593 0.804766i \(-0.297709\pi\)
0.593593 + 0.804766i \(0.297709\pi\)
\(660\) −4.40013 −0.171275
\(661\) 27.8876i 1.08470i 0.840152 + 0.542351i \(0.182466\pi\)
−0.840152 + 0.542351i \(0.817534\pi\)
\(662\) 31.9959 1.24356
\(663\) 0 0
\(664\) 3.51093 0.136251
\(665\) 37.3653i 1.44896i
\(666\) −3.79603 −0.147093
\(667\) −4.21175 −0.163079
\(668\) 8.68162i 0.335902i
\(669\) − 2.23671i − 0.0864762i
\(670\) 1.82522i 0.0705143i
\(671\) − 32.8430i − 1.26789i
\(672\) 4.64466 0.179172
\(673\) 0.978131 0.0377042 0.0188521 0.999822i \(-0.493999\pi\)
0.0188521 + 0.999822i \(0.493999\pi\)
\(674\) 35.6432i 1.37293i
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −19.1926 −0.737630 −0.368815 0.929503i \(-0.620236\pi\)
−0.368815 + 0.929503i \(0.620236\pi\)
\(678\) − 13.0662i − 0.501803i
\(679\) −64.2134 −2.46429
\(680\) 4.00000 0.153393
\(681\) − 15.3205i − 0.587083i
\(682\) 28.3398i 1.08519i
\(683\) − 1.51093i − 0.0578143i −0.999582 0.0289071i \(-0.990797\pi\)
0.999582 0.0289071i \(-0.00920271\pi\)
\(684\) 8.04479i 0.307600i
\(685\) 1.25235 0.0478500
\(686\) −35.1734 −1.34293
\(687\) 10.1279i 0.386405i
\(688\) −0.716456 −0.0273146
\(689\) 0 0
\(690\) 0.976584 0.0371779
\(691\) − 33.1166i − 1.25981i −0.776670 0.629907i \(-0.783093\pi\)
0.776670 0.629907i \(-0.216907\pi\)
\(692\) 1.78043 0.0676818
\(693\) 20.4371 0.776341
\(694\) 6.89701i 0.261807i
\(695\) 3.35534i 0.127275i
\(696\) − 4.31274i − 0.163474i
\(697\) − 29.1573i − 1.10441i
\(698\) −19.3205 −0.731292
\(699\) 20.7519 0.784908
\(700\) 4.64466i 0.175552i
\(701\) 27.8695 1.05262 0.526308 0.850294i \(-0.323576\pi\)
0.526308 + 0.850294i \(0.323576\pi\)
\(702\) 0 0
\(703\) −30.5382 −1.15177
\(704\) 4.40013i 0.165836i
\(705\) 9.75342 0.367335
\(706\) 27.4173 1.03186
\(707\) 31.5849i 1.18787i
\(708\) 2.18056i 0.0819504i
\(709\) − 11.0562i − 0.415223i −0.978211 0.207611i \(-0.933431\pi\)
0.978211 0.207611i \(-0.0665689\pi\)
\(710\) − 7.95317i − 0.298477i
\(711\) −14.9340 −0.560068
\(712\) 8.17274 0.306286
\(713\) − 6.28987i − 0.235557i
\(714\) −18.5786 −0.695288
\(715\) 0 0
\(716\) −17.4157 −0.650856
\(717\) 24.3539i 0.909514i
\(718\) −14.3611 −0.535952
\(719\) −11.7128 −0.436814 −0.218407 0.975858i \(-0.570086\pi\)
−0.218407 + 0.975858i \(0.570086\pi\)
\(720\) 1.00000i 0.0372678i
\(721\) − 24.5766i − 0.915280i
\(722\) 45.7186i 1.70147i
\(723\) − 19.8685i − 0.738916i
\(724\) 10.3611 0.385068
\(725\) 4.31274 0.160171
\(726\) 8.36112i 0.310310i
\(727\) −19.4152 −0.720071 −0.360035 0.932939i \(-0.617235\pi\)
−0.360035 + 0.932939i \(0.617235\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 4.36112i 0.161412i
\(731\) 2.86583 0.105996
\(732\) −7.46410 −0.275881
\(733\) − 11.9340i − 0.440792i −0.975411 0.220396i \(-0.929265\pi\)
0.975411 0.220396i \(-0.0707349\pi\)
\(734\) 13.7753i 0.508455i
\(735\) − 14.5729i − 0.537528i
\(736\) − 0.976584i − 0.0359973i
\(737\) 8.03119 0.295833
\(738\) 7.28932 0.268324
\(739\) − 19.8628i − 0.730666i −0.930877 0.365333i \(-0.880955\pi\)
0.930877 0.365333i \(-0.119045\pi\)
\(740\) −3.79603 −0.139545
\(741\) 0 0
\(742\) 62.7442 2.30341
\(743\) − 16.4877i − 0.604873i −0.953169 0.302437i \(-0.902200\pi\)
0.953169 0.302437i \(-0.0978001\pi\)
\(744\) 6.44069 0.236127
\(745\) 4.61970 0.169253
\(746\) 33.4627i 1.22516i
\(747\) − 3.51093i − 0.128458i
\(748\) − 17.6005i − 0.643538i
\(749\) 78.6257i 2.87292i
\(750\) −1.00000 −0.0365148
\(751\) 46.6624 1.70274 0.851368 0.524569i \(-0.175773\pi\)
0.851368 + 0.524569i \(0.175773\pi\)
\(752\) − 9.75342i − 0.355671i
\(753\) −13.5713 −0.494566
\(754\) 0 0
\(755\) 11.2425 0.409156
\(756\) − 4.64466i − 0.168925i
\(757\) 2.63597 0.0958061 0.0479030 0.998852i \(-0.484746\pi\)
0.0479030 + 0.998852i \(0.484746\pi\)
\(758\) 33.3768 1.21230
\(759\) − 4.29709i − 0.155975i
\(760\) 8.04479i 0.291815i
\(761\) 0.0800681i 0.00290246i 0.999999 + 0.00145123i \(0.000461942\pi\)
−0.999999 + 0.00145123i \(0.999538\pi\)
\(762\) 12.2196i 0.442668i
\(763\) 59.4528 2.15234
\(764\) 0.897014 0.0324528
\(765\) − 4.00000i − 0.144620i
\(766\) 7.33038 0.264857
\(767\) 0 0
\(768\) 1.00000 0.0360844
\(769\) − 5.68317i − 0.204940i −0.994736 0.102470i \(-0.967325\pi\)
0.994736 0.102470i \(-0.0326746\pi\)
\(770\) 20.4371 0.736502
\(771\) −0.662300 −0.0238522
\(772\) 20.2644i 0.729330i
\(773\) − 7.58851i − 0.272940i −0.990644 0.136470i \(-0.956424\pi\)
0.990644 0.136470i \(-0.0435757\pi\)
\(774\) 0.716456i 0.0257525i
\(775\) 6.44069i 0.231356i
\(776\) −13.8252 −0.496296
\(777\) 17.6312 0.632517
\(778\) 32.6198i 1.16948i
\(779\) 58.6410 2.10103
\(780\) 0 0
\(781\) −34.9949 −1.25222
\(782\) 3.90633i 0.139690i
\(783\) −4.31274 −0.154125
\(784\) −14.5729 −0.520459
\(785\) − 1.50311i − 0.0536484i
\(786\) 0.378757i 0.0135098i
\(787\) − 4.73623i − 0.168828i −0.996431 0.0844142i \(-0.973098\pi\)
0.996431 0.0844142i \(-0.0269019\pi\)
\(788\) 9.18056i 0.327044i
\(789\) 30.7498 1.09472
\(790\) −14.9340 −0.531327
\(791\) 60.6878i 2.15781i
\(792\) 4.40013 0.156352
\(793\) 0 0
\(794\) 14.4683 0.513462
\(795\) 13.5089i 0.479111i
\(796\) −16.2175 −0.574815
\(797\) 41.0636 1.45455 0.727274 0.686347i \(-0.240787\pi\)
0.727274 + 0.686347i \(0.240787\pi\)
\(798\) − 37.3653i − 1.32272i
\(799\) 39.0137i 1.38020i
\(800\) 1.00000i 0.0353553i
\(801\) − 8.17274i − 0.288769i
\(802\) 7.28727 0.257323
\(803\) 19.1895 0.677181
\(804\) − 1.82522i − 0.0643705i
\(805\) −4.53590 −0.159869
\(806\) 0 0
\(807\) −3.74410 −0.131799
\(808\) 6.80025i 0.239232i
\(809\) −27.6005 −0.970382 −0.485191 0.874408i \(-0.661250\pi\)
−0.485191 + 0.874408i \(0.661250\pi\)
\(810\) 1.00000 0.0351364
\(811\) − 10.6930i − 0.375482i −0.982219 0.187741i \(-0.939883\pi\)
0.982219 0.187741i \(-0.0601165\pi\)
\(812\) 20.0312i 0.702957i
\(813\) − 27.7612i − 0.973628i
\(814\) 16.7030i 0.585440i
\(815\) 0.176330 0.00617657
\(816\) −4.00000 −0.140028
\(817\) 5.76374i 0.201648i
\(818\) −24.5766 −0.859300
\(819\) 0 0
\(820\) 7.28932 0.254554
\(821\) − 17.5635i − 0.612972i −0.951875 0.306486i \(-0.900847\pi\)
0.951875 0.306486i \(-0.0991532\pi\)
\(822\) −1.25235 −0.0436809
\(823\) 38.7130 1.34945 0.674725 0.738069i \(-0.264262\pi\)
0.674725 + 0.738069i \(0.264262\pi\)
\(824\) − 5.29137i − 0.184333i
\(825\) 4.40013i 0.153193i
\(826\) − 10.1279i − 0.352396i
\(827\) − 28.4703i − 0.990010i −0.868890 0.495005i \(-0.835166\pi\)
0.868890 0.495005i \(-0.164834\pi\)
\(828\) −0.976584 −0.0339386
\(829\) −8.28709 −0.287822 −0.143911 0.989591i \(-0.545968\pi\)
−0.143911 + 0.989591i \(0.545968\pi\)
\(830\) − 3.51093i − 0.121866i
\(831\) −11.9922 −0.416004
\(832\) 0 0
\(833\) 58.2915 2.01968
\(834\) − 3.35534i − 0.116186i
\(835\) 8.68162 0.300440
\(836\) 35.3981 1.22427
\(837\) − 6.44069i − 0.222623i
\(838\) − 15.5537i − 0.537293i
\(839\) − 42.5630i − 1.46944i −0.678372 0.734719i \(-0.737314\pi\)
0.678372 0.734719i \(-0.262686\pi\)
\(840\) − 4.64466i − 0.160256i
\(841\) −10.4003 −0.358631
\(842\) 22.3143 0.769001
\(843\) − 3.63888i − 0.125330i
\(844\) 1.61970 0.0557522
\(845\) 0 0
\(846\) −9.75342 −0.335330
\(847\) − 38.8345i − 1.33437i
\(848\) 13.5089 0.463897
\(849\) −4.84441 −0.166260
\(850\) − 4.00000i − 0.137199i
\(851\) − 3.70714i − 0.127079i
\(852\) 7.95317i 0.272471i
\(853\) − 28.1380i − 0.963425i −0.876329 0.481713i \(-0.840015\pi\)
0.876329 0.481713i \(-0.159985\pi\)
\(854\) 34.6682 1.18632
\(855\) 8.04479 0.275126
\(856\) 16.9282i 0.578594i
\(857\) −10.3355 −0.353053 −0.176526 0.984296i \(-0.556486\pi\)
−0.176526 + 0.984296i \(0.556486\pi\)
\(858\) 0 0
\(859\) 0.380304 0.0129758 0.00648791 0.999979i \(-0.497935\pi\)
0.00648791 + 0.999979i \(0.497935\pi\)
\(860\) 0.716456i 0.0244310i
\(861\) −33.8564 −1.15382
\(862\) −24.2644 −0.826447
\(863\) − 47.1484i − 1.60495i −0.596685 0.802475i \(-0.703516\pi\)
0.596685 0.802475i \(-0.296484\pi\)
\(864\) − 1.00000i − 0.0340207i
\(865\) − 1.78043i − 0.0605365i
\(866\) − 23.0989i − 0.784932i
\(867\) −1.00000 −0.0339618
\(868\) −29.9148 −1.01537
\(869\) 65.7114i 2.22911i
\(870\) −4.31274 −0.146215
\(871\) 0 0
\(872\) 12.8003 0.433471
\(873\) 13.8252i 0.467913i
\(874\) −7.85641 −0.265747
\(875\) 4.64466 0.157018
\(876\) − 4.36112i − 0.147348i
\(877\) 40.0412i 1.35209i 0.736858 + 0.676047i \(0.236309\pi\)
−0.736858 + 0.676047i \(0.763691\pi\)
\(878\) − 39.9959i − 1.34980i
\(879\) 3.70081i 0.124825i
\(880\) 4.40013 0.148328
\(881\) 15.4449 0.520352 0.260176 0.965561i \(-0.416219\pi\)
0.260176 + 0.965561i \(0.416219\pi\)
\(882\) 14.5729i 0.490694i
\(883\) −6.02142 −0.202637 −0.101318 0.994854i \(-0.532306\pi\)
−0.101318 + 0.994854i \(0.532306\pi\)
\(884\) 0 0
\(885\) 2.18056 0.0732987
\(886\) 15.6036i 0.524213i
\(887\) −49.1380 −1.64989 −0.824947 0.565210i \(-0.808795\pi\)
−0.824947 + 0.565210i \(0.808795\pi\)
\(888\) 3.79603 0.127386
\(889\) − 56.7557i − 1.90353i
\(890\) − 8.17274i − 0.273951i
\(891\) − 4.40013i − 0.147410i
\(892\) 2.23671i 0.0748906i
\(893\) −78.4642 −2.62570
\(894\) −4.61970 −0.154506
\(895\) 17.4157i 0.582143i
\(896\) −4.64466 −0.155167
\(897\) 0 0
\(898\) 27.0042 0.901141
\(899\) 27.7770i 0.926414i
\(900\) 1.00000 0.0333333
\(901\) −54.0356 −1.80019
\(902\) − 32.0739i − 1.06795i
\(903\) − 3.32770i − 0.110739i
\(904\) 13.0662i 0.434574i
\(905\) − 10.3611i − 0.344415i
\(906\) −11.2425 −0.373507
\(907\) −16.3669 −0.543454 −0.271727 0.962374i \(-0.587595\pi\)
−0.271727 + 0.962374i \(0.587595\pi\)
\(908\) 15.3205i 0.508429i
\(909\) 6.80025 0.225550
\(910\) 0 0
\(911\) −10.4819 −0.347280 −0.173640 0.984809i \(-0.555553\pi\)
−0.173640 + 0.984809i \(0.555553\pi\)
\(912\) − 8.04479i − 0.266389i
\(913\) −15.4486 −0.511273
\(914\) −17.7868 −0.588336
\(915\) 7.46410i 0.246756i
\(916\) − 10.1279i − 0.334637i
\(917\) − 1.75920i − 0.0580938i
\(918\) 4.00000i 0.132020i
\(919\) 3.21130 0.105931 0.0529655 0.998596i \(-0.483133\pi\)
0.0529655 + 0.998596i \(0.483133\pi\)
\(920\) −0.976584 −0.0321970
\(921\) 7.11454i 0.234432i
\(922\) 24.9652 0.822184
\(923\) 0 0
\(924\) −20.4371 −0.672331
\(925\) 3.79603i 0.124813i
\(926\) −15.6389 −0.513926
\(927\) −5.29137 −0.173791
\(928\) 4.31274i 0.141572i
\(929\) 46.4788i 1.52492i 0.647036 + 0.762460i \(0.276008\pi\)
−0.647036 + 0.762460i \(0.723992\pi\)
\(930\) − 6.44069i − 0.211198i
\(931\) 117.236i 3.84224i
\(932\) −20.7519 −0.679750
\(933\) −19.9148 −0.651981
\(934\) 2.43914i 0.0798110i
\(935\) −17.6005 −0.575598
\(936\) 0 0
\(937\) −27.7627 −0.906969 −0.453485 0.891264i \(-0.649819\pi\)
−0.453485 + 0.891264i \(0.649819\pi\)
\(938\) 8.47751i 0.276801i
\(939\) 6.13950 0.200355
\(940\) −9.75342 −0.318122
\(941\) 20.7962i 0.677935i 0.940798 + 0.338968i \(0.110078\pi\)
−0.940798 + 0.338968i \(0.889922\pi\)
\(942\) 1.50311i 0.0489741i
\(943\) 7.11863i 0.231814i
\(944\) − 2.18056i − 0.0709711i
\(945\) −4.64466 −0.151091
\(946\) 3.15250 0.102497
\(947\) − 9.05925i − 0.294386i −0.989108 0.147193i \(-0.952976\pi\)
0.989108 0.147193i \(-0.0470238\pi\)
\(948\) 14.9340 0.485033
\(949\) 0 0
\(950\) 8.04479 0.261007
\(951\) − 7.85286i − 0.254646i
\(952\) 18.5786 0.602137
\(953\) 15.2762 0.494845 0.247423 0.968908i \(-0.420416\pi\)
0.247423 + 0.968908i \(0.420416\pi\)
\(954\) − 13.5089i − 0.437366i
\(955\) − 0.897014i − 0.0290267i
\(956\) − 24.3539i − 0.787662i
\(957\) 18.9766i 0.613426i
\(958\) −14.1863 −0.458340
\(959\) 5.81676 0.187833
\(960\) − 1.00000i − 0.0322749i
\(961\) −10.4824 −0.338143
\(962\) 0 0
\(963\) 16.9282 0.545504
\(964\) 19.8685i 0.639920i
\(965\) 20.2644 0.652333
\(966\) 4.53590 0.145940
\(967\) − 46.3036i − 1.48902i −0.667610 0.744511i \(-0.732683\pi\)
0.667610 0.744511i \(-0.267317\pi\)
\(968\) − 8.36112i − 0.268736i
\(969\) 32.1791i 1.03374i
\(970\) 13.8252i 0.443901i
\(971\) 11.9652 0.383981 0.191990 0.981397i \(-0.438506\pi\)
0.191990 + 0.981397i \(0.438506\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 15.5844i 0.499613i
\(974\) 5.76329 0.184668
\(975\) 0 0
\(976\) 7.46410 0.238920
\(977\) − 1.76415i − 0.0564403i −0.999602 0.0282201i \(-0.991016\pi\)
0.999602 0.0282201i \(-0.00898394\pi\)
\(978\) −0.176330 −0.00563841
\(979\) −35.9611 −1.14932
\(980\) 14.5729i 0.465513i
\(981\) − 12.8003i − 0.408681i
\(982\) − 1.07534i − 0.0343155i
\(983\) − 54.2821i − 1.73133i −0.500623 0.865666i \(-0.666896\pi\)
0.500623 0.865666i \(-0.333104\pi\)
\(984\) −7.28932 −0.232375
\(985\) 9.18056 0.292517
\(986\) − 17.2509i − 0.549382i
\(987\) 45.3013 1.44196
\(988\) 0 0
\(989\) −0.699680 −0.0222485
\(990\) − 4.40013i − 0.139845i
\(991\) −17.4783 −0.555218 −0.277609 0.960694i \(-0.589542\pi\)
−0.277609 + 0.960694i \(0.589542\pi\)
\(992\) −6.44069 −0.204492
\(993\) 31.9959i 1.01536i
\(994\) − 36.9398i − 1.17166i
\(995\) 16.2175i 0.514130i
\(996\) 3.51093i 0.111248i
\(997\) −21.2914 −0.674304 −0.337152 0.941450i \(-0.609464\pi\)
−0.337152 + 0.941450i \(0.609464\pi\)
\(998\) −14.7534 −0.467011
\(999\) − 3.79603i − 0.120101i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5070.2.b.ba.1351.4 8
13.3 even 3 390.2.bb.c.121.4 8
13.4 even 6 390.2.bb.c.361.4 yes 8
13.5 odd 4 5070.2.a.bz.1.1 4
13.8 odd 4 5070.2.a.ca.1.4 4
13.12 even 2 inner 5070.2.b.ba.1351.5 8
39.17 odd 6 1170.2.bs.f.361.2 8
39.29 odd 6 1170.2.bs.f.901.2 8
65.3 odd 12 1950.2.y.k.199.1 8
65.4 even 6 1950.2.bc.g.751.1 8
65.17 odd 12 1950.2.y.k.49.1 8
65.29 even 6 1950.2.bc.g.901.1 8
65.42 odd 12 1950.2.y.j.199.4 8
65.43 odd 12 1950.2.y.j.49.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.bb.c.121.4 8 13.3 even 3
390.2.bb.c.361.4 yes 8 13.4 even 6
1170.2.bs.f.361.2 8 39.17 odd 6
1170.2.bs.f.901.2 8 39.29 odd 6
1950.2.y.j.49.4 8 65.43 odd 12
1950.2.y.j.199.4 8 65.42 odd 12
1950.2.y.k.49.1 8 65.17 odd 12
1950.2.y.k.199.1 8 65.3 odd 12
1950.2.bc.g.751.1 8 65.4 even 6
1950.2.bc.g.901.1 8 65.29 even 6
5070.2.a.bz.1.1 4 13.5 odd 4
5070.2.a.ca.1.4 4 13.8 odd 4
5070.2.b.ba.1351.4 8 1.1 even 1 trivial
5070.2.b.ba.1351.5 8 13.12 even 2 inner