Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [507,2,Mod(25,507)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(26))
chi = DirichletCharacter(H, H._module([0, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("507.25");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 507 = 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 507.p (of order \(26\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.04841538248\) |
Analytic rank: | \(0\) |
Dimension: | \(168\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{26})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{26}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 | −2.41243 | − | 0.914913i | 0.568065 | + | 0.822984i | 3.48572 | + | 3.08808i | −3.08975 | − | 0.375164i | −0.617456 | − | 2.50512i | −0.149094 | − | 0.284076i | −3.18567 | − | 6.06979i | −0.354605 | + | 0.935016i | 7.11057 | + | 3.73191i |
25.2 | −2.23311 | − | 0.846906i | 0.568065 | + | 0.822984i | 2.77250 | + | 2.45622i | 0.980994 | + | 0.119114i | −0.571560 | − | 2.31891i | 1.47491 | + | 2.81021i | −1.89129 | − | 3.60355i | −0.354605 | + | 0.935016i | −2.08979 | − | 1.09680i |
25.3 | −1.83220 | − | 0.694863i | 0.568065 | + | 0.822984i | 1.37712 | + | 1.22002i | −0.128032 | − | 0.0155459i | −0.468949 | − | 1.90260i | −2.04557 | − | 3.89750i | 0.145878 | + | 0.277948i | −0.354605 | + | 0.935016i | 0.223779 | + | 0.117448i |
25.4 | −1.24255 | − | 0.471239i | 0.568065 | + | 0.822984i | −0.175147 | − | 0.155167i | −1.73849 | − | 0.211091i | −0.318029 | − | 1.29030i | −0.0913225 | − | 0.174001i | 1.37966 | + | 2.62872i | −0.354605 | + | 0.935016i | 2.06070 | + | 1.08154i |
25.5 | −0.911757 | − | 0.345784i | 0.568065 | + | 0.822984i | −0.785288 | − | 0.695704i | 2.27932 | + | 0.276760i | −0.233362 | − | 0.946788i | 1.78194 | + | 3.39521i | 1.38175 | + | 2.63271i | −0.354605 | + | 0.935016i | −1.98249 | − | 1.04049i |
25.6 | −0.642861 | − | 0.243805i | 0.568065 | + | 0.822984i | −1.14319 | − | 1.01278i | 4.00656 | + | 0.486484i | −0.164539 | − | 0.667561i | −0.644348 | − | 1.22770i | 1.12702 | + | 2.14737i | −0.354605 | + | 0.935016i | −2.45705 | − | 1.28956i |
25.7 | −0.239472 | − | 0.0908198i | 0.568065 | + | 0.822984i | −1.44792 | − | 1.28275i | −3.85869 | − | 0.468530i | −0.0612925 | − | 0.248673i | 0.285060 | + | 0.543137i | 0.468284 | + | 0.892241i | −0.354605 | + | 0.935016i | 0.881497 | + | 0.462645i |
25.8 | 0.00155211 | 0.000588639i | 0.568065 | + | 0.822984i | −1.49702 | − | 1.32624i | −0.897149 | − | 0.108934i | 0.000397260 | 0.00161175i | −0.178306 | − | 0.339734i | −0.00308573 | − | 0.00587937i | −0.354605 | + | 0.935016i | −0.00132835 | 0.000697174i | |||
25.9 | 0.725144 | + | 0.275011i | 0.568065 | + | 0.822984i | −1.04682 | − | 0.927401i | 1.67905 | + | 0.203873i | 0.185599 | + | 0.753005i | −1.40603 | − | 2.67897i | −1.22487 | − | 2.33380i | −0.354605 | + | 0.935016i | 1.16148 | + | 0.609593i |
25.10 | 0.759337 | + | 0.287979i | 0.568065 | + | 0.822984i | −1.00336 | − | 0.888900i | 0.883771 | + | 0.107309i | 0.194351 | + | 0.788513i | 2.17066 | + | 4.13585i | −1.26072 | − | 2.40210i | −0.354605 | + | 0.935016i | 0.640177 | + | 0.335991i |
25.11 | 1.35653 | + | 0.514462i | 0.568065 | + | 0.822984i | 0.0784691 | + | 0.0695176i | −3.71157 | − | 0.450666i | 0.347200 | + | 1.40865i | −1.65187 | − | 3.14737i | −1.27776 | − | 2.43458i | −0.354605 | + | 0.935016i | −4.80299 | − | 2.52080i |
25.12 | 1.96188 | + | 0.744043i | 0.568065 | + | 0.822984i | 1.79835 | + | 1.59320i | 1.22751 | + | 0.149046i | 0.502139 | + | 2.03726i | −0.253099 | − | 0.482239i | 0.392545 | + | 0.747932i | −0.354605 | + | 0.935016i | 2.29732 | + | 1.20573i |
25.13 | 2.15817 | + | 0.818487i | 0.568065 | + | 0.822984i | 2.49077 | + | 2.20663i | −1.10490 | − | 0.134159i | 0.552380 | + | 2.24110i | 1.27631 | + | 2.43180i | 1.42410 | + | 2.71339i | −0.354605 | + | 0.935016i | −2.27476 | − | 1.19389i |
25.14 | 2.55177 | + | 0.967759i | 0.568065 | + | 0.822984i | 4.07796 | + | 3.61275i | 1.13985 | + | 0.138403i | 0.653121 | + | 2.64982i | −2.09908 | − | 3.99947i | 4.37317 | + | 8.33237i | −0.354605 | + | 0.935016i | 2.77471 | + | 1.45628i |
64.1 | −2.32286 | − | 0.282046i | −0.748511 | + | 0.663123i | 3.37425 | + | 0.831678i | −0.0918625 | − | 0.175029i | 1.92572 | − | 1.32923i | −0.0642964 | − | 0.0243844i | −3.22762 | − | 1.22407i | 0.120537 | − | 0.992709i | 0.164018 | + | 0.432479i |
64.2 | −2.29315 | − | 0.278439i | −0.748511 | + | 0.663123i | 3.23914 | + | 0.798376i | 1.23177 | + | 2.34695i | 1.90109 | − | 1.31223i | −4.14543 | − | 1.57215i | −2.88578 | − | 1.09443i | 0.120537 | − | 0.992709i | −2.17116 | − | 5.72488i |
64.3 | −2.27015 | − | 0.275646i | −0.748511 | + | 0.663123i | 3.13571 | + | 0.772883i | −1.62219 | − | 3.09083i | 1.88202 | − | 1.29906i | 2.36774 | + | 0.897966i | −2.62905 | − | 0.997067i | 0.120537 | − | 0.992709i | 2.83064 | + | 7.46378i |
64.4 | −1.39250 | − | 0.169080i | −0.748511 | + | 0.663123i | −0.0314082 | − | 0.00774143i | −1.23718 | − | 2.35725i | 1.15442 | − | 0.796842i | −2.90606 | − | 1.10212i | 2.66558 | + | 1.01092i | 0.120537 | − | 0.992709i | 1.32421 | + | 3.49165i |
64.5 | −1.16970 | − | 0.142027i | −0.748511 | + | 0.663123i | −0.593855 | − | 0.146372i | 1.79511 | + | 3.42030i | 0.969716 | − | 0.669346i | 2.92200 | + | 1.10817i | 2.87729 | + | 1.09121i | 0.120537 | − | 0.992709i | −1.61397 | − | 4.25568i |
64.6 | −0.915602 | − | 0.111174i | −0.748511 | + | 0.663123i | −1.11592 | − | 0.275048i | 0.391488 | + | 0.745917i | 0.759060 | − | 0.523942i | −1.12887 | − | 0.428124i | 2.71594 | + | 1.03002i | 0.120537 | − | 0.992709i | −0.275520 | − | 0.726487i |
See next 80 embeddings (of 168 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
169.h | even | 26 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 507.2.p.a | ✓ | 168 |
169.h | even | 26 | 1 | inner | 507.2.p.a | ✓ | 168 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
507.2.p.a | ✓ | 168 | 1.a | even | 1 | 1 | trivial |
507.2.p.a | ✓ | 168 | 169.h | even | 26 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{168} - 20 T_{2}^{166} + 248 T_{2}^{164} - 26 T_{2}^{163} - 2380 T_{2}^{162} + 650 T_{2}^{161} + \cdots + 455625 \) acting on \(S_{2}^{\mathrm{new}}(507, [\chi])\).