Properties

Label 5054.2.a.v.1.4
Level $5054$
Weight $2$
Character 5054.1
Self dual yes
Analytic conductor $40.356$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5054,2,Mod(1,5054)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5054, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5054.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5054 = 2 \cdot 7 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5054.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,-4,4,2,4,4,-4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.3563931816\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.90211\) of defining polynomial
Character \(\chi\) \(=\) 5054.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +0.902113 q^{3} +1.00000 q^{4} +0.557537 q^{5} -0.902113 q^{6} +1.00000 q^{7} -1.00000 q^{8} -2.18619 q^{9} -0.557537 q^{10} -1.35114 q^{11} +0.902113 q^{12} -1.45965 q^{13} -1.00000 q^{14} +0.502961 q^{15} +1.00000 q^{16} +2.34458 q^{17} +2.18619 q^{18} +0.557537 q^{20} +0.902113 q^{21} +1.35114 q^{22} +3.35114 q^{23} -0.902113 q^{24} -4.68915 q^{25} +1.45965 q^{26} -4.67853 q^{27} +1.00000 q^{28} +0.804226 q^{29} -0.502961 q^{30} -1.09132 q^{31} -1.00000 q^{32} -1.21888 q^{33} -2.34458 q^{34} +0.557537 q^{35} -2.18619 q^{36} -6.78298 q^{37} -1.31677 q^{39} -0.557537 q^{40} +5.03624 q^{41} -0.902113 q^{42} +2.49704 q^{43} -1.35114 q^{44} -1.21888 q^{45} -3.35114 q^{46} -2.24077 q^{47} +0.902113 q^{48} +1.00000 q^{49} +4.68915 q^{50} +2.11507 q^{51} -1.45965 q^{52} -5.37238 q^{53} +4.67853 q^{54} -0.753310 q^{55} -1.00000 q^{56} -0.804226 q^{58} -11.1850 q^{59} +0.502961 q^{60} +7.15067 q^{61} +1.09132 q^{62} -2.18619 q^{63} +1.00000 q^{64} -0.813808 q^{65} +1.21888 q^{66} +10.0498 q^{67} +2.34458 q^{68} +3.02311 q^{69} -0.557537 q^{70} -3.00592 q^{71} +2.18619 q^{72} +7.48089 q^{73} +6.78298 q^{74} -4.23015 q^{75} -1.35114 q^{77} +1.31677 q^{78} -1.96325 q^{79} +0.557537 q^{80} +2.33801 q^{81} -5.03624 q^{82} -9.06154 q^{83} +0.902113 q^{84} +1.30719 q^{85} -2.49704 q^{86} +0.725503 q^{87} +1.35114 q^{88} -3.12164 q^{89} +1.21888 q^{90} -1.45965 q^{91} +3.35114 q^{92} -0.984496 q^{93} +2.24077 q^{94} -0.902113 q^{96} -12.7935 q^{97} -1.00000 q^{98} +2.95385 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 4 q^{3} + 4 q^{4} + 2 q^{5} + 4 q^{6} + 4 q^{7} - 4 q^{8} + 2 q^{9} - 2 q^{10} + 4 q^{11} - 4 q^{12} + 2 q^{13} - 4 q^{14} - 2 q^{15} + 4 q^{16} + 2 q^{17} - 2 q^{18} + 2 q^{20} - 4 q^{21}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.902113 0.520835 0.260418 0.965496i \(-0.416140\pi\)
0.260418 + 0.965496i \(0.416140\pi\)
\(4\) 1.00000 0.500000
\(5\) 0.557537 0.249338 0.124669 0.992198i \(-0.460213\pi\)
0.124669 + 0.992198i \(0.460213\pi\)
\(6\) −0.902113 −0.368286
\(7\) 1.00000 0.377964
\(8\) −1.00000 −0.353553
\(9\) −2.18619 −0.728731
\(10\) −0.557537 −0.176309
\(11\) −1.35114 −0.407384 −0.203692 0.979035i \(-0.565294\pi\)
−0.203692 + 0.979035i \(0.565294\pi\)
\(12\) 0.902113 0.260418
\(13\) −1.45965 −0.404834 −0.202417 0.979299i \(-0.564880\pi\)
−0.202417 + 0.979299i \(0.564880\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0.502961 0.129864
\(16\) 1.00000 0.250000
\(17\) 2.34458 0.568643 0.284322 0.958729i \(-0.408232\pi\)
0.284322 + 0.958729i \(0.408232\pi\)
\(18\) 2.18619 0.515290
\(19\) 0 0
\(20\) 0.557537 0.124669
\(21\) 0.902113 0.196857
\(22\) 1.35114 0.288064
\(23\) 3.35114 0.698761 0.349381 0.936981i \(-0.386392\pi\)
0.349381 + 0.936981i \(0.386392\pi\)
\(24\) −0.902113 −0.184143
\(25\) −4.68915 −0.937831
\(26\) 1.45965 0.286261
\(27\) −4.67853 −0.900384
\(28\) 1.00000 0.188982
\(29\) 0.804226 0.149341 0.0746705 0.997208i \(-0.476209\pi\)
0.0746705 + 0.997208i \(0.476209\pi\)
\(30\) −0.502961 −0.0918277
\(31\) −1.09132 −0.196007 −0.0980037 0.995186i \(-0.531246\pi\)
−0.0980037 + 0.995186i \(0.531246\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.21888 −0.212180
\(34\) −2.34458 −0.402092
\(35\) 0.557537 0.0942409
\(36\) −2.18619 −0.364365
\(37\) −6.78298 −1.11512 −0.557558 0.830138i \(-0.688261\pi\)
−0.557558 + 0.830138i \(0.688261\pi\)
\(38\) 0 0
\(39\) −1.31677 −0.210852
\(40\) −0.557537 −0.0881543
\(41\) 5.03624 0.786528 0.393264 0.919426i \(-0.371346\pi\)
0.393264 + 0.919426i \(0.371346\pi\)
\(42\) −0.902113 −0.139199
\(43\) 2.49704 0.380795 0.190397 0.981707i \(-0.439022\pi\)
0.190397 + 0.981707i \(0.439022\pi\)
\(44\) −1.35114 −0.203692
\(45\) −1.21888 −0.181700
\(46\) −3.35114 −0.494099
\(47\) −2.24077 −0.326850 −0.163425 0.986556i \(-0.552254\pi\)
−0.163425 + 0.986556i \(0.552254\pi\)
\(48\) 0.902113 0.130209
\(49\) 1.00000 0.142857
\(50\) 4.68915 0.663146
\(51\) 2.11507 0.296169
\(52\) −1.45965 −0.202417
\(53\) −5.37238 −0.737954 −0.368977 0.929439i \(-0.620292\pi\)
−0.368977 + 0.929439i \(0.620292\pi\)
\(54\) 4.67853 0.636667
\(55\) −0.753310 −0.101576
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) −0.804226 −0.105600
\(59\) −11.1850 −1.45617 −0.728084 0.685488i \(-0.759589\pi\)
−0.728084 + 0.685488i \(0.759589\pi\)
\(60\) 0.502961 0.0649320
\(61\) 7.15067 0.915549 0.457775 0.889068i \(-0.348647\pi\)
0.457775 + 0.889068i \(0.348647\pi\)
\(62\) 1.09132 0.138598
\(63\) −2.18619 −0.275434
\(64\) 1.00000 0.125000
\(65\) −0.813808 −0.100940
\(66\) 1.21888 0.150034
\(67\) 10.0498 1.22777 0.613887 0.789394i \(-0.289605\pi\)
0.613887 + 0.789394i \(0.289605\pi\)
\(68\) 2.34458 0.284322
\(69\) 3.02311 0.363939
\(70\) −0.557537 −0.0666384
\(71\) −3.00592 −0.356737 −0.178369 0.983964i \(-0.557082\pi\)
−0.178369 + 0.983964i \(0.557082\pi\)
\(72\) 2.18619 0.257645
\(73\) 7.48089 0.875572 0.437786 0.899079i \(-0.355763\pi\)
0.437786 + 0.899079i \(0.355763\pi\)
\(74\) 6.78298 0.788506
\(75\) −4.23015 −0.488455
\(76\) 0 0
\(77\) −1.35114 −0.153977
\(78\) 1.31677 0.149095
\(79\) −1.96325 −0.220883 −0.110442 0.993883i \(-0.535227\pi\)
−0.110442 + 0.993883i \(0.535227\pi\)
\(80\) 0.557537 0.0623345
\(81\) 2.33801 0.259779
\(82\) −5.03624 −0.556159
\(83\) −9.06154 −0.994633 −0.497316 0.867569i \(-0.665681\pi\)
−0.497316 + 0.867569i \(0.665681\pi\)
\(84\) 0.902113 0.0984286
\(85\) 1.30719 0.141784
\(86\) −2.49704 −0.269263
\(87\) 0.725503 0.0777821
\(88\) 1.35114 0.144032
\(89\) −3.12164 −0.330893 −0.165446 0.986219i \(-0.552907\pi\)
−0.165446 + 0.986219i \(0.552907\pi\)
\(90\) 1.21888 0.128481
\(91\) −1.45965 −0.153013
\(92\) 3.35114 0.349381
\(93\) −0.984496 −0.102088
\(94\) 2.24077 0.231118
\(95\) 0 0
\(96\) −0.902113 −0.0920715
\(97\) −12.7935 −1.29898 −0.649491 0.760369i \(-0.725018\pi\)
−0.649491 + 0.760369i \(0.725018\pi\)
\(98\) −1.00000 −0.101015
\(99\) 2.95385 0.296873
\(100\) −4.68915 −0.468915
\(101\) −10.7444 −1.06911 −0.534556 0.845133i \(-0.679521\pi\)
−0.534556 + 0.845133i \(0.679521\pi\)
\(102\) −2.11507 −0.209423
\(103\) −9.03624 −0.890367 −0.445183 0.895439i \(-0.646862\pi\)
−0.445183 + 0.895439i \(0.646862\pi\)
\(104\) 1.45965 0.143130
\(105\) 0.502961 0.0490840
\(106\) 5.37238 0.521812
\(107\) −10.9808 −1.06156 −0.530779 0.847510i \(-0.678100\pi\)
−0.530779 + 0.847510i \(0.678100\pi\)
\(108\) −4.67853 −0.450192
\(109\) −4.15182 −0.397672 −0.198836 0.980033i \(-0.563716\pi\)
−0.198836 + 0.980033i \(0.563716\pi\)
\(110\) 0.753310 0.0718253
\(111\) −6.11902 −0.580791
\(112\) 1.00000 0.0944911
\(113\) −12.3072 −1.15776 −0.578881 0.815412i \(-0.696511\pi\)
−0.578881 + 0.815412i \(0.696511\pi\)
\(114\) 0 0
\(115\) 1.86838 0.174228
\(116\) 0.804226 0.0746705
\(117\) 3.19107 0.295015
\(118\) 11.1850 1.02967
\(119\) 2.34458 0.214927
\(120\) −0.502961 −0.0459138
\(121\) −9.17442 −0.834038
\(122\) −7.15067 −0.647391
\(123\) 4.54325 0.409652
\(124\) −1.09132 −0.0980037
\(125\) −5.40206 −0.483175
\(126\) 2.18619 0.194761
\(127\) 0.301265 0.0267330 0.0133665 0.999911i \(-0.495745\pi\)
0.0133665 + 0.999911i \(0.495745\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 2.25261 0.198331
\(130\) 0.813808 0.0713757
\(131\) 2.20815 0.192927 0.0964634 0.995337i \(-0.469247\pi\)
0.0964634 + 0.995337i \(0.469247\pi\)
\(132\) −1.21888 −0.106090
\(133\) 0 0
\(134\) −10.0498 −0.868167
\(135\) −2.60845 −0.224500
\(136\) −2.34458 −0.201046
\(137\) 9.12088 0.779250 0.389625 0.920974i \(-0.372605\pi\)
0.389625 + 0.920974i \(0.372605\pi\)
\(138\) −3.02311 −0.257344
\(139\) −20.6169 −1.74870 −0.874351 0.485295i \(-0.838712\pi\)
−0.874351 + 0.485295i \(0.838712\pi\)
\(140\) 0.557537 0.0471204
\(141\) −2.02143 −0.170235
\(142\) 3.00592 0.252251
\(143\) 1.97219 0.164923
\(144\) −2.18619 −0.182183
\(145\) 0.448385 0.0372364
\(146\) −7.48089 −0.619123
\(147\) 0.902113 0.0744050
\(148\) −6.78298 −0.557558
\(149\) 12.4376 1.01893 0.509463 0.860492i \(-0.329844\pi\)
0.509463 + 0.860492i \(0.329844\pi\)
\(150\) 4.23015 0.345390
\(151\) −16.8636 −1.37234 −0.686169 0.727442i \(-0.740709\pi\)
−0.686169 + 0.727442i \(0.740709\pi\)
\(152\) 0 0
\(153\) −5.12569 −0.414388
\(154\) 1.35114 0.108878
\(155\) −0.608452 −0.0488721
\(156\) −1.31677 −0.105426
\(157\) 8.99583 0.717945 0.358973 0.933348i \(-0.383127\pi\)
0.358973 + 0.933348i \(0.383127\pi\)
\(158\) 1.96325 0.156188
\(159\) −4.84650 −0.384352
\(160\) −0.557537 −0.0440771
\(161\) 3.35114 0.264107
\(162\) −2.33801 −0.183692
\(163\) 15.2704 1.19607 0.598037 0.801469i \(-0.295948\pi\)
0.598037 + 0.801469i \(0.295948\pi\)
\(164\) 5.03624 0.393264
\(165\) −0.679571 −0.0529045
\(166\) 9.06154 0.703312
\(167\) −3.35333 −0.259489 −0.129744 0.991547i \(-0.541416\pi\)
−0.129744 + 0.991547i \(0.541416\pi\)
\(168\) −0.902113 −0.0695995
\(169\) −10.8694 −0.836109
\(170\) −1.30719 −0.100257
\(171\) 0 0
\(172\) 2.49704 0.190397
\(173\) 18.8683 1.43453 0.717264 0.696801i \(-0.245394\pi\)
0.717264 + 0.696801i \(0.245394\pi\)
\(174\) −0.725503 −0.0550002
\(175\) −4.68915 −0.354467
\(176\) −1.35114 −0.101846
\(177\) −10.0902 −0.758424
\(178\) 3.12164 0.233977
\(179\) −7.36280 −0.550322 −0.275161 0.961398i \(-0.588731\pi\)
−0.275161 + 0.961398i \(0.588731\pi\)
\(180\) −1.21888 −0.0908501
\(181\) −5.28918 −0.393141 −0.196571 0.980490i \(-0.562981\pi\)
−0.196571 + 0.980490i \(0.562981\pi\)
\(182\) 1.45965 0.108196
\(183\) 6.45071 0.476850
\(184\) −3.35114 −0.247049
\(185\) −3.78176 −0.278041
\(186\) 0.984496 0.0721868
\(187\) −3.16785 −0.231656
\(188\) −2.24077 −0.163425
\(189\) −4.67853 −0.340313
\(190\) 0 0
\(191\) −2.84233 −0.205664 −0.102832 0.994699i \(-0.532790\pi\)
−0.102832 + 0.994699i \(0.532790\pi\)
\(192\) 0.902113 0.0651044
\(193\) −12.4128 −0.893492 −0.446746 0.894661i \(-0.647417\pi\)
−0.446746 + 0.894661i \(0.647417\pi\)
\(194\) 12.7935 0.918519
\(195\) −0.734147 −0.0525733
\(196\) 1.00000 0.0714286
\(197\) −16.8481 −1.20038 −0.600188 0.799859i \(-0.704907\pi\)
−0.600188 + 0.799859i \(0.704907\pi\)
\(198\) −2.95385 −0.209921
\(199\) −5.28053 −0.374327 −0.187163 0.982329i \(-0.559929\pi\)
−0.187163 + 0.982329i \(0.559929\pi\)
\(200\) 4.68915 0.331573
\(201\) 9.06602 0.639468
\(202\) 10.7444 0.755976
\(203\) 0.804226 0.0564456
\(204\) 2.11507 0.148085
\(205\) 2.80789 0.196111
\(206\) 9.03624 0.629584
\(207\) −7.32624 −0.509209
\(208\) −1.45965 −0.101208
\(209\) 0 0
\(210\) −0.502961 −0.0347076
\(211\) 12.7557 0.878139 0.439069 0.898453i \(-0.355308\pi\)
0.439069 + 0.898453i \(0.355308\pi\)
\(212\) −5.37238 −0.368977
\(213\) −2.71168 −0.185801
\(214\) 10.9808 0.750635
\(215\) 1.39219 0.0949466
\(216\) 4.67853 0.318334
\(217\) −1.09132 −0.0740838
\(218\) 4.15182 0.281197
\(219\) 6.74861 0.456029
\(220\) −0.753310 −0.0507882
\(221\) −3.42226 −0.230206
\(222\) 6.11902 0.410682
\(223\) −22.9108 −1.53422 −0.767109 0.641517i \(-0.778305\pi\)
−0.767109 + 0.641517i \(0.778305\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 10.2514 0.683426
\(226\) 12.3072 0.818662
\(227\) −10.3999 −0.690263 −0.345132 0.938554i \(-0.612166\pi\)
−0.345132 + 0.938554i \(0.612166\pi\)
\(228\) 0 0
\(229\) −3.31741 −0.219221 −0.109610 0.993975i \(-0.534960\pi\)
−0.109610 + 0.993975i \(0.534960\pi\)
\(230\) −1.86838 −0.123198
\(231\) −1.21888 −0.0801965
\(232\) −0.804226 −0.0528000
\(233\) 17.1708 1.12489 0.562447 0.826833i \(-0.309860\pi\)
0.562447 + 0.826833i \(0.309860\pi\)
\(234\) −3.19107 −0.208607
\(235\) −1.24931 −0.0814960
\(236\) −11.1850 −0.728084
\(237\) −1.77108 −0.115044
\(238\) −2.34458 −0.151976
\(239\) 19.3878 1.25409 0.627045 0.778983i \(-0.284264\pi\)
0.627045 + 0.778983i \(0.284264\pi\)
\(240\) 0.502961 0.0324660
\(241\) 1.32553 0.0853846 0.0426923 0.999088i \(-0.486406\pi\)
0.0426923 + 0.999088i \(0.486406\pi\)
\(242\) 9.17442 0.589754
\(243\) 16.1447 1.03569
\(244\) 7.15067 0.457775
\(245\) 0.557537 0.0356197
\(246\) −4.54325 −0.289667
\(247\) 0 0
\(248\) 1.09132 0.0692990
\(249\) −8.17453 −0.518040
\(250\) 5.40206 0.341656
\(251\) 11.9502 0.754290 0.377145 0.926154i \(-0.376906\pi\)
0.377145 + 0.926154i \(0.376906\pi\)
\(252\) −2.18619 −0.137717
\(253\) −4.52786 −0.284664
\(254\) −0.301265 −0.0189031
\(255\) 1.17923 0.0738463
\(256\) 1.00000 0.0625000
\(257\) −9.35957 −0.583834 −0.291917 0.956444i \(-0.594293\pi\)
−0.291917 + 0.956444i \(0.594293\pi\)
\(258\) −2.25261 −0.140241
\(259\) −6.78298 −0.421474
\(260\) −0.813808 −0.0504702
\(261\) −1.75819 −0.108829
\(262\) −2.20815 −0.136420
\(263\) 5.94658 0.366682 0.183341 0.983049i \(-0.441309\pi\)
0.183341 + 0.983049i \(0.441309\pi\)
\(264\) 1.21888 0.0750170
\(265\) −2.99530 −0.184000
\(266\) 0 0
\(267\) −2.81607 −0.172341
\(268\) 10.0498 0.613887
\(269\) 26.5896 1.62120 0.810598 0.585602i \(-0.199142\pi\)
0.810598 + 0.585602i \(0.199142\pi\)
\(270\) 2.60845 0.158745
\(271\) 0.699775 0.0425083 0.0212541 0.999774i \(-0.493234\pi\)
0.0212541 + 0.999774i \(0.493234\pi\)
\(272\) 2.34458 0.142161
\(273\) −1.31677 −0.0796945
\(274\) −9.12088 −0.551013
\(275\) 6.33571 0.382058
\(276\) 3.02311 0.181970
\(277\) −12.9537 −0.778311 −0.389155 0.921172i \(-0.627233\pi\)
−0.389155 + 0.921172i \(0.627233\pi\)
\(278\) 20.6169 1.23652
\(279\) 2.38584 0.142837
\(280\) −0.557537 −0.0333192
\(281\) 30.6736 1.82983 0.914917 0.403642i \(-0.132256\pi\)
0.914917 + 0.403642i \(0.132256\pi\)
\(282\) 2.02143 0.120374
\(283\) 23.3257 1.38657 0.693285 0.720663i \(-0.256163\pi\)
0.693285 + 0.720663i \(0.256163\pi\)
\(284\) −3.00592 −0.178369
\(285\) 0 0
\(286\) −1.97219 −0.116618
\(287\) 5.03624 0.297280
\(288\) 2.18619 0.128823
\(289\) −11.5030 −0.676645
\(290\) −0.448385 −0.0263301
\(291\) −11.5412 −0.676556
\(292\) 7.48089 0.437786
\(293\) 5.50411 0.321554 0.160777 0.986991i \(-0.448600\pi\)
0.160777 + 0.986991i \(0.448600\pi\)
\(294\) −0.902113 −0.0526123
\(295\) −6.23607 −0.363078
\(296\) 6.78298 0.394253
\(297\) 6.32136 0.366802
\(298\) −12.4376 −0.720490
\(299\) −4.89149 −0.282882
\(300\) −4.23015 −0.244228
\(301\) 2.49704 0.143927
\(302\) 16.8636 0.970389
\(303\) −9.69270 −0.556831
\(304\) 0 0
\(305\) 3.98676 0.228281
\(306\) 5.12569 0.293016
\(307\) −20.7235 −1.18275 −0.591377 0.806395i \(-0.701415\pi\)
−0.591377 + 0.806395i \(0.701415\pi\)
\(308\) −1.35114 −0.0769884
\(309\) −8.15171 −0.463734
\(310\) 0.608452 0.0345578
\(311\) −11.5766 −0.656448 −0.328224 0.944600i \(-0.606450\pi\)
−0.328224 + 0.944600i \(0.606450\pi\)
\(312\) 1.31677 0.0745474
\(313\) −34.0823 −1.92645 −0.963224 0.268700i \(-0.913406\pi\)
−0.963224 + 0.268700i \(0.913406\pi\)
\(314\) −8.99583 −0.507664
\(315\) −1.21888 −0.0686762
\(316\) −1.96325 −0.110442
\(317\) −3.86368 −0.217006 −0.108503 0.994096i \(-0.534606\pi\)
−0.108503 + 0.994096i \(0.534606\pi\)
\(318\) 4.84650 0.271778
\(319\) −1.08662 −0.0608392
\(320\) 0.557537 0.0311672
\(321\) −9.90596 −0.552897
\(322\) −3.35114 −0.186752
\(323\) 0 0
\(324\) 2.33801 0.129890
\(325\) 6.84452 0.379666
\(326\) −15.2704 −0.845751
\(327\) −3.74541 −0.207122
\(328\) −5.03624 −0.278080
\(329\) −2.24077 −0.123538
\(330\) 0.679571 0.0374092
\(331\) −2.54319 −0.139786 −0.0698931 0.997554i \(-0.522266\pi\)
−0.0698931 + 0.997554i \(0.522266\pi\)
\(332\) −9.06154 −0.497316
\(333\) 14.8289 0.812619
\(334\) 3.35333 0.183486
\(335\) 5.60311 0.306131
\(336\) 0.902113 0.0492143
\(337\) −21.6713 −1.18051 −0.590257 0.807216i \(-0.700973\pi\)
−0.590257 + 0.807216i \(0.700973\pi\)
\(338\) 10.8694 0.591219
\(339\) −11.1025 −0.603004
\(340\) 1.30719 0.0708922
\(341\) 1.47453 0.0798503
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) −2.49704 −0.134631
\(345\) 1.68549 0.0907439
\(346\) −18.8683 −1.01436
\(347\) 22.7748 1.22261 0.611306 0.791394i \(-0.290644\pi\)
0.611306 + 0.791394i \(0.290644\pi\)
\(348\) 0.725503 0.0388910
\(349\) −7.24669 −0.387906 −0.193953 0.981011i \(-0.562131\pi\)
−0.193953 + 0.981011i \(0.562131\pi\)
\(350\) 4.68915 0.250646
\(351\) 6.82902 0.364506
\(352\) 1.35114 0.0720161
\(353\) −1.97470 −0.105103 −0.0525513 0.998618i \(-0.516735\pi\)
−0.0525513 + 0.998618i \(0.516735\pi\)
\(354\) 10.0902 0.536286
\(355\) −1.67591 −0.0889481
\(356\) −3.12164 −0.165446
\(357\) 2.11507 0.111942
\(358\) 7.36280 0.389136
\(359\) 23.5659 1.24376 0.621879 0.783113i \(-0.286370\pi\)
0.621879 + 0.783113i \(0.286370\pi\)
\(360\) 1.21888 0.0642407
\(361\) 0 0
\(362\) 5.28918 0.277993
\(363\) −8.27636 −0.434396
\(364\) −1.45965 −0.0765064
\(365\) 4.17087 0.218313
\(366\) −6.45071 −0.337184
\(367\) −25.5721 −1.33485 −0.667426 0.744676i \(-0.732604\pi\)
−0.667426 + 0.744676i \(0.732604\pi\)
\(368\) 3.35114 0.174690
\(369\) −11.0102 −0.573167
\(370\) 3.78176 0.196604
\(371\) −5.37238 −0.278920
\(372\) −0.984496 −0.0510438
\(373\) −34.4331 −1.78288 −0.891439 0.453141i \(-0.850303\pi\)
−0.891439 + 0.453141i \(0.850303\pi\)
\(374\) 3.16785 0.163806
\(375\) −4.87327 −0.251654
\(376\) 2.24077 0.115559
\(377\) −1.17389 −0.0604583
\(378\) 4.67853 0.240638
\(379\) 5.93250 0.304732 0.152366 0.988324i \(-0.451311\pi\)
0.152366 + 0.988324i \(0.451311\pi\)
\(380\) 0 0
\(381\) 0.271775 0.0139235
\(382\) 2.84233 0.145426
\(383\) 12.8493 0.656570 0.328285 0.944579i \(-0.393529\pi\)
0.328285 + 0.944579i \(0.393529\pi\)
\(384\) −0.902113 −0.0460358
\(385\) −0.753310 −0.0383923
\(386\) 12.4128 0.631794
\(387\) −5.45901 −0.277497
\(388\) −12.7935 −0.649491
\(389\) −14.8885 −0.754876 −0.377438 0.926035i \(-0.623195\pi\)
−0.377438 + 0.926035i \(0.623195\pi\)
\(390\) 0.734147 0.0371750
\(391\) 7.85701 0.397346
\(392\) −1.00000 −0.0505076
\(393\) 1.99200 0.100483
\(394\) 16.8481 0.848793
\(395\) −1.09459 −0.0550746
\(396\) 2.95385 0.148437
\(397\) −11.0623 −0.555201 −0.277600 0.960697i \(-0.589539\pi\)
−0.277600 + 0.960697i \(0.589539\pi\)
\(398\) 5.28053 0.264689
\(399\) 0 0
\(400\) −4.68915 −0.234458
\(401\) 0.255119 0.0127400 0.00637001 0.999980i \(-0.497972\pi\)
0.00637001 + 0.999980i \(0.497972\pi\)
\(402\) −9.06602 −0.452172
\(403\) 1.59295 0.0793504
\(404\) −10.7444 −0.534556
\(405\) 1.30353 0.0647728
\(406\) −0.804226 −0.0399131
\(407\) 9.16477 0.454281
\(408\) −2.11507 −0.104712
\(409\) 5.21766 0.257997 0.128998 0.991645i \(-0.458824\pi\)
0.128998 + 0.991645i \(0.458824\pi\)
\(410\) −2.80789 −0.138672
\(411\) 8.22807 0.405861
\(412\) −9.03624 −0.445183
\(413\) −11.1850 −0.550380
\(414\) 7.32624 0.360065
\(415\) −5.05214 −0.248000
\(416\) 1.45965 0.0715652
\(417\) −18.5988 −0.910785
\(418\) 0 0
\(419\) −27.6587 −1.35122 −0.675609 0.737261i \(-0.736119\pi\)
−0.675609 + 0.737261i \(0.736119\pi\)
\(420\) 0.502961 0.0245420
\(421\) −5.70020 −0.277811 −0.138905 0.990306i \(-0.544358\pi\)
−0.138905 + 0.990306i \(0.544358\pi\)
\(422\) −12.7557 −0.620938
\(423\) 4.89875 0.238185
\(424\) 5.37238 0.260906
\(425\) −10.9941 −0.533291
\(426\) 2.71168 0.131381
\(427\) 7.15067 0.346045
\(428\) −10.9808 −0.530779
\(429\) 1.77914 0.0858977
\(430\) −1.39219 −0.0671374
\(431\) −20.6656 −0.995427 −0.497714 0.867341i \(-0.665827\pi\)
−0.497714 + 0.867341i \(0.665827\pi\)
\(432\) −4.67853 −0.225096
\(433\) −16.1525 −0.776241 −0.388121 0.921609i \(-0.626876\pi\)
−0.388121 + 0.921609i \(0.626876\pi\)
\(434\) 1.09132 0.0523852
\(435\) 0.404494 0.0193940
\(436\) −4.15182 −0.198836
\(437\) 0 0
\(438\) −6.74861 −0.322461
\(439\) 7.66156 0.365666 0.182833 0.983144i \(-0.441473\pi\)
0.182833 + 0.983144i \(0.441473\pi\)
\(440\) 0.753310 0.0359127
\(441\) −2.18619 −0.104104
\(442\) 3.42226 0.162780
\(443\) 14.7542 0.700995 0.350497 0.936564i \(-0.386013\pi\)
0.350497 + 0.936564i \(0.386013\pi\)
\(444\) −6.11902 −0.290396
\(445\) −1.74043 −0.0825041
\(446\) 22.9108 1.08486
\(447\) 11.2201 0.530693
\(448\) 1.00000 0.0472456
\(449\) 12.1341 0.572645 0.286322 0.958133i \(-0.407567\pi\)
0.286322 + 0.958133i \(0.407567\pi\)
\(450\) −10.2514 −0.483255
\(451\) −6.80467 −0.320419
\(452\) −12.3072 −0.578881
\(453\) −15.2128 −0.714762
\(454\) 10.3999 0.488090
\(455\) −0.813808 −0.0381519
\(456\) 0 0
\(457\) 33.3891 1.56188 0.780939 0.624608i \(-0.214741\pi\)
0.780939 + 0.624608i \(0.214741\pi\)
\(458\) 3.31741 0.155012
\(459\) −10.9692 −0.511997
\(460\) 1.86838 0.0871138
\(461\) −1.44124 −0.0671253 −0.0335626 0.999437i \(-0.510685\pi\)
−0.0335626 + 0.999437i \(0.510685\pi\)
\(462\) 1.21888 0.0567075
\(463\) 0.594599 0.0276333 0.0138167 0.999905i \(-0.495602\pi\)
0.0138167 + 0.999905i \(0.495602\pi\)
\(464\) 0.804226 0.0373353
\(465\) −0.548893 −0.0254543
\(466\) −17.1708 −0.795420
\(467\) 39.3250 1.81974 0.909871 0.414890i \(-0.136180\pi\)
0.909871 + 0.414890i \(0.136180\pi\)
\(468\) 3.19107 0.147507
\(469\) 10.0498 0.464055
\(470\) 1.24931 0.0576264
\(471\) 8.11526 0.373931
\(472\) 11.1850 0.514833
\(473\) −3.37385 −0.155130
\(474\) 1.77108 0.0813482
\(475\) 0 0
\(476\) 2.34458 0.107463
\(477\) 11.7451 0.537770
\(478\) −19.3878 −0.886776
\(479\) −16.1460 −0.737728 −0.368864 0.929483i \(-0.620253\pi\)
−0.368864 + 0.929483i \(0.620253\pi\)
\(480\) −0.502961 −0.0229569
\(481\) 9.90078 0.451437
\(482\) −1.32553 −0.0603760
\(483\) 3.02311 0.137556
\(484\) −9.17442 −0.417019
\(485\) −7.13284 −0.323886
\(486\) −16.1447 −0.732341
\(487\) −42.2190 −1.91312 −0.956562 0.291528i \(-0.905836\pi\)
−0.956562 + 0.291528i \(0.905836\pi\)
\(488\) −7.15067 −0.323696
\(489\) 13.7757 0.622957
\(490\) −0.557537 −0.0251869
\(491\) −13.0440 −0.588669 −0.294334 0.955703i \(-0.595098\pi\)
−0.294334 + 0.955703i \(0.595098\pi\)
\(492\) 4.54325 0.204826
\(493\) 1.88557 0.0849218
\(494\) 0 0
\(495\) 1.64688 0.0740218
\(496\) −1.09132 −0.0490018
\(497\) −3.00592 −0.134834
\(498\) 8.17453 0.366309
\(499\) −4.06154 −0.181819 −0.0909097 0.995859i \(-0.528977\pi\)
−0.0909097 + 0.995859i \(0.528977\pi\)
\(500\) −5.40206 −0.241587
\(501\) −3.02509 −0.135151
\(502\) −11.9502 −0.533363
\(503\) −36.1376 −1.61130 −0.805649 0.592394i \(-0.798183\pi\)
−0.805649 + 0.592394i \(0.798183\pi\)
\(504\) 2.18619 0.0973807
\(505\) −5.99042 −0.266570
\(506\) 4.52786 0.201288
\(507\) −9.80545 −0.435475
\(508\) 0.301265 0.0133665
\(509\) 42.2030 1.87062 0.935308 0.353835i \(-0.115123\pi\)
0.935308 + 0.353835i \(0.115123\pi\)
\(510\) −1.17923 −0.0522172
\(511\) 7.48089 0.330935
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 9.35957 0.412833
\(515\) −5.03803 −0.222002
\(516\) 2.25261 0.0991657
\(517\) 3.02759 0.133153
\(518\) 6.78298 0.298027
\(519\) 17.0213 0.747153
\(520\) 0.813808 0.0356878
\(521\) 30.8397 1.35111 0.675556 0.737309i \(-0.263904\pi\)
0.675556 + 0.737309i \(0.263904\pi\)
\(522\) 1.75819 0.0769540
\(523\) −13.3220 −0.582530 −0.291265 0.956642i \(-0.594076\pi\)
−0.291265 + 0.956642i \(0.594076\pi\)
\(524\) 2.20815 0.0964634
\(525\) −4.23015 −0.184619
\(526\) −5.94658 −0.259283
\(527\) −2.55869 −0.111458
\(528\) −1.21888 −0.0530450
\(529\) −11.7699 −0.511733
\(530\) 2.99530 0.130108
\(531\) 24.4526 1.06115
\(532\) 0 0
\(533\) −7.35114 −0.318413
\(534\) 2.81607 0.121863
\(535\) −6.12222 −0.264687
\(536\) −10.0498 −0.434084
\(537\) −6.64208 −0.286627
\(538\) −26.5896 −1.14636
\(539\) −1.35114 −0.0581978
\(540\) −2.60845 −0.112250
\(541\) 6.55053 0.281629 0.140815 0.990036i \(-0.455028\pi\)
0.140815 + 0.990036i \(0.455028\pi\)
\(542\) −0.699775 −0.0300579
\(543\) −4.77143 −0.204762
\(544\) −2.34458 −0.100523
\(545\) −2.31479 −0.0991548
\(546\) 1.31677 0.0563525
\(547\) 9.52066 0.407074 0.203537 0.979067i \(-0.434756\pi\)
0.203537 + 0.979067i \(0.434756\pi\)
\(548\) 9.12088 0.389625
\(549\) −15.6327 −0.667189
\(550\) −6.33571 −0.270155
\(551\) 0 0
\(552\) −3.02311 −0.128672
\(553\) −1.96325 −0.0834860
\(554\) 12.9537 0.550349
\(555\) −3.41158 −0.144813
\(556\) −20.6169 −0.874351
\(557\) 19.9857 0.846823 0.423411 0.905937i \(-0.360832\pi\)
0.423411 + 0.905937i \(0.360832\pi\)
\(558\) −2.38584 −0.101001
\(559\) −3.64480 −0.154159
\(560\) 0.557537 0.0235602
\(561\) −2.85776 −0.120655
\(562\) −30.6736 −1.29389
\(563\) −21.2600 −0.896003 −0.448002 0.894033i \(-0.647864\pi\)
−0.448002 + 0.894033i \(0.647864\pi\)
\(564\) −2.02143 −0.0851174
\(565\) −6.86171 −0.288674
\(566\) −23.3257 −0.980453
\(567\) 2.33801 0.0981873
\(568\) 3.00592 0.126126
\(569\) −16.6086 −0.696270 −0.348135 0.937444i \(-0.613185\pi\)
−0.348135 + 0.937444i \(0.613185\pi\)
\(570\) 0 0
\(571\) 19.2419 0.805247 0.402624 0.915366i \(-0.368098\pi\)
0.402624 + 0.915366i \(0.368098\pi\)
\(572\) 1.97219 0.0824615
\(573\) −2.56410 −0.107117
\(574\) −5.03624 −0.210208
\(575\) −15.7140 −0.655320
\(576\) −2.18619 −0.0910913
\(577\) −32.8162 −1.36615 −0.683077 0.730346i \(-0.739359\pi\)
−0.683077 + 0.730346i \(0.739359\pi\)
\(578\) 11.5030 0.478460
\(579\) −11.1977 −0.465362
\(580\) 0.448385 0.0186182
\(581\) −9.06154 −0.375936
\(582\) 11.5412 0.478397
\(583\) 7.25885 0.300631
\(584\) −7.48089 −0.309562
\(585\) 1.77914 0.0735584
\(586\) −5.50411 −0.227373
\(587\) −34.6571 −1.43045 −0.715225 0.698894i \(-0.753676\pi\)
−0.715225 + 0.698894i \(0.753676\pi\)
\(588\) 0.902113 0.0372025
\(589\) 0 0
\(590\) 6.23607 0.256735
\(591\) −15.1989 −0.625198
\(592\) −6.78298 −0.278779
\(593\) 37.5224 1.54086 0.770429 0.637525i \(-0.220042\pi\)
0.770429 + 0.637525i \(0.220042\pi\)
\(594\) −6.32136 −0.259368
\(595\) 1.30719 0.0535894
\(596\) 12.4376 0.509463
\(597\) −4.76364 −0.194963
\(598\) 4.89149 0.200028
\(599\) 24.3167 0.993552 0.496776 0.867879i \(-0.334517\pi\)
0.496776 + 0.867879i \(0.334517\pi\)
\(600\) 4.23015 0.172695
\(601\) 29.9333 1.22101 0.610503 0.792014i \(-0.290967\pi\)
0.610503 + 0.792014i \(0.290967\pi\)
\(602\) −2.49704 −0.101772
\(603\) −21.9707 −0.894717
\(604\) −16.8636 −0.686169
\(605\) −5.11507 −0.207957
\(606\) 9.69270 0.393739
\(607\) 45.0819 1.82982 0.914909 0.403660i \(-0.132262\pi\)
0.914909 + 0.403660i \(0.132262\pi\)
\(608\) 0 0
\(609\) 0.725503 0.0293989
\(610\) −3.98676 −0.161419
\(611\) 3.27074 0.132320
\(612\) −5.12569 −0.207194
\(613\) 11.4353 0.461869 0.230935 0.972969i \(-0.425822\pi\)
0.230935 + 0.972969i \(0.425822\pi\)
\(614\) 20.7235 0.836333
\(615\) 2.53303 0.102142
\(616\) 1.35114 0.0544390
\(617\) −0.125562 −0.00505493 −0.00252747 0.999997i \(-0.500805\pi\)
−0.00252747 + 0.999997i \(0.500805\pi\)
\(618\) 8.15171 0.327910
\(619\) 11.4218 0.459079 0.229539 0.973299i \(-0.426278\pi\)
0.229539 + 0.973299i \(0.426278\pi\)
\(620\) −0.608452 −0.0244360
\(621\) −15.6784 −0.629153
\(622\) 11.5766 0.464179
\(623\) −3.12164 −0.125066
\(624\) −1.31677 −0.0527129
\(625\) 20.4339 0.817357
\(626\) 34.0823 1.36220
\(627\) 0 0
\(628\) 8.99583 0.358973
\(629\) −15.9032 −0.634103
\(630\) 1.21888 0.0485614
\(631\) −3.65760 −0.145607 −0.0728034 0.997346i \(-0.523195\pi\)
−0.0728034 + 0.997346i \(0.523195\pi\)
\(632\) 1.96325 0.0780940
\(633\) 11.5071 0.457366
\(634\) 3.86368 0.153446
\(635\) 0.167966 0.00666554
\(636\) −4.84650 −0.192176
\(637\) −1.45965 −0.0578334
\(638\) 1.08662 0.0430198
\(639\) 6.57152 0.259965
\(640\) −0.557537 −0.0220386
\(641\) 21.9096 0.865377 0.432689 0.901543i \(-0.357565\pi\)
0.432689 + 0.901543i \(0.357565\pi\)
\(642\) 9.90596 0.390957
\(643\) −4.82120 −0.190129 −0.0950647 0.995471i \(-0.530306\pi\)
−0.0950647 + 0.995471i \(0.530306\pi\)
\(644\) 3.35114 0.132053
\(645\) 1.25591 0.0494515
\(646\) 0 0
\(647\) 4.25795 0.167397 0.0836987 0.996491i \(-0.473327\pi\)
0.0836987 + 0.996491i \(0.473327\pi\)
\(648\) −2.33801 −0.0918458
\(649\) 15.1126 0.593220
\(650\) −6.84452 −0.268464
\(651\) −0.984496 −0.0385854
\(652\) 15.2704 0.598037
\(653\) −34.8423 −1.36348 −0.681742 0.731593i \(-0.738777\pi\)
−0.681742 + 0.731593i \(0.738777\pi\)
\(654\) 3.74541 0.146457
\(655\) 1.23112 0.0481040
\(656\) 5.03624 0.196632
\(657\) −16.3547 −0.638056
\(658\) 2.24077 0.0873542
\(659\) −6.63471 −0.258452 −0.129226 0.991615i \(-0.541249\pi\)
−0.129226 + 0.991615i \(0.541249\pi\)
\(660\) −0.679571 −0.0264523
\(661\) −29.6118 −1.15176 −0.575882 0.817533i \(-0.695341\pi\)
−0.575882 + 0.817533i \(0.695341\pi\)
\(662\) 2.54319 0.0988437
\(663\) −3.08727 −0.119899
\(664\) 9.06154 0.351656
\(665\) 0 0
\(666\) −14.8289 −0.574608
\(667\) 2.69507 0.104354
\(668\) −3.35333 −0.129744
\(669\) −20.6681 −0.799075
\(670\) −5.60311 −0.216467
\(671\) −9.66156 −0.372980
\(672\) −0.902113 −0.0347998
\(673\) −9.24565 −0.356394 −0.178197 0.983995i \(-0.557026\pi\)
−0.178197 + 0.983995i \(0.557026\pi\)
\(674\) 21.6713 0.834749
\(675\) 21.9383 0.844407
\(676\) −10.8694 −0.418055
\(677\) 20.8183 0.800111 0.400055 0.916491i \(-0.368991\pi\)
0.400055 + 0.916491i \(0.368991\pi\)
\(678\) 11.1025 0.426388
\(679\) −12.7935 −0.490969
\(680\) −1.30719 −0.0501283
\(681\) −9.38185 −0.359513
\(682\) −1.47453 −0.0564627
\(683\) 7.95243 0.304291 0.152146 0.988358i \(-0.451382\pi\)
0.152146 + 0.988358i \(0.451382\pi\)
\(684\) 0 0
\(685\) 5.08522 0.194296
\(686\) −1.00000 −0.0381802
\(687\) −2.99268 −0.114178
\(688\) 2.49704 0.0951987
\(689\) 7.84180 0.298749
\(690\) −1.68549 −0.0641656
\(691\) 31.5801 1.20136 0.600682 0.799488i \(-0.294896\pi\)
0.600682 + 0.799488i \(0.294896\pi\)
\(692\) 18.8683 0.717264
\(693\) 2.95385 0.112208
\(694\) −22.7748 −0.864518
\(695\) −11.4947 −0.436017
\(696\) −0.725503 −0.0275001
\(697\) 11.8078 0.447254
\(698\) 7.24669 0.274291
\(699\) 15.4900 0.585884
\(700\) −4.68915 −0.177233
\(701\) −24.7836 −0.936063 −0.468032 0.883712i \(-0.655037\pi\)
−0.468032 + 0.883712i \(0.655037\pi\)
\(702\) −6.82902 −0.257745
\(703\) 0 0
\(704\) −1.35114 −0.0509230
\(705\) −1.12702 −0.0424460
\(706\) 1.97470 0.0743188
\(707\) −10.7444 −0.404086
\(708\) −10.0902 −0.379212
\(709\) 29.7249 1.11634 0.558172 0.829725i \(-0.311503\pi\)
0.558172 + 0.829725i \(0.311503\pi\)
\(710\) 1.67591 0.0628958
\(711\) 4.29205 0.160964
\(712\) 3.12164 0.116988
\(713\) −3.65718 −0.136962
\(714\) −2.11507 −0.0791546
\(715\) 1.09957 0.0411216
\(716\) −7.36280 −0.275161
\(717\) 17.4900 0.653175
\(718\) −23.5659 −0.879470
\(719\) −48.0010 −1.79014 −0.895068 0.445931i \(-0.852873\pi\)
−0.895068 + 0.445931i \(0.852873\pi\)
\(720\) −1.21888 −0.0454250
\(721\) −9.03624 −0.336527
\(722\) 0 0
\(723\) 1.19577 0.0444713
\(724\) −5.28918 −0.196571
\(725\) −3.77114 −0.140057
\(726\) 8.27636 0.307165
\(727\) 4.02956 0.149448 0.0747240 0.997204i \(-0.476192\pi\)
0.0747240 + 0.997204i \(0.476192\pi\)
\(728\) 1.45965 0.0540982
\(729\) 7.55035 0.279643
\(730\) −4.17087 −0.154371
\(731\) 5.85450 0.216536
\(732\) 6.45071 0.238425
\(733\) 7.81507 0.288656 0.144328 0.989530i \(-0.453898\pi\)
0.144328 + 0.989530i \(0.453898\pi\)
\(734\) 25.5721 0.943884
\(735\) 0.502961 0.0185520
\(736\) −3.35114 −0.123525
\(737\) −13.5786 −0.500176
\(738\) 11.0102 0.405290
\(739\) −19.1280 −0.703634 −0.351817 0.936069i \(-0.614436\pi\)
−0.351817 + 0.936069i \(0.614436\pi\)
\(740\) −3.78176 −0.139020
\(741\) 0 0
\(742\) 5.37238 0.197226
\(743\) 27.2286 0.998919 0.499460 0.866337i \(-0.333532\pi\)
0.499460 + 0.866337i \(0.333532\pi\)
\(744\) 0.984496 0.0360934
\(745\) 6.93441 0.254057
\(746\) 34.4331 1.26068
\(747\) 19.8103 0.724820
\(748\) −3.16785 −0.115828
\(749\) −10.9808 −0.401231
\(750\) 4.87327 0.177947
\(751\) −27.1340 −0.990134 −0.495067 0.868855i \(-0.664857\pi\)
−0.495067 + 0.868855i \(0.664857\pi\)
\(752\) −2.24077 −0.0817124
\(753\) 10.7804 0.392861
\(754\) 1.17389 0.0427505
\(755\) −9.40206 −0.342176
\(756\) −4.67853 −0.170157
\(757\) −42.0071 −1.52677 −0.763387 0.645942i \(-0.776465\pi\)
−0.763387 + 0.645942i \(0.776465\pi\)
\(758\) −5.93250 −0.215478
\(759\) −4.08465 −0.148263
\(760\) 0 0
\(761\) −32.1741 −1.16631 −0.583155 0.812361i \(-0.698182\pi\)
−0.583155 + 0.812361i \(0.698182\pi\)
\(762\) −0.271775 −0.00984538
\(763\) −4.15182 −0.150306
\(764\) −2.84233 −0.102832
\(765\) −2.85776 −0.103323
\(766\) −12.8493 −0.464265
\(767\) 16.3262 0.589506
\(768\) 0.902113 0.0325522
\(769\) −36.2064 −1.30564 −0.652818 0.757515i \(-0.726413\pi\)
−0.652818 + 0.757515i \(0.726413\pi\)
\(770\) 0.753310 0.0271474
\(771\) −8.44339 −0.304081
\(772\) −12.4128 −0.446746
\(773\) −10.9365 −0.393358 −0.196679 0.980468i \(-0.563016\pi\)
−0.196679 + 0.980468i \(0.563016\pi\)
\(774\) 5.45901 0.196220
\(775\) 5.11738 0.183822
\(776\) 12.7935 0.459260
\(777\) −6.11902 −0.219519
\(778\) 14.8885 0.533778
\(779\) 0 0
\(780\) −0.734147 −0.0262867
\(781\) 4.06142 0.145329
\(782\) −7.85701 −0.280966
\(783\) −3.76260 −0.134464
\(784\) 1.00000 0.0357143
\(785\) 5.01550 0.179011
\(786\) −1.99200 −0.0710522
\(787\) 53.2128 1.89683 0.948416 0.317028i \(-0.102685\pi\)
0.948416 + 0.317028i \(0.102685\pi\)
\(788\) −16.8481 −0.600188
\(789\) 5.36448 0.190981
\(790\) 1.09459 0.0389436
\(791\) −12.3072 −0.437593
\(792\) −2.95385 −0.104961
\(793\) −10.4375 −0.370645
\(794\) 11.0623 0.392586
\(795\) −2.70210 −0.0958336
\(796\) −5.28053 −0.187163
\(797\) 17.5340 0.621086 0.310543 0.950559i \(-0.399489\pi\)
0.310543 + 0.950559i \(0.399489\pi\)
\(798\) 0 0
\(799\) −5.25365 −0.185861
\(800\) 4.68915 0.165787
\(801\) 6.82450 0.241132
\(802\) −0.255119 −0.00900856
\(803\) −10.1077 −0.356694
\(804\) 9.06602 0.319734
\(805\) 1.86838 0.0658519
\(806\) −1.59295 −0.0561092
\(807\) 23.9868 0.844376
\(808\) 10.7444 0.377988
\(809\) −46.6298 −1.63942 −0.819708 0.572782i \(-0.805864\pi\)
−0.819708 + 0.572782i \(0.805864\pi\)
\(810\) −1.30353 −0.0458013
\(811\) 16.7623 0.588603 0.294302 0.955713i \(-0.404913\pi\)
0.294302 + 0.955713i \(0.404913\pi\)
\(812\) 0.804226 0.0282228
\(813\) 0.631276 0.0221398
\(814\) −9.16477 −0.321225
\(815\) 8.51383 0.298226
\(816\) 2.11507 0.0740424
\(817\) 0 0
\(818\) −5.21766 −0.182431
\(819\) 3.19107 0.111505
\(820\) 2.80789 0.0980556
\(821\) −34.8319 −1.21564 −0.607821 0.794074i \(-0.707956\pi\)
−0.607821 + 0.794074i \(0.707956\pi\)
\(822\) −8.22807 −0.286987
\(823\) −47.0210 −1.63905 −0.819525 0.573044i \(-0.805763\pi\)
−0.819525 + 0.573044i \(0.805763\pi\)
\(824\) 9.03624 0.314792
\(825\) 5.71552 0.198989
\(826\) 11.1850 0.389177
\(827\) 17.6099 0.612357 0.306178 0.951974i \(-0.400950\pi\)
0.306178 + 0.951974i \(0.400950\pi\)
\(828\) −7.32624 −0.254604
\(829\) −3.41994 −0.118779 −0.0593896 0.998235i \(-0.518915\pi\)
−0.0593896 + 0.998235i \(0.518915\pi\)
\(830\) 5.05214 0.175362
\(831\) −11.6857 −0.405372
\(832\) −1.45965 −0.0506042
\(833\) 2.34458 0.0812348
\(834\) 18.5988 0.644022
\(835\) −1.86961 −0.0647004
\(836\) 0 0
\(837\) 5.10579 0.176482
\(838\) 27.6587 0.955455
\(839\) −1.50554 −0.0519769 −0.0259885 0.999662i \(-0.508273\pi\)
−0.0259885 + 0.999662i \(0.508273\pi\)
\(840\) −0.502961 −0.0173538
\(841\) −28.3532 −0.977697
\(842\) 5.70020 0.196442
\(843\) 27.6711 0.953042
\(844\) 12.7557 0.439069
\(845\) −6.06010 −0.208474
\(846\) −4.89875 −0.168422
\(847\) −9.17442 −0.315237
\(848\) −5.37238 −0.184488
\(849\) 21.0424 0.722175
\(850\) 10.9941 0.377094
\(851\) −22.7307 −0.779199
\(852\) −2.71168 −0.0929007
\(853\) −23.7732 −0.813977 −0.406989 0.913433i \(-0.633421\pi\)
−0.406989 + 0.913433i \(0.633421\pi\)
\(854\) −7.15067 −0.244691
\(855\) 0 0
\(856\) 10.9808 0.375317
\(857\) −33.6469 −1.14936 −0.574678 0.818380i \(-0.694873\pi\)
−0.574678 + 0.818380i \(0.694873\pi\)
\(858\) −1.77914 −0.0607389
\(859\) 57.2061 1.95185 0.975923 0.218116i \(-0.0699913\pi\)
0.975923 + 0.218116i \(0.0699913\pi\)
\(860\) 1.39219 0.0474733
\(861\) 4.54325 0.154834
\(862\) 20.6656 0.703873
\(863\) 32.3878 1.10250 0.551248 0.834342i \(-0.314152\pi\)
0.551248 + 0.834342i \(0.314152\pi\)
\(864\) 4.67853 0.159167
\(865\) 10.5197 0.357682
\(866\) 16.1525 0.548885
\(867\) −10.3770 −0.352420
\(868\) −1.09132 −0.0370419
\(869\) 2.65263 0.0899844
\(870\) −0.404494 −0.0137136
\(871\) −14.6691 −0.497045
\(872\) 4.15182 0.140598
\(873\) 27.9690 0.946608
\(874\) 0 0
\(875\) −5.40206 −0.182623
\(876\) 6.74861 0.228014
\(877\) 7.92285 0.267536 0.133768 0.991013i \(-0.457292\pi\)
0.133768 + 0.991013i \(0.457292\pi\)
\(878\) −7.66156 −0.258565
\(879\) 4.96533 0.167477
\(880\) −0.753310 −0.0253941
\(881\) 49.9603 1.68321 0.841603 0.540097i \(-0.181612\pi\)
0.841603 + 0.540097i \(0.181612\pi\)
\(882\) 2.18619 0.0736129
\(883\) 21.4970 0.723433 0.361716 0.932288i \(-0.382191\pi\)
0.361716 + 0.932288i \(0.382191\pi\)
\(884\) −3.42226 −0.115103
\(885\) −5.62564 −0.189104
\(886\) −14.7542 −0.495678
\(887\) 8.68542 0.291628 0.145814 0.989312i \(-0.453420\pi\)
0.145814 + 0.989312i \(0.453420\pi\)
\(888\) 6.11902 0.205341
\(889\) 0.301265 0.0101041
\(890\) 1.74043 0.0583392
\(891\) −3.15898 −0.105830
\(892\) −22.9108 −0.767109
\(893\) 0 0
\(894\) −11.2201 −0.375256
\(895\) −4.10503 −0.137216
\(896\) −1.00000 −0.0334077
\(897\) −4.41268 −0.147335
\(898\) −12.1341 −0.404921
\(899\) −0.877670 −0.0292719
\(900\) 10.2514 0.341713
\(901\) −12.5960 −0.419632
\(902\) 6.80467 0.226571
\(903\) 2.25261 0.0749622
\(904\) 12.3072 0.409331
\(905\) −2.94891 −0.0980250
\(906\) 15.2128 0.505413
\(907\) 41.5715 1.38036 0.690179 0.723639i \(-0.257532\pi\)
0.690179 + 0.723639i \(0.257532\pi\)
\(908\) −10.3999 −0.345132
\(909\) 23.4894 0.779095
\(910\) 0.813808 0.0269775
\(911\) 48.3972 1.60347 0.801735 0.597679i \(-0.203910\pi\)
0.801735 + 0.597679i \(0.203910\pi\)
\(912\) 0 0
\(913\) 12.2434 0.405198
\(914\) −33.3891 −1.10441
\(915\) 3.59651 0.118897
\(916\) −3.31741 −0.109610
\(917\) 2.20815 0.0729195
\(918\) 10.9692 0.362037
\(919\) 42.6200 1.40590 0.702952 0.711237i \(-0.251865\pi\)
0.702952 + 0.711237i \(0.251865\pi\)
\(920\) −1.86838 −0.0615988
\(921\) −18.6950 −0.616020
\(922\) 1.44124 0.0474648
\(923\) 4.38759 0.144419
\(924\) −1.21888 −0.0400983
\(925\) 31.8064 1.04579
\(926\) −0.594599 −0.0195397
\(927\) 19.7549 0.648838
\(928\) −0.804226 −0.0264000
\(929\) −27.5135 −0.902689 −0.451345 0.892350i \(-0.649055\pi\)
−0.451345 + 0.892350i \(0.649055\pi\)
\(930\) 0.548893 0.0179989
\(931\) 0 0
\(932\) 17.1708 0.562447
\(933\) −10.4434 −0.341901
\(934\) −39.3250 −1.28675
\(935\) −1.76619 −0.0577607
\(936\) −3.19107 −0.104304
\(937\) −38.0399 −1.24271 −0.621354 0.783530i \(-0.713417\pi\)
−0.621354 + 0.783530i \(0.713417\pi\)
\(938\) −10.0498 −0.328136
\(939\) −30.7461 −1.00336
\(940\) −1.24931 −0.0407480
\(941\) −49.6889 −1.61981 −0.809906 0.586559i \(-0.800482\pi\)
−0.809906 + 0.586559i \(0.800482\pi\)
\(942\) −8.11526 −0.264409
\(943\) 16.8771 0.549595
\(944\) −11.1850 −0.364042
\(945\) −2.60845 −0.0848530
\(946\) 3.37385 0.109693
\(947\) −1.38642 −0.0450526 −0.0225263 0.999746i \(-0.507171\pi\)
−0.0225263 + 0.999746i \(0.507171\pi\)
\(948\) −1.77108 −0.0575219
\(949\) −10.9195 −0.354461
\(950\) 0 0
\(951\) −3.48548 −0.113024
\(952\) −2.34458 −0.0759882
\(953\) 53.5740 1.73543 0.867716 0.497061i \(-0.165588\pi\)
0.867716 + 0.497061i \(0.165588\pi\)
\(954\) −11.7451 −0.380260
\(955\) −1.58470 −0.0512797
\(956\) 19.3878 0.627045
\(957\) −0.980257 −0.0316872
\(958\) 16.1460 0.521653
\(959\) 9.12088 0.294529
\(960\) 0.502961 0.0162330
\(961\) −29.8090 −0.961581
\(962\) −9.90078 −0.319214
\(963\) 24.0062 0.773590
\(964\) 1.32553 0.0426923
\(965\) −6.92058 −0.222781
\(966\) −3.02311 −0.0972669
\(967\) −22.5482 −0.725100 −0.362550 0.931964i \(-0.618094\pi\)
−0.362550 + 0.931964i \(0.618094\pi\)
\(968\) 9.17442 0.294877
\(969\) 0 0
\(970\) 7.13284 0.229022
\(971\) −29.6013 −0.949952 −0.474976 0.879999i \(-0.657543\pi\)
−0.474976 + 0.879999i \(0.657543\pi\)
\(972\) 16.1447 0.517843
\(973\) −20.6169 −0.660947
\(974\) 42.2190 1.35278
\(975\) 6.17453 0.197743
\(976\) 7.15067 0.228887
\(977\) 40.1954 1.28597 0.642983 0.765880i \(-0.277697\pi\)
0.642983 + 0.765880i \(0.277697\pi\)
\(978\) −13.7757 −0.440497
\(979\) 4.21777 0.134801
\(980\) 0.557537 0.0178099
\(981\) 9.07668 0.289796
\(982\) 13.0440 0.416252
\(983\) 16.4837 0.525747 0.262873 0.964830i \(-0.415330\pi\)
0.262873 + 0.964830i \(0.415330\pi\)
\(984\) −4.54325 −0.144834
\(985\) −9.39341 −0.299299
\(986\) −1.88557 −0.0600488
\(987\) −2.02143 −0.0643427
\(988\) 0 0
\(989\) 8.36793 0.266085
\(990\) −1.64688 −0.0523413
\(991\) −33.4568 −1.06279 −0.531395 0.847124i \(-0.678332\pi\)
−0.531395 + 0.847124i \(0.678332\pi\)
\(992\) 1.09132 0.0346495
\(993\) −2.29424 −0.0728055
\(994\) 3.00592 0.0953421
\(995\) −2.94409 −0.0933339
\(996\) −8.17453 −0.259020
\(997\) 11.5900 0.367060 0.183530 0.983014i \(-0.441247\pi\)
0.183530 + 0.983014i \(0.441247\pi\)
\(998\) 4.06154 0.128566
\(999\) 31.7344 1.00403
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5054.2.a.v.1.4 4
19.18 odd 2 5054.2.a.y.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5054.2.a.v.1.4 4 1.1 even 1 trivial
5054.2.a.y.1.1 yes 4 19.18 odd 2