Defining parameters
Level: | \( N \) | \(=\) | \( 5054 = 2 \cdot 7 \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5054.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 39 \) | ||
Sturm bound: | \(1520\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5054))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 800 | 170 | 630 |
Cusp forms | 721 | 170 | 551 |
Eisenstein series | 79 | 0 | 79 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(90\) | \(18\) | \(72\) | \(81\) | \(18\) | \(63\) | \(9\) | \(0\) | \(9\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(109\) | \(25\) | \(84\) | \(99\) | \(25\) | \(74\) | \(10\) | \(0\) | \(10\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(110\) | \(26\) | \(84\) | \(100\) | \(26\) | \(74\) | \(10\) | \(0\) | \(10\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(91\) | \(16\) | \(75\) | \(81\) | \(16\) | \(65\) | \(10\) | \(0\) | \(10\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(100\) | \(22\) | \(78\) | \(90\) | \(22\) | \(68\) | \(10\) | \(0\) | \(10\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(101\) | \(20\) | \(81\) | \(91\) | \(20\) | \(71\) | \(10\) | \(0\) | \(10\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(100\) | \(14\) | \(86\) | \(90\) | \(14\) | \(76\) | \(10\) | \(0\) | \(10\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(99\) | \(29\) | \(70\) | \(89\) | \(29\) | \(60\) | \(10\) | \(0\) | \(10\) | |||
Plus space | \(+\) | \(382\) | \(68\) | \(314\) | \(343\) | \(68\) | \(275\) | \(39\) | \(0\) | \(39\) | |||||
Minus space | \(-\) | \(418\) | \(102\) | \(316\) | \(378\) | \(102\) | \(276\) | \(40\) | \(0\) | \(40\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5054))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5054))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(5054)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(266))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(722))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2527))\)\(^{\oplus 2}\)