Properties

Label 5054.2.a.bc
Level $5054$
Weight $2$
Character orbit 5054.a
Self dual yes
Analytic conductor $40.356$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5054,2,Mod(1,5054)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5054.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5054, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5054 = 2 \cdot 7 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5054.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,6,-3,6,-3,-3,-6,6,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.3563931816\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.1528713.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 3x^{4} + 7x^{3} + 3x^{2} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 266)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - \beta_{3} q^{3} + q^{4} + ( - 2 \beta_{5} - \beta_{4} + \cdots - \beta_1) q^{5} - \beta_{3} q^{6} - q^{7} + q^{8} + (\beta_{5} + \beta_{3} + \beta_{2} - 1) q^{9} + ( - 2 \beta_{5} - \beta_{4} + \cdots - \beta_1) q^{10}+ \cdots + ( - \beta_{4} + \beta_{3} - \beta_{2} + \cdots + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} - 3 q^{3} + 6 q^{4} - 3 q^{5} - 3 q^{6} - 6 q^{7} + 6 q^{8} - 3 q^{9} - 3 q^{10} + 3 q^{11} - 3 q^{12} - 6 q^{13} - 6 q^{14} + 6 q^{15} + 6 q^{16} - 9 q^{17} - 3 q^{18} - 3 q^{20} + 3 q^{21}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} - 3x^{4} + 7x^{3} + 3x^{2} - 3x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - 3\nu^{3} - 2\nu^{2} + 4\nu + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - 3\nu^{4} - 2\nu^{3} + 4\nu^{2} + \nu + 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - 3\nu^{4} - 2\nu^{3} + 5\nu^{2} - \nu - 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 4\nu^{4} + 9\nu^{2} - 2\nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - \beta_{3} + 2\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} + 3\beta_{4} - 2\beta_{3} - \beta_{2} + 7\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -3\beta_{5} + 11\beta_{4} - 8\beta_{3} - 2\beta_{2} + 21\beta _1 + 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -11\beta_{5} + 35\beta_{4} - 23\beta_{3} - 8\beta_{2} + 68\beta _1 + 33 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.768740
−0.725554
−0.313223
3.19261
1.37826
−1.30083
1.00000 −2.44476 1.00000 −1.45177 −2.44476 −1.00000 1.00000 2.97685 −1.45177
1.2 1.00000 −2.11161 1.00000 −3.59028 −2.11161 −1.00000 1.00000 1.45891 −3.59028
1.3 1.00000 −1.10878 1.00000 3.89136 −1.10878 −1.00000 1.00000 −1.77060 3.89136
1.4 1.00000 0.108781 1.00000 −1.47989 0.108781 −1.00000 1.00000 −2.98817 −1.47989
1.5 1.00000 1.11161 1.00000 0.363595 1.11161 −1.00000 1.00000 −1.76432 0.363595
1.6 1.00000 1.44476 1.00000 −0.733019 1.44476 −1.00000 1.00000 −0.912670 −0.733019
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5054.2.a.bc 6
19.b odd 2 1 5054.2.a.bb 6
19.f odd 18 2 266.2.u.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
266.2.u.b 12 19.f odd 18 2
5054.2.a.bb 6 19.b odd 2 1
5054.2.a.bc 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5054))\):

\( T_{3}^{6} + 3T_{3}^{5} - 3T_{3}^{4} - 11T_{3}^{3} + 3T_{3}^{2} + 9T_{3} - 1 \) Copy content Toggle raw display
\( T_{5}^{6} + 3T_{5}^{5} - 12T_{5}^{4} - 47T_{5}^{3} - 42T_{5}^{2} + 8 \) Copy content Toggle raw display
\( T_{13}^{6} + 6T_{13}^{5} + 3T_{13}^{4} - 17T_{13}^{3} - 12T_{13}^{2} + 12T_{13} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 3 T^{5} + \cdots - 1 \) Copy content Toggle raw display
$5$ \( T^{6} + 3 T^{5} + \cdots + 8 \) Copy content Toggle raw display
$7$ \( (T + 1)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} - 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{6} + 6 T^{5} + \cdots + 8 \) Copy content Toggle raw display
$17$ \( T^{6} + 9 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{6} \) Copy content Toggle raw display
$23$ \( T^{6} - 60 T^{4} + \cdots + 1216 \) Copy content Toggle raw display
$29$ \( T^{6} + 6 T^{5} + \cdots + 296 \) Copy content Toggle raw display
$31$ \( T^{6} + 3 T^{5} + \cdots + 2368 \) Copy content Toggle raw display
$37$ \( T^{6} - 3 T^{5} + \cdots - 296 \) Copy content Toggle raw display
$41$ \( T^{6} + 9 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$43$ \( T^{6} + 6 T^{5} + \cdots - 43919 \) Copy content Toggle raw display
$47$ \( T^{6} - 9 T^{5} + \cdots + 1864 \) Copy content Toggle raw display
$53$ \( T^{6} + 6 T^{5} + \cdots + 49832 \) Copy content Toggle raw display
$59$ \( T^{6} + 15 T^{5} + \cdots + 41887 \) Copy content Toggle raw display
$61$ \( T^{6} + 30 T^{5} + \cdots + 35648 \) Copy content Toggle raw display
$67$ \( T^{6} + 15 T^{5} + \cdots - 47843 \) Copy content Toggle raw display
$71$ \( T^{6} + 21 T^{5} + \cdots + 9784 \) Copy content Toggle raw display
$73$ \( T^{6} + 33 T^{5} + \cdots + 73511 \) Copy content Toggle raw display
$79$ \( T^{6} - 30 T^{5} + \cdots + 17704 \) Copy content Toggle raw display
$83$ \( T^{6} + 33 T^{5} + \cdots + 9343 \) Copy content Toggle raw display
$89$ \( T^{6} - 12 T^{5} + \cdots - 5013 \) Copy content Toggle raw display
$97$ \( T^{6} - 18 T^{5} + \cdots + 14912 \) Copy content Toggle raw display
show more
show less