Properties

Label 504.3.e.c.251.46
Level $504$
Weight $3$
Character 504.251
Analytic conductor $13.733$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(251,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.251"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.46
Character \(\chi\) \(=\) 504.251
Dual form 504.3.e.c.251.48

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.96086 - 0.393720i) q^{2} +(3.68997 - 1.54406i) q^{4} +6.99549i q^{5} +(-6.66208 - 2.14866i) q^{7} +(6.62759 - 4.48051i) q^{8} +(2.75427 + 13.7172i) q^{10} +18.1971i q^{11} -6.68252 q^{13} +(-13.9094 - 1.59024i) q^{14} +(11.2317 - 11.3951i) q^{16} +16.6136 q^{17} +31.7713i q^{19} +(10.8015 + 25.8131i) q^{20} +(7.16455 + 35.6819i) q^{22} +28.2125 q^{23} -23.9368 q^{25} +(-13.1035 + 2.63105i) q^{26} +(-27.9005 + 2.35817i) q^{28} -55.3335 q^{29} +18.6829 q^{31} +(17.5374 - 26.7664i) q^{32} +(32.5770 - 6.54112i) q^{34} +(15.0309 - 46.6045i) q^{35} +18.8501i q^{37} +(12.5090 + 62.2991i) q^{38} +(31.3434 + 46.3632i) q^{40} -33.6389 q^{41} +14.3177 q^{43} +(28.0974 + 67.1466i) q^{44} +(55.3208 - 11.1078i) q^{46} -57.3785i q^{47} +(39.7665 + 28.6291i) q^{49} +(-46.9368 + 9.42441i) q^{50} +(-24.6583 + 10.3182i) q^{52} +5.13773 q^{53} -127.297 q^{55} +(-53.7806 + 15.6091i) q^{56} +(-108.501 + 21.7859i) q^{58} +83.0383 q^{59} -75.6870 q^{61} +(36.6347 - 7.35585i) q^{62} +(23.8500 - 59.3900i) q^{64} -46.7475i q^{65} +17.6649 q^{67} +(61.3037 - 25.6525i) q^{68} +(11.1245 - 97.3029i) q^{70} +75.8131 q^{71} -103.904i q^{73} +(7.42167 + 36.9625i) q^{74} +(49.0568 + 117.235i) q^{76} +(39.0993 - 121.230i) q^{77} +33.8548i q^{79} +(79.7142 + 78.5714i) q^{80} +(-65.9613 + 13.2443i) q^{82} +127.193 q^{83} +116.220i q^{85} +(28.0751 - 5.63718i) q^{86} +(81.5321 + 120.603i) q^{88} +31.6907 q^{89} +(44.5195 + 14.3585i) q^{91} +(104.103 - 43.5619i) q^{92} +(-22.5911 - 112.511i) q^{94} -222.255 q^{95} -97.7829i q^{97} +(89.2485 + 40.4809i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 144 q^{22} - 336 q^{25} - 232 q^{28} - 384 q^{43} + 736 q^{46} + 368 q^{49} - 432 q^{58} + 480 q^{64} - 896 q^{67} + 264 q^{70} - 48 q^{88} - 576 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.96086 0.393720i 0.980432 0.196860i
\(3\) 0 0
\(4\) 3.68997 1.54406i 0.922492 0.386016i
\(5\) 6.99549i 1.39910i 0.714585 + 0.699549i \(0.246616\pi\)
−0.714585 + 0.699549i \(0.753384\pi\)
\(6\) 0 0
\(7\) −6.66208 2.14866i −0.951725 0.306952i
\(8\) 6.62759 4.48051i 0.828449 0.560064i
\(9\) 0 0
\(10\) 2.75427 + 13.7172i 0.275427 + 1.37172i
\(11\) 18.1971i 1.65428i 0.561998 + 0.827139i \(0.310033\pi\)
−0.561998 + 0.827139i \(0.689967\pi\)
\(12\) 0 0
\(13\) −6.68252 −0.514040 −0.257020 0.966406i \(-0.582741\pi\)
−0.257020 + 0.966406i \(0.582741\pi\)
\(14\) −13.9094 1.59024i −0.993528 0.113588i
\(15\) 0 0
\(16\) 11.2317 11.3951i 0.701983 0.712193i
\(17\) 16.6136 0.977271 0.488635 0.872488i \(-0.337495\pi\)
0.488635 + 0.872488i \(0.337495\pi\)
\(18\) 0 0
\(19\) 31.7713i 1.67217i 0.548599 + 0.836086i \(0.315162\pi\)
−0.548599 + 0.836086i \(0.684838\pi\)
\(20\) 10.8015 + 25.8131i 0.540074 + 1.29066i
\(21\) 0 0
\(22\) 7.16455 + 35.6819i 0.325661 + 1.62191i
\(23\) 28.2125 1.22663 0.613315 0.789838i \(-0.289836\pi\)
0.613315 + 0.789838i \(0.289836\pi\)
\(24\) 0 0
\(25\) −23.9368 −0.957473
\(26\) −13.1035 + 2.63105i −0.503981 + 0.101194i
\(27\) 0 0
\(28\) −27.9005 + 2.35817i −0.996447 + 0.0842205i
\(29\) −55.3335 −1.90805 −0.954026 0.299723i \(-0.903106\pi\)
−0.954026 + 0.299723i \(0.903106\pi\)
\(30\) 0 0
\(31\) 18.6829 0.602675 0.301338 0.953518i \(-0.402567\pi\)
0.301338 + 0.953518i \(0.402567\pi\)
\(32\) 17.5374 26.7664i 0.548044 0.836449i
\(33\) 0 0
\(34\) 32.5770 6.54112i 0.958147 0.192386i
\(35\) 15.0309 46.6045i 0.429455 1.33156i
\(36\) 0 0
\(37\) 18.8501i 0.509462i 0.967012 + 0.254731i \(0.0819870\pi\)
−0.967012 + 0.254731i \(0.918013\pi\)
\(38\) 12.5090 + 62.2991i 0.329184 + 1.63945i
\(39\) 0 0
\(40\) 31.3434 + 46.3632i 0.783584 + 1.15908i
\(41\) −33.6389 −0.820461 −0.410231 0.911982i \(-0.634552\pi\)
−0.410231 + 0.911982i \(0.634552\pi\)
\(42\) 0 0
\(43\) 14.3177 0.332970 0.166485 0.986044i \(-0.446758\pi\)
0.166485 + 0.986044i \(0.446758\pi\)
\(44\) 28.0974 + 67.1466i 0.638577 + 1.52606i
\(45\) 0 0
\(46\) 55.3208 11.1078i 1.20263 0.241475i
\(47\) 57.3785i 1.22082i −0.792086 0.610410i \(-0.791005\pi\)
0.792086 0.610410i \(-0.208995\pi\)
\(48\) 0 0
\(49\) 39.7665 + 28.6291i 0.811561 + 0.584267i
\(50\) −46.9368 + 9.42441i −0.938737 + 0.188488i
\(51\) 0 0
\(52\) −24.6583 + 10.3182i −0.474198 + 0.198428i
\(53\) 5.13773 0.0969383 0.0484691 0.998825i \(-0.484566\pi\)
0.0484691 + 0.998825i \(0.484566\pi\)
\(54\) 0 0
\(55\) −127.297 −2.31450
\(56\) −53.7806 + 15.6091i −0.960369 + 0.278733i
\(57\) 0 0
\(58\) −108.501 + 21.7859i −1.87071 + 0.375620i
\(59\) 83.0383 1.40743 0.703715 0.710483i \(-0.251523\pi\)
0.703715 + 0.710483i \(0.251523\pi\)
\(60\) 0 0
\(61\) −75.6870 −1.24077 −0.620385 0.784297i \(-0.713024\pi\)
−0.620385 + 0.784297i \(0.713024\pi\)
\(62\) 36.6347 7.35585i 0.590882 0.118643i
\(63\) 0 0
\(64\) 23.8500 59.3900i 0.372656 0.927969i
\(65\) 46.7475i 0.719192i
\(66\) 0 0
\(67\) 17.6649 0.263655 0.131827 0.991273i \(-0.457916\pi\)
0.131827 + 0.991273i \(0.457916\pi\)
\(68\) 61.3037 25.6525i 0.901525 0.377242i
\(69\) 0 0
\(70\) 11.1245 97.3029i 0.158921 1.39004i
\(71\) 75.8131 1.06779 0.533895 0.845551i \(-0.320728\pi\)
0.533895 + 0.845551i \(0.320728\pi\)
\(72\) 0 0
\(73\) 103.904i 1.42335i −0.702511 0.711673i \(-0.747938\pi\)
0.702511 0.711673i \(-0.252062\pi\)
\(74\) 7.42167 + 36.9625i 0.100293 + 0.499493i
\(75\) 0 0
\(76\) 49.0568 + 117.235i 0.645485 + 1.54257i
\(77\) 39.0993 121.230i 0.507783 1.57442i
\(78\) 0 0
\(79\) 33.8548i 0.428541i 0.976774 + 0.214271i \(0.0687375\pi\)
−0.976774 + 0.214271i \(0.931263\pi\)
\(80\) 79.7142 + 78.5714i 0.996427 + 0.982143i
\(81\) 0 0
\(82\) −65.9613 + 13.2443i −0.804406 + 0.161516i
\(83\) 127.193 1.53245 0.766226 0.642572i \(-0.222132\pi\)
0.766226 + 0.642572i \(0.222132\pi\)
\(84\) 0 0
\(85\) 116.220i 1.36730i
\(86\) 28.0751 5.63718i 0.326454 0.0655486i
\(87\) 0 0
\(88\) 81.5321 + 120.603i 0.926502 + 1.37049i
\(89\) 31.6907 0.356075 0.178038 0.984024i \(-0.443025\pi\)
0.178038 + 0.984024i \(0.443025\pi\)
\(90\) 0 0
\(91\) 44.5195 + 14.3585i 0.489225 + 0.157786i
\(92\) 104.103 43.5619i 1.13156 0.473499i
\(93\) 0 0
\(94\) −22.5911 112.511i −0.240331 1.19693i
\(95\) −222.255 −2.33953
\(96\) 0 0
\(97\) 97.7829i 1.00807i −0.863683 0.504036i \(-0.831848\pi\)
0.863683 0.504036i \(-0.168152\pi\)
\(98\) 89.2485 + 40.4809i 0.910699 + 0.413070i
\(99\) 0 0
\(100\) −88.3261 + 36.9600i −0.883261 + 0.369600i
\(101\) 127.765i 1.26500i −0.774560 0.632501i \(-0.782029\pi\)
0.774560 0.632501i \(-0.217971\pi\)
\(102\) 0 0
\(103\) −63.9717 −0.621084 −0.310542 0.950560i \(-0.600511\pi\)
−0.310542 + 0.950560i \(0.600511\pi\)
\(104\) −44.2891 + 29.9411i −0.425856 + 0.287896i
\(105\) 0 0
\(106\) 10.0744 2.02283i 0.0950413 0.0190833i
\(107\) 79.5953i 0.743882i −0.928256 0.371941i \(-0.878692\pi\)
0.928256 0.371941i \(-0.121308\pi\)
\(108\) 0 0
\(109\) 38.8557i 0.356474i −0.983988 0.178237i \(-0.942961\pi\)
0.983988 0.178237i \(-0.0570394\pi\)
\(110\) −249.612 + 50.1195i −2.26920 + 0.455632i
\(111\) 0 0
\(112\) −99.3109 + 51.7818i −0.886704 + 0.462337i
\(113\) 76.4605i 0.676641i 0.941031 + 0.338321i \(0.109859\pi\)
−0.941031 + 0.338321i \(0.890141\pi\)
\(114\) 0 0
\(115\) 197.360i 1.71617i
\(116\) −204.179 + 85.4385i −1.76016 + 0.736539i
\(117\) 0 0
\(118\) 162.827 32.6939i 1.37989 0.277067i
\(119\) −110.681 35.6970i −0.930093 0.299975i
\(120\) 0 0
\(121\) −210.133 −1.73663
\(122\) −148.412 + 29.7995i −1.21649 + 0.244258i
\(123\) 0 0
\(124\) 68.9394 28.8476i 0.555963 0.232642i
\(125\) 7.43746i 0.0594997i
\(126\) 0 0
\(127\) 11.8617i 0.0933989i −0.998909 0.0466994i \(-0.985130\pi\)
0.998909 0.0466994i \(-0.0148703\pi\)
\(128\) 23.3835 125.846i 0.182684 0.983172i
\(129\) 0 0
\(130\) −18.4054 91.6655i −0.141580 0.705119i
\(131\) −108.198 −0.825938 −0.412969 0.910745i \(-0.635508\pi\)
−0.412969 + 0.910745i \(0.635508\pi\)
\(132\) 0 0
\(133\) 68.2657 211.663i 0.513276 1.59145i
\(134\) 34.6384 6.95502i 0.258496 0.0519032i
\(135\) 0 0
\(136\) 110.108 74.4375i 0.809619 0.547334i
\(137\) 165.973i 1.21148i 0.795661 + 0.605742i \(0.207124\pi\)
−0.795661 + 0.605742i \(0.792876\pi\)
\(138\) 0 0
\(139\) 70.0346i 0.503846i −0.967747 0.251923i \(-0.918937\pi\)
0.967747 0.251923i \(-0.0810629\pi\)
\(140\) −16.4966 195.178i −0.117833 1.39413i
\(141\) 0 0
\(142\) 148.659 29.8492i 1.04690 0.210205i
\(143\) 121.602i 0.850365i
\(144\) 0 0
\(145\) 387.085i 2.66955i
\(146\) −40.9092 203.742i −0.280200 1.39549i
\(147\) 0 0
\(148\) 29.1058 + 69.5563i 0.196661 + 0.469975i
\(149\) 83.2376 0.558642 0.279321 0.960198i \(-0.409891\pi\)
0.279321 + 0.960198i \(0.409891\pi\)
\(150\) 0 0
\(151\) 99.0522i 0.655975i 0.944682 + 0.327988i \(0.106370\pi\)
−0.944682 + 0.327988i \(0.893630\pi\)
\(152\) 142.352 + 210.567i 0.936523 + 1.38531i
\(153\) 0 0
\(154\) 28.9376 253.110i 0.187907 1.64357i
\(155\) 130.696i 0.843201i
\(156\) 0 0
\(157\) 114.893 0.731804 0.365902 0.930653i \(-0.380760\pi\)
0.365902 + 0.930653i \(0.380760\pi\)
\(158\) 13.3293 + 66.3846i 0.0843627 + 0.420156i
\(159\) 0 0
\(160\) 187.244 + 122.683i 1.17027 + 0.766767i
\(161\) −187.954 60.6191i −1.16741 0.376516i
\(162\) 0 0
\(163\) −181.136 −1.11126 −0.555630 0.831429i \(-0.687523\pi\)
−0.555630 + 0.831429i \(0.687523\pi\)
\(164\) −124.127 + 51.9406i −0.756869 + 0.316711i
\(165\) 0 0
\(166\) 249.409 50.0787i 1.50246 0.301679i
\(167\) 127.590i 0.764014i 0.924159 + 0.382007i \(0.124767\pi\)
−0.924159 + 0.382007i \(0.875233\pi\)
\(168\) 0 0
\(169\) −124.344 −0.735763
\(170\) 45.7583 + 227.892i 0.269166 + 1.34054i
\(171\) 0 0
\(172\) 52.8319 22.1075i 0.307162 0.128532i
\(173\) 47.7694i 0.276124i −0.990424 0.138062i \(-0.955913\pi\)
0.990424 0.138062i \(-0.0440873\pi\)
\(174\) 0 0
\(175\) 159.469 + 51.4321i 0.911251 + 0.293898i
\(176\) 207.357 + 204.385i 1.17817 + 1.16128i
\(177\) 0 0
\(178\) 62.1411 12.4773i 0.349107 0.0700970i
\(179\) 189.834i 1.06053i −0.847833 0.530264i \(-0.822093\pi\)
0.847833 0.530264i \(-0.177907\pi\)
\(180\) 0 0
\(181\) −223.560 −1.23514 −0.617569 0.786517i \(-0.711882\pi\)
−0.617569 + 0.786517i \(0.711882\pi\)
\(182\) 92.9498 + 10.6268i 0.510713 + 0.0583890i
\(183\) 0 0
\(184\) 186.981 126.406i 1.01620 0.686991i
\(185\) −131.866 −0.712787
\(186\) 0 0
\(187\) 302.319i 1.61668i
\(188\) −88.5961 211.725i −0.471256 1.12620i
\(189\) 0 0
\(190\) −435.812 + 87.5065i −2.29375 + 0.460560i
\(191\) 261.590 1.36958 0.684790 0.728740i \(-0.259894\pi\)
0.684790 + 0.728740i \(0.259894\pi\)
\(192\) 0 0
\(193\) 298.207 1.54511 0.772556 0.634947i \(-0.218978\pi\)
0.772556 + 0.634947i \(0.218978\pi\)
\(194\) −38.4991 191.739i −0.198449 0.988345i
\(195\) 0 0
\(196\) 190.942 + 44.2385i 0.974195 + 0.225706i
\(197\) −14.7389 −0.0748168 −0.0374084 0.999300i \(-0.511910\pi\)
−0.0374084 + 0.999300i \(0.511910\pi\)
\(198\) 0 0
\(199\) −5.15270 −0.0258930 −0.0129465 0.999916i \(-0.504121\pi\)
−0.0129465 + 0.999916i \(0.504121\pi\)
\(200\) −158.644 + 107.249i −0.793218 + 0.536246i
\(201\) 0 0
\(202\) −50.3037 250.530i −0.249028 1.24025i
\(203\) 368.636 + 118.893i 1.81594 + 0.585680i
\(204\) 0 0
\(205\) 235.321i 1.14791i
\(206\) −125.440 + 25.1870i −0.608931 + 0.122267i
\(207\) 0 0
\(208\) −75.0563 + 76.1480i −0.360848 + 0.366096i
\(209\) −578.143 −2.76624
\(210\) 0 0
\(211\) 108.422 0.513847 0.256924 0.966432i \(-0.417291\pi\)
0.256924 + 0.966432i \(0.417291\pi\)
\(212\) 18.9581 7.93298i 0.0894248 0.0374197i
\(213\) 0 0
\(214\) −31.3383 156.076i −0.146441 0.729325i
\(215\) 100.159i 0.465857i
\(216\) 0 0
\(217\) −124.467 40.1433i −0.573581 0.184992i
\(218\) −15.2983 76.1907i −0.0701756 0.349498i
\(219\) 0 0
\(220\) −469.723 + 196.555i −2.13510 + 0.893432i
\(221\) −111.021 −0.502357
\(222\) 0 0
\(223\) 132.822 0.595613 0.297806 0.954626i \(-0.403745\pi\)
0.297806 + 0.954626i \(0.403745\pi\)
\(224\) −174.347 + 140.638i −0.778337 + 0.627847i
\(225\) 0 0
\(226\) 30.1040 + 149.929i 0.133204 + 0.663400i
\(227\) −93.0732 −0.410014 −0.205007 0.978761i \(-0.565722\pi\)
−0.205007 + 0.978761i \(0.565722\pi\)
\(228\) 0 0
\(229\) 404.588 1.76676 0.883379 0.468659i \(-0.155263\pi\)
0.883379 + 0.468659i \(0.155263\pi\)
\(230\) 77.7047 + 386.996i 0.337846 + 1.68259i
\(231\) 0 0
\(232\) −366.728 + 247.923i −1.58072 + 1.06863i
\(233\) 122.179i 0.524374i −0.965017 0.262187i \(-0.915556\pi\)
0.965017 0.262187i \(-0.0844437\pi\)
\(234\) 0 0
\(235\) 401.391 1.70805
\(236\) 306.409 128.216i 1.29834 0.543290i
\(237\) 0 0
\(238\) −231.085 26.4196i −0.970946 0.111007i
\(239\) 95.7941 0.400812 0.200406 0.979713i \(-0.435774\pi\)
0.200406 + 0.979713i \(0.435774\pi\)
\(240\) 0 0
\(241\) 155.437i 0.644966i −0.946575 0.322483i \(-0.895482\pi\)
0.946575 0.322483i \(-0.104518\pi\)
\(242\) −412.042 + 82.7336i −1.70265 + 0.341874i
\(243\) 0 0
\(244\) −279.283 + 116.866i −1.14460 + 0.478957i
\(245\) −200.274 + 278.186i −0.817447 + 1.13545i
\(246\) 0 0
\(247\) 212.312i 0.859564i
\(248\) 123.823 83.7091i 0.499286 0.337537i
\(249\) 0 0
\(250\) 2.92828 + 14.5838i 0.0117131 + 0.0583353i
\(251\) 223.183 0.889177 0.444588 0.895735i \(-0.353350\pi\)
0.444588 + 0.895735i \(0.353350\pi\)
\(252\) 0 0
\(253\) 513.384i 2.02919i
\(254\) −4.67018 23.2591i −0.0183865 0.0915712i
\(255\) 0 0
\(256\) −3.69622 255.973i −0.0144384 0.999896i
\(257\) 434.336 1.69002 0.845011 0.534748i \(-0.179594\pi\)
0.845011 + 0.534748i \(0.179594\pi\)
\(258\) 0 0
\(259\) 40.5025 125.581i 0.156380 0.484868i
\(260\) −72.1811 172.497i −0.277620 0.663449i
\(261\) 0 0
\(262\) −212.161 + 42.5997i −0.809776 + 0.162594i
\(263\) 0.872408 0.00331714 0.00165857 0.999999i \(-0.499472\pi\)
0.00165857 + 0.999999i \(0.499472\pi\)
\(264\) 0 0
\(265\) 35.9409i 0.135626i
\(266\) 50.5238 441.919i 0.189939 1.66135i
\(267\) 0 0
\(268\) 65.1829 27.2757i 0.243220 0.101775i
\(269\) 114.052i 0.423986i 0.977271 + 0.211993i \(0.0679954\pi\)
−0.977271 + 0.211993i \(0.932005\pi\)
\(270\) 0 0
\(271\) −212.581 −0.784431 −0.392216 0.919873i \(-0.628291\pi\)
−0.392216 + 0.919873i \(0.628291\pi\)
\(272\) 186.600 189.314i 0.686028 0.696006i
\(273\) 0 0
\(274\) 65.3471 + 325.451i 0.238493 + 1.18778i
\(275\) 435.580i 1.58393i
\(276\) 0 0
\(277\) 105.878i 0.382231i 0.981568 + 0.191115i \(0.0612105\pi\)
−0.981568 + 0.191115i \(0.938790\pi\)
\(278\) −27.5740 137.328i −0.0991872 0.493986i
\(279\) 0 0
\(280\) −109.193 376.222i −0.389975 1.34365i
\(281\) 431.952i 1.53720i 0.639732 + 0.768598i \(0.279045\pi\)
−0.639732 + 0.768598i \(0.720955\pi\)
\(282\) 0 0
\(283\) 186.571i 0.659262i 0.944110 + 0.329631i \(0.106924\pi\)
−0.944110 + 0.329631i \(0.893076\pi\)
\(284\) 279.748 117.060i 0.985028 0.412184i
\(285\) 0 0
\(286\) −47.8773 238.445i −0.167403 0.833725i
\(287\) 224.105 + 72.2786i 0.780854 + 0.251842i
\(288\) 0 0
\(289\) −12.9881 −0.0449415
\(290\) −152.403 759.020i −0.525528 2.61731i
\(291\) 0 0
\(292\) −160.435 383.403i −0.549434 1.31302i
\(293\) 5.13791i 0.0175355i 0.999962 + 0.00876777i \(0.00279090\pi\)
−0.999962 + 0.00876777i \(0.997209\pi\)
\(294\) 0 0
\(295\) 580.894i 1.96913i
\(296\) 84.4582 + 124.931i 0.285332 + 0.422064i
\(297\) 0 0
\(298\) 163.218 32.7723i 0.547710 0.109974i
\(299\) −188.531 −0.630537
\(300\) 0 0
\(301\) −95.3857 30.7639i −0.316896 0.102206i
\(302\) 38.9989 + 194.228i 0.129135 + 0.643139i
\(303\) 0 0
\(304\) 362.036 + 356.846i 1.19091 + 1.17384i
\(305\) 529.468i 1.73596i
\(306\) 0 0
\(307\) 323.370i 1.05332i 0.850075 + 0.526661i \(0.176556\pi\)
−0.850075 + 0.526661i \(0.823444\pi\)
\(308\) −42.9118 507.707i −0.139324 1.64840i
\(309\) 0 0
\(310\) 51.4578 + 256.277i 0.165993 + 0.826701i
\(311\) 191.354i 0.615286i 0.951502 + 0.307643i \(0.0995403\pi\)
−0.951502 + 0.307643i \(0.900460\pi\)
\(312\) 0 0
\(313\) 55.8314i 0.178375i −0.996015 0.0891875i \(-0.971573\pi\)
0.996015 0.0891875i \(-0.0284270\pi\)
\(314\) 225.290 45.2358i 0.717484 0.144063i
\(315\) 0 0
\(316\) 52.2739 + 124.923i 0.165424 + 0.395326i
\(317\) −100.839 −0.318103 −0.159051 0.987270i \(-0.550844\pi\)
−0.159051 + 0.987270i \(0.550844\pi\)
\(318\) 0 0
\(319\) 1006.91i 3.15645i
\(320\) 415.462 + 166.842i 1.29832 + 0.521382i
\(321\) 0 0
\(322\) −392.419 44.8645i −1.21869 0.139331i
\(323\) 527.835i 1.63416i
\(324\) 0 0
\(325\) 159.958 0.492180
\(326\) −355.182 + 71.3167i −1.08952 + 0.218763i
\(327\) 0 0
\(328\) −222.945 + 150.720i −0.679711 + 0.459511i
\(329\) −123.287 + 382.260i −0.374733 + 1.16189i
\(330\) 0 0
\(331\) −138.740 −0.419155 −0.209577 0.977792i \(-0.567209\pi\)
−0.209577 + 0.977792i \(0.567209\pi\)
\(332\) 469.340 196.395i 1.41367 0.591551i
\(333\) 0 0
\(334\) 50.2349 + 250.187i 0.150404 + 0.749063i
\(335\) 123.574i 0.368879i
\(336\) 0 0
\(337\) −118.399 −0.351334 −0.175667 0.984450i \(-0.556208\pi\)
−0.175667 + 0.984450i \(0.556208\pi\)
\(338\) −243.821 + 48.9567i −0.721365 + 0.144842i
\(339\) 0 0
\(340\) 179.451 + 428.849i 0.527798 + 1.26132i
\(341\) 339.974i 0.996992i
\(342\) 0 0
\(343\) −203.413 276.174i −0.593041 0.805172i
\(344\) 94.8920 64.1507i 0.275849 0.186485i
\(345\) 0 0
\(346\) −18.8078 93.6692i −0.0543577 0.270720i
\(347\) 69.4367i 0.200106i 0.994982 + 0.100053i \(0.0319012\pi\)
−0.994982 + 0.100053i \(0.968099\pi\)
\(348\) 0 0
\(349\) 263.144 0.753994 0.376997 0.926214i \(-0.376957\pi\)
0.376997 + 0.926214i \(0.376957\pi\)
\(350\) 332.947 + 38.0652i 0.951276 + 0.108758i
\(351\) 0 0
\(352\) 487.069 + 319.129i 1.38372 + 0.906617i
\(353\) 72.4623 0.205276 0.102638 0.994719i \(-0.467272\pi\)
0.102638 + 0.994719i \(0.467272\pi\)
\(354\) 0 0
\(355\) 530.349i 1.49394i
\(356\) 116.938 48.9324i 0.328476 0.137451i
\(357\) 0 0
\(358\) −74.7417 372.239i −0.208776 1.03977i
\(359\) 178.507 0.497234 0.248617 0.968602i \(-0.420024\pi\)
0.248617 + 0.968602i \(0.420024\pi\)
\(360\) 0 0
\(361\) −648.413 −1.79616
\(362\) −438.370 + 88.0201i −1.21097 + 0.243149i
\(363\) 0 0
\(364\) 186.446 15.7585i 0.512214 0.0432927i
\(365\) 726.860 1.99140
\(366\) 0 0
\(367\) −275.630 −0.751036 −0.375518 0.926815i \(-0.622535\pi\)
−0.375518 + 0.926815i \(0.622535\pi\)
\(368\) 316.875 321.484i 0.861074 0.873598i
\(369\) 0 0
\(370\) −258.571 + 51.9182i −0.698839 + 0.140319i
\(371\) −34.2279 11.0392i −0.0922586 0.0297554i
\(372\) 0 0
\(373\) 162.322i 0.435180i −0.976040 0.217590i \(-0.930180\pi\)
0.976040 0.217590i \(-0.0698195\pi\)
\(374\) 119.029 + 592.806i 0.318259 + 1.58504i
\(375\) 0 0
\(376\) −257.085 380.282i −0.683737 1.01139i
\(377\) 369.768 0.980816
\(378\) 0 0
\(379\) −294.419 −0.776830 −0.388415 0.921484i \(-0.626977\pi\)
−0.388415 + 0.921484i \(0.626977\pi\)
\(380\) −820.116 + 343.176i −2.15820 + 0.903096i
\(381\) 0 0
\(382\) 512.942 102.993i 1.34278 0.269616i
\(383\) 422.380i 1.10282i 0.834235 + 0.551410i \(0.185910\pi\)
−0.834235 + 0.551410i \(0.814090\pi\)
\(384\) 0 0
\(385\) 848.064 + 273.519i 2.20276 + 0.710438i
\(386\) 584.742 117.410i 1.51488 0.304171i
\(387\) 0 0
\(388\) −150.983 360.816i −0.389132 0.929938i
\(389\) 219.542 0.564376 0.282188 0.959359i \(-0.408940\pi\)
0.282188 + 0.959359i \(0.408940\pi\)
\(390\) 0 0
\(391\) 468.711 1.19875
\(392\) 391.829 + 11.5677i 0.999565 + 0.0295094i
\(393\) 0 0
\(394\) −28.9010 + 5.80301i −0.0733528 + 0.0147285i
\(395\) −236.831 −0.599571
\(396\) 0 0
\(397\) −163.460 −0.411737 −0.205868 0.978580i \(-0.566002\pi\)
−0.205868 + 0.978580i \(0.566002\pi\)
\(398\) −10.1037 + 2.02872i −0.0253863 + 0.00509730i
\(399\) 0 0
\(400\) −268.852 + 272.762i −0.672130 + 0.681906i
\(401\) 673.216i 1.67884i −0.543482 0.839421i \(-0.682894\pi\)
0.543482 0.839421i \(-0.317106\pi\)
\(402\) 0 0
\(403\) −124.849 −0.309799
\(404\) −197.277 471.449i −0.488311 1.16695i
\(405\) 0 0
\(406\) 769.656 + 87.9934i 1.89570 + 0.216733i
\(407\) −343.016 −0.842792
\(408\) 0 0
\(409\) 416.822i 1.01912i 0.860434 + 0.509562i \(0.170193\pi\)
−0.860434 + 0.509562i \(0.829807\pi\)
\(410\) −92.6505 461.431i −0.225977 1.12544i
\(411\) 0 0
\(412\) −236.053 + 98.7763i −0.572945 + 0.239748i
\(413\) −553.208 178.421i −1.33949 0.432013i
\(414\) 0 0
\(415\) 889.780i 2.14405i
\(416\) −117.194 + 178.867i −0.281717 + 0.429969i
\(417\) 0 0
\(418\) −1133.66 + 227.627i −2.71211 + 0.544562i
\(419\) 354.382 0.845781 0.422890 0.906181i \(-0.361016\pi\)
0.422890 + 0.906181i \(0.361016\pi\)
\(420\) 0 0
\(421\) 497.096i 1.18075i −0.807129 0.590376i \(-0.798980\pi\)
0.807129 0.590376i \(-0.201020\pi\)
\(422\) 212.600 42.6878i 0.503792 0.101156i
\(423\) 0 0
\(424\) 34.0508 23.0197i 0.0803084 0.0542916i
\(425\) −397.677 −0.935710
\(426\) 0 0
\(427\) 504.233 + 162.626i 1.18087 + 0.380857i
\(428\) −122.900 293.704i −0.287150 0.686225i
\(429\) 0 0
\(430\) 39.4348 + 196.399i 0.0917088 + 0.456741i
\(431\) −266.414 −0.618129 −0.309065 0.951041i \(-0.600016\pi\)
−0.309065 + 0.951041i \(0.600016\pi\)
\(432\) 0 0
\(433\) 748.445i 1.72851i 0.503053 + 0.864255i \(0.332210\pi\)
−0.503053 + 0.864255i \(0.667790\pi\)
\(434\) −259.868 29.7103i −0.598775 0.0684569i
\(435\) 0 0
\(436\) −59.9956 143.376i −0.137605 0.328845i
\(437\) 896.346i 2.05114i
\(438\) 0 0
\(439\) 665.040 1.51490 0.757448 0.652895i \(-0.226446\pi\)
0.757448 + 0.652895i \(0.226446\pi\)
\(440\) −843.674 + 570.357i −1.91744 + 1.29627i
\(441\) 0 0
\(442\) −217.697 + 43.7112i −0.492526 + 0.0988940i
\(443\) 202.672i 0.457500i −0.973485 0.228750i \(-0.926536\pi\)
0.973485 0.228750i \(-0.0734638\pi\)
\(444\) 0 0
\(445\) 221.692i 0.498184i
\(446\) 260.445 52.2946i 0.583957 0.117252i
\(447\) 0 0
\(448\) −286.500 + 344.415i −0.639508 + 0.768784i
\(449\) 759.051i 1.69054i 0.534342 + 0.845268i \(0.320559\pi\)
−0.534342 + 0.845268i \(0.679441\pi\)
\(450\) 0 0
\(451\) 612.129i 1.35727i
\(452\) 118.060 + 282.137i 0.261194 + 0.624196i
\(453\) 0 0
\(454\) −182.504 + 36.6448i −0.401991 + 0.0807154i
\(455\) −100.445 + 311.435i −0.220757 + 0.684473i
\(456\) 0 0
\(457\) −219.847 −0.481066 −0.240533 0.970641i \(-0.577322\pi\)
−0.240533 + 0.970641i \(0.577322\pi\)
\(458\) 793.341 159.294i 1.73219 0.347804i
\(459\) 0 0
\(460\) 304.736 + 728.252i 0.662471 + 1.58316i
\(461\) 394.153i 0.854996i −0.904016 0.427498i \(-0.859395\pi\)
0.904016 0.427498i \(-0.140605\pi\)
\(462\) 0 0
\(463\) 411.620i 0.889028i 0.895772 + 0.444514i \(0.146624\pi\)
−0.895772 + 0.444514i \(0.853376\pi\)
\(464\) −621.491 + 630.531i −1.33942 + 1.35890i
\(465\) 0 0
\(466\) −48.1044 239.577i −0.103228 0.514113i
\(467\) −448.091 −0.959510 −0.479755 0.877402i \(-0.659274\pi\)
−0.479755 + 0.877402i \(0.659274\pi\)
\(468\) 0 0
\(469\) −117.685 37.9559i −0.250927 0.0809293i
\(470\) 787.072 158.036i 1.67462 0.336246i
\(471\) 0 0
\(472\) 550.344 372.054i 1.16598 0.788251i
\(473\) 260.540i 0.550825i
\(474\) 0 0
\(475\) 760.503i 1.60106i
\(476\) −463.528 + 39.1778i −0.973799 + 0.0823062i
\(477\) 0 0
\(478\) 187.839 37.7161i 0.392969 0.0789040i
\(479\) 415.331i 0.867079i 0.901134 + 0.433540i \(0.142736\pi\)
−0.901134 + 0.433540i \(0.857264\pi\)
\(480\) 0 0
\(481\) 125.966i 0.261884i
\(482\) −61.1987 304.790i −0.126968 0.632345i
\(483\) 0 0
\(484\) −775.384 + 324.458i −1.60203 + 0.670369i
\(485\) 684.039 1.41039
\(486\) 0 0
\(487\) 641.626i 1.31751i −0.752359 0.658754i \(-0.771084\pi\)
0.752359 0.658754i \(-0.228916\pi\)
\(488\) −501.623 + 339.117i −1.02792 + 0.694911i
\(489\) 0 0
\(490\) −283.183 + 624.337i −0.577925 + 1.27416i
\(491\) 183.492i 0.373712i −0.982387 0.186856i \(-0.940170\pi\)
0.982387 0.186856i \(-0.0598297\pi\)
\(492\) 0 0
\(493\) −919.289 −1.86468
\(494\) −83.5917 416.315i −0.169214 0.842743i
\(495\) 0 0
\(496\) 209.842 212.894i 0.423068 0.429221i
\(497\) −505.073 162.897i −1.01624 0.327760i
\(498\) 0 0
\(499\) −177.302 −0.355314 −0.177657 0.984092i \(-0.556852\pi\)
−0.177657 + 0.984092i \(0.556852\pi\)
\(500\) 11.4839 + 27.4440i 0.0229678 + 0.0548880i
\(501\) 0 0
\(502\) 437.632 87.8718i 0.871777 0.175043i
\(503\) 237.590i 0.472346i −0.971711 0.236173i \(-0.924107\pi\)
0.971711 0.236173i \(-0.0758932\pi\)
\(504\) 0 0
\(505\) 893.779 1.76986
\(506\) 202.130 + 1006.68i 0.399466 + 1.98948i
\(507\) 0 0
\(508\) −18.3151 43.7691i −0.0360534 0.0861597i
\(509\) 162.377i 0.319011i −0.987197 0.159506i \(-0.949010\pi\)
0.987197 0.159506i \(-0.0509900\pi\)
\(510\) 0 0
\(511\) −223.255 + 692.218i −0.436898 + 1.35463i
\(512\) −108.030 500.473i −0.210995 0.977487i
\(513\) 0 0
\(514\) 851.673 171.007i 1.65695 0.332698i
\(515\) 447.513i 0.868957i
\(516\) 0 0
\(517\) 1044.12 2.01958
\(518\) 29.9761 262.194i 0.0578690 0.506165i
\(519\) 0 0
\(520\) −209.453 309.823i −0.402794 0.595814i
\(521\) 534.282 1.02549 0.512747 0.858540i \(-0.328628\pi\)
0.512747 + 0.858540i \(0.328628\pi\)
\(522\) 0 0
\(523\) 632.352i 1.20909i −0.796572 0.604543i \(-0.793356\pi\)
0.796572 0.604543i \(-0.206644\pi\)
\(524\) −399.247 + 167.064i −0.761921 + 0.318825i
\(525\) 0 0
\(526\) 1.71067 0.343485i 0.00325223 0.000653013i
\(527\) 310.391 0.588977
\(528\) 0 0
\(529\) 266.944 0.504621
\(530\) 14.1507 + 70.4752i 0.0266994 + 0.132972i
\(531\) 0 0
\(532\) −74.9221 886.435i −0.140831 1.66623i
\(533\) 224.793 0.421750
\(534\) 0 0
\(535\) 556.808 1.04076
\(536\) 117.076 79.1477i 0.218425 0.147664i
\(537\) 0 0
\(538\) 44.9047 + 223.641i 0.0834659 + 0.415689i
\(539\) −520.965 + 723.633i −0.966540 + 1.34255i
\(540\) 0 0
\(541\) 816.142i 1.50858i −0.656541 0.754290i \(-0.727981\pi\)
0.656541 0.754290i \(-0.272019\pi\)
\(542\) −416.842 + 83.6974i −0.769081 + 0.154423i
\(543\) 0 0
\(544\) 291.360 444.686i 0.535588 0.817438i
\(545\) 271.814 0.498742
\(546\) 0 0
\(547\) 115.353 0.210883 0.105441 0.994426i \(-0.466374\pi\)
0.105441 + 0.994426i \(0.466374\pi\)
\(548\) 256.273 + 612.436i 0.467652 + 1.11758i
\(549\) 0 0
\(550\) −171.497 854.112i −0.311812 1.55293i
\(551\) 1758.02i 3.19059i
\(552\) 0 0
\(553\) 72.7425 225.543i 0.131542 0.407854i
\(554\) 41.6863 + 207.612i 0.0752461 + 0.374751i
\(555\) 0 0
\(556\) −108.138 258.425i −0.194492 0.464794i
\(557\) 301.385 0.541087 0.270543 0.962708i \(-0.412797\pi\)
0.270543 + 0.962708i \(0.412797\pi\)
\(558\) 0 0
\(559\) −95.6785 −0.171160
\(560\) −362.239 694.728i −0.646855 1.24059i
\(561\) 0 0
\(562\) 170.068 + 846.999i 0.302613 + 1.50712i
\(563\) 20.5662 0.0365296 0.0182648 0.999833i \(-0.494186\pi\)
0.0182648 + 0.999833i \(0.494186\pi\)
\(564\) 0 0
\(565\) −534.878 −0.946687
\(566\) 73.4569 + 365.841i 0.129782 + 0.646361i
\(567\) 0 0
\(568\) 502.458 339.682i 0.884610 0.598031i
\(569\) 521.456i 0.916442i −0.888838 0.458221i \(-0.848487\pi\)
0.888838 0.458221i \(-0.151513\pi\)
\(570\) 0 0
\(571\) −873.461 −1.52970 −0.764852 0.644206i \(-0.777188\pi\)
−0.764852 + 0.644206i \(0.777188\pi\)
\(572\) −187.762 448.709i −0.328255 0.784455i
\(573\) 0 0
\(574\) 467.897 + 53.4938i 0.815151 + 0.0931949i
\(575\) −675.317 −1.17446
\(576\) 0 0
\(577\) 564.551i 0.978425i −0.872165 0.489213i \(-0.837284\pi\)
0.872165 0.489213i \(-0.162716\pi\)
\(578\) −25.4679 + 5.11367i −0.0440620 + 0.00884718i
\(579\) 0 0
\(580\) −597.684 1428.33i −1.03049 2.46264i
\(581\) −847.372 273.296i −1.45847 0.470389i
\(582\) 0 0
\(583\) 93.4915i 0.160363i
\(584\) −465.544 688.635i −0.797165 1.17917i
\(585\) 0 0
\(586\) 2.02290 + 10.0747i 0.00345205 + 0.0171924i
\(587\) −862.091 −1.46864 −0.734319 0.678804i \(-0.762498\pi\)
−0.734319 + 0.678804i \(0.762498\pi\)
\(588\) 0 0
\(589\) 593.580i 1.00778i
\(590\) 228.710 + 1139.05i 0.387643 + 1.93060i
\(591\) 0 0
\(592\) 214.799 + 211.719i 0.362836 + 0.357634i
\(593\) 797.530 1.34491 0.672454 0.740139i \(-0.265240\pi\)
0.672454 + 0.740139i \(0.265240\pi\)
\(594\) 0 0
\(595\) 249.718 774.268i 0.419694 1.30129i
\(596\) 307.144 128.524i 0.515343 0.215645i
\(597\) 0 0
\(598\) −369.683 + 74.2284i −0.618199 + 0.124128i
\(599\) 183.557 0.306438 0.153219 0.988192i \(-0.451036\pi\)
0.153219 + 0.988192i \(0.451036\pi\)
\(600\) 0 0
\(601\) 253.057i 0.421060i −0.977587 0.210530i \(-0.932481\pi\)
0.977587 0.210530i \(-0.0675189\pi\)
\(602\) −199.151 22.7686i −0.330815 0.0378215i
\(603\) 0 0
\(604\) 152.943 + 365.500i 0.253217 + 0.605132i
\(605\) 1469.98i 2.42972i
\(606\) 0 0
\(607\) −98.9064 −0.162943 −0.0814715 0.996676i \(-0.525962\pi\)
−0.0814715 + 0.996676i \(0.525962\pi\)
\(608\) 850.402 + 557.186i 1.39869 + 0.916424i
\(609\) 0 0
\(610\) −208.462 1038.21i −0.341741 1.70199i
\(611\) 383.433i 0.627551i
\(612\) 0 0
\(613\) 453.259i 0.739411i 0.929149 + 0.369705i \(0.120541\pi\)
−0.929149 + 0.369705i \(0.879459\pi\)
\(614\) 127.317 + 634.084i 0.207357 + 1.03271i
\(615\) 0 0
\(616\) −284.039 978.649i −0.461102 1.58872i
\(617\) 639.880i 1.03708i −0.855053 0.518541i \(-0.826475\pi\)
0.855053 0.518541i \(-0.173525\pi\)
\(618\) 0 0
\(619\) 258.190i 0.417109i −0.978011 0.208554i \(-0.933124\pi\)
0.978011 0.208554i \(-0.0668758\pi\)
\(620\) 201.803 + 482.265i 0.325489 + 0.777846i
\(621\) 0 0
\(622\) 75.3400 + 375.219i 0.121125 + 0.603246i
\(623\) −211.126 68.0925i −0.338886 0.109298i
\(624\) 0 0
\(625\) −650.449 −1.04072
\(626\) −21.9819 109.478i −0.0351149 0.174884i
\(627\) 0 0
\(628\) 423.953 177.403i 0.675084 0.282488i
\(629\) 313.168i 0.497883i
\(630\) 0 0
\(631\) 785.936i 1.24554i −0.782405 0.622770i \(-0.786007\pi\)
0.782405 0.622770i \(-0.213993\pi\)
\(632\) 151.687 + 224.376i 0.240011 + 0.355025i
\(633\) 0 0
\(634\) −197.731 + 39.7022i −0.311878 + 0.0626218i
\(635\) 82.9780 0.130674
\(636\) 0 0
\(637\) −265.741 191.315i −0.417175 0.300337i
\(638\) −396.440 1974.41i −0.621379 3.09468i
\(639\) 0 0
\(640\) 880.354 + 163.579i 1.37555 + 0.255592i
\(641\) 571.627i 0.891774i −0.895089 0.445887i \(-0.852888\pi\)
0.895089 0.445887i \(-0.147112\pi\)
\(642\) 0 0
\(643\) 45.6671i 0.0710220i −0.999369 0.0355110i \(-0.988694\pi\)
0.999369 0.0355110i \(-0.0113059\pi\)
\(644\) −787.143 + 66.5299i −1.22227 + 0.103307i
\(645\) 0 0
\(646\) 207.819 + 1035.01i 0.321702 + 1.60219i
\(647\) 344.503i 0.532462i −0.963909 0.266231i \(-0.914222\pi\)
0.963909 0.266231i \(-0.0857785\pi\)
\(648\) 0 0
\(649\) 1511.05i 2.32828i
\(650\) 313.656 62.9789i 0.482548 0.0968906i
\(651\) 0 0
\(652\) −668.384 + 279.685i −1.02513 + 0.428964i
\(653\) −1179.22 −1.80585 −0.902927 0.429793i \(-0.858586\pi\)
−0.902927 + 0.429793i \(0.858586\pi\)
\(654\) 0 0
\(655\) 756.897i 1.15557i
\(656\) −377.823 + 383.318i −0.575950 + 0.584327i
\(657\) 0 0
\(658\) −91.2455 + 798.101i −0.138671 + 1.21292i
\(659\) 770.505i 1.16920i 0.811321 + 0.584601i \(0.198749\pi\)
−0.811321 + 0.584601i \(0.801251\pi\)
\(660\) 0 0
\(661\) 406.214 0.614544 0.307272 0.951622i \(-0.400584\pi\)
0.307272 + 0.951622i \(0.400584\pi\)
\(662\) −272.050 + 54.6248i −0.410952 + 0.0825148i
\(663\) 0 0
\(664\) 842.987 569.892i 1.26956 0.858271i
\(665\) 1480.68 + 477.552i 2.22659 + 0.718123i
\(666\) 0 0
\(667\) −1561.10 −2.34047
\(668\) 197.008 + 470.804i 0.294921 + 0.704797i
\(669\) 0 0
\(670\) 48.6538 + 242.313i 0.0726176 + 0.361661i
\(671\) 1377.28i 2.05258i
\(672\) 0 0
\(673\) −809.941 −1.20348 −0.601739 0.798692i \(-0.705525\pi\)
−0.601739 + 0.798692i \(0.705525\pi\)
\(674\) −232.165 + 46.6163i −0.344459 + 0.0691636i
\(675\) 0 0
\(676\) −458.825 + 191.995i −0.678735 + 0.284016i
\(677\) 259.621i 0.383488i −0.981445 0.191744i \(-0.938586\pi\)
0.981445 0.191744i \(-0.0614143\pi\)
\(678\) 0 0
\(679\) −210.102 + 651.437i −0.309429 + 0.959407i
\(680\) 520.726 + 770.261i 0.765774 + 1.13274i
\(681\) 0 0
\(682\) 133.855 + 666.643i 0.196268 + 0.977483i
\(683\) 1047.64i 1.53387i −0.641722 0.766937i \(-0.721780\pi\)
0.641722 0.766937i \(-0.278220\pi\)
\(684\) 0 0
\(685\) −1161.06 −1.69498
\(686\) −507.601 461.451i −0.739943 0.672670i
\(687\) 0 0
\(688\) 160.813 163.152i 0.233740 0.237139i
\(689\) −34.3330 −0.0498302
\(690\) 0 0
\(691\) 1372.76i 1.98663i −0.115454 0.993313i \(-0.536832\pi\)
0.115454 0.993313i \(-0.463168\pi\)
\(692\) −73.7589 176.267i −0.106588 0.254722i
\(693\) 0 0
\(694\) 27.3387 + 136.156i 0.0393929 + 0.196190i
\(695\) 489.926 0.704929
\(696\) 0 0
\(697\) −558.864 −0.801813
\(698\) 515.989 103.605i 0.739240 0.148431i
\(699\) 0 0
\(700\) 667.850 56.4472i 0.954071 0.0806388i
\(701\) −1073.92 −1.53199 −0.765994 0.642848i \(-0.777753\pi\)
−0.765994 + 0.642848i \(0.777753\pi\)
\(702\) 0 0
\(703\) −598.892 −0.851909
\(704\) 1080.72 + 434.000i 1.53512 + 0.616477i
\(705\) 0 0
\(706\) 142.089 28.5299i 0.201259 0.0404106i
\(707\) −274.524 + 851.181i −0.388294 + 1.20393i
\(708\) 0 0
\(709\) 437.716i 0.617371i 0.951164 + 0.308685i \(0.0998890\pi\)
−0.951164 + 0.308685i \(0.900111\pi\)
\(710\) 208.809 + 1039.94i 0.294098 + 1.46471i
\(711\) 0 0
\(712\) 210.033 141.990i 0.294990 0.199425i
\(713\) 527.092 0.739259
\(714\) 0 0
\(715\) 850.667 1.18974
\(716\) −293.116 700.483i −0.409380 0.978328i
\(717\) 0 0
\(718\) 350.028 70.2818i 0.487504 0.0978855i
\(719\) 872.944i 1.21411i 0.794660 + 0.607055i \(0.207649\pi\)
−0.794660 + 0.607055i \(0.792351\pi\)
\(720\) 0 0
\(721\) 426.184 + 137.454i 0.591101 + 0.190643i
\(722\) −1271.45 + 255.293i −1.76101 + 0.353592i
\(723\) 0 0
\(724\) −824.929 + 345.191i −1.13940 + 0.476783i
\(725\) 1324.51 1.82691
\(726\) 0 0
\(727\) −1102.49 −1.51649 −0.758244 0.651970i \(-0.773943\pi\)
−0.758244 + 0.651970i \(0.773943\pi\)
\(728\) 359.390 104.308i 0.493668 0.143280i
\(729\) 0 0
\(730\) 1425.27 286.180i 1.95243 0.392027i
\(731\) 237.869 0.325402
\(732\) 0 0
\(733\) 185.173 0.252624 0.126312 0.991991i \(-0.459686\pi\)
0.126312 + 0.991991i \(0.459686\pi\)
\(734\) −540.473 + 108.521i −0.736340 + 0.147849i
\(735\) 0 0
\(736\) 494.774 755.146i 0.672248 1.02601i
\(737\) 321.449i 0.436159i
\(738\) 0 0
\(739\) 418.919 0.566873 0.283436 0.958991i \(-0.408526\pi\)
0.283436 + 0.958991i \(0.408526\pi\)
\(740\) −486.580 + 203.609i −0.657541 + 0.275147i
\(741\) 0 0
\(742\) −71.4627 8.17021i −0.0963109 0.0110111i
\(743\) 268.321 0.361131 0.180566 0.983563i \(-0.442207\pi\)
0.180566 + 0.983563i \(0.442207\pi\)
\(744\) 0 0
\(745\) 582.288i 0.781594i
\(746\) −63.9095 318.291i −0.0856696 0.426664i
\(747\) 0 0
\(748\) 466.799 + 1115.55i 0.624063 + 1.49137i
\(749\) −171.023 + 530.270i −0.228336 + 0.707971i
\(750\) 0 0
\(751\) 113.223i 0.150764i −0.997155 0.0753818i \(-0.975982\pi\)
0.997155 0.0753818i \(-0.0240175\pi\)
\(752\) −653.834 644.461i −0.869460 0.856996i
\(753\) 0 0
\(754\) 725.064 145.585i 0.961623 0.193084i
\(755\) −692.919 −0.917773
\(756\) 0 0
\(757\) 1322.83i 1.74746i 0.486412 + 0.873730i \(0.338305\pi\)
−0.486412 + 0.873730i \(0.661695\pi\)
\(758\) −577.315 + 115.919i −0.761629 + 0.152927i
\(759\) 0 0
\(760\) −1473.02 + 995.818i −1.93818 + 1.31029i
\(761\) −897.995 −1.18002 −0.590010 0.807396i \(-0.700876\pi\)
−0.590010 + 0.807396i \(0.700876\pi\)
\(762\) 0 0
\(763\) −83.4877 + 258.859i −0.109420 + 0.339265i
\(764\) 965.258 403.911i 1.26343 0.528680i
\(765\) 0 0
\(766\) 166.300 + 828.229i 0.217101 + 1.08124i
\(767\) −554.906 −0.723476
\(768\) 0 0
\(769\) 228.027i 0.296524i 0.988948 + 0.148262i \(0.0473680\pi\)
−0.988948 + 0.148262i \(0.952632\pi\)
\(770\) 1770.63 + 202.433i 2.29952 + 0.262900i
\(771\) 0 0
\(772\) 1100.37 460.450i 1.42535 0.596438i
\(773\) 529.260i 0.684683i 0.939576 + 0.342342i \(0.111220\pi\)
−0.939576 + 0.342342i \(0.888780\pi\)
\(774\) 0 0
\(775\) −447.210 −0.577045
\(776\) −438.118 648.066i −0.564585 0.835136i
\(777\) 0 0
\(778\) 430.493 86.4383i 0.553332 0.111103i
\(779\) 1068.75i 1.37195i
\(780\) 0 0
\(781\) 1379.57i 1.76642i
\(782\) 919.078 184.541i 1.17529 0.235986i
\(783\) 0 0
\(784\) 772.878 131.589i 0.985814 0.167842i
\(785\) 803.734i 1.02387i
\(786\) 0 0
\(787\) 954.787i 1.21320i −0.795008 0.606599i \(-0.792533\pi\)
0.795008 0.606599i \(-0.207467\pi\)
\(788\) −54.3861 + 22.7578i −0.0690179 + 0.0288805i
\(789\) 0 0
\(790\) −464.392 + 93.2450i −0.587838 + 0.118032i
\(791\) 164.288 509.385i 0.207696 0.643976i
\(792\) 0 0
\(793\) 505.780 0.637806
\(794\) −320.522 + 64.3573i −0.403680 + 0.0810546i
\(795\) 0 0
\(796\) −19.0133 + 7.95610i −0.0238861 + 0.00999510i
\(797\) 460.317i 0.577562i −0.957395 0.288781i \(-0.906750\pi\)
0.957395 0.288781i \(-0.0932499\pi\)
\(798\) 0 0
\(799\) 953.265i 1.19307i
\(800\) −419.790 + 640.702i −0.524738 + 0.800877i
\(801\) 0 0
\(802\) −265.059 1320.08i −0.330497 1.64599i
\(803\) 1890.75 2.35461
\(804\) 0 0
\(805\) 424.060 1314.83i 0.526783 1.63333i
\(806\) −244.812 + 49.1557i −0.303737 + 0.0609872i
\(807\) 0 0
\(808\) −572.453 846.776i −0.708482 1.04799i
\(809\) 801.362i 0.990559i −0.868734 0.495279i \(-0.835066\pi\)
0.868734 0.495279i \(-0.164934\pi\)
\(810\) 0 0
\(811\) 280.177i 0.345471i 0.984968 + 0.172736i \(0.0552607\pi\)
−0.984968 + 0.172736i \(0.944739\pi\)
\(812\) 1543.83 130.486i 1.90127 0.160697i
\(813\) 0 0
\(814\) −672.608 + 135.053i −0.826300 + 0.165912i
\(815\) 1267.13i 1.55476i
\(816\) 0 0
\(817\) 454.892i 0.556783i
\(818\) 164.111 + 817.330i 0.200625 + 0.999181i
\(819\) 0 0
\(820\) −363.350 868.325i −0.443110 1.05893i
\(821\) −766.775 −0.933953 −0.466976 0.884270i \(-0.654657\pi\)
−0.466976 + 0.884270i \(0.654657\pi\)
\(822\) 0 0
\(823\) 534.131i 0.649005i −0.945885 0.324503i \(-0.894803\pi\)
0.945885 0.324503i \(-0.105197\pi\)
\(824\) −423.978 + 286.626i −0.514537 + 0.347847i
\(825\) 0 0
\(826\) −1155.01 132.051i −1.39832 0.159868i
\(827\) 558.663i 0.675529i 0.941231 + 0.337765i \(0.109671\pi\)
−0.941231 + 0.337765i \(0.890329\pi\)
\(828\) 0 0
\(829\) −343.185 −0.413974 −0.206987 0.978344i \(-0.566366\pi\)
−0.206987 + 0.978344i \(0.566366\pi\)
\(830\) 350.325 + 1744.74i 0.422078 + 2.10209i
\(831\) 0 0
\(832\) −159.378 + 396.875i −0.191560 + 0.477014i
\(833\) 660.665 + 475.633i 0.793115 + 0.570987i
\(834\) 0 0
\(835\) −892.556 −1.06893
\(836\) −2133.33 + 892.690i −2.55183 + 1.06781i
\(837\) 0 0
\(838\) 694.895 139.527i 0.829230 0.166501i
\(839\) 1321.98i 1.57566i 0.615890 + 0.787832i \(0.288797\pi\)
−0.615890 + 0.787832i \(0.711203\pi\)
\(840\) 0 0
\(841\) 2220.80 2.64066
\(842\) −195.717 974.738i −0.232443 1.15765i
\(843\) 0 0
\(844\) 400.073 167.410i 0.474020 0.198353i
\(845\) 869.846i 1.02940i
\(846\) 0 0
\(847\) 1399.92 + 451.504i 1.65280 + 0.533063i
\(848\) 57.7056 58.5449i 0.0680491 0.0690388i
\(849\) 0 0
\(850\) −779.790 + 156.573i −0.917400 + 0.184204i
\(851\) 531.808i 0.624922i
\(852\) 0 0
\(853\) −521.818 −0.611744 −0.305872 0.952073i \(-0.598948\pi\)
−0.305872 + 0.952073i \(0.598948\pi\)
\(854\) 1052.76 + 120.360i 1.23274 + 0.140937i
\(855\) 0 0
\(856\) −356.628 527.526i −0.416621 0.616268i
\(857\) −891.115 −1.03981 −0.519904 0.854225i \(-0.674032\pi\)
−0.519904 + 0.854225i \(0.674032\pi\)
\(858\) 0 0
\(859\) 730.878i 0.850847i −0.904994 0.425424i \(-0.860125\pi\)
0.904994 0.425424i \(-0.139875\pi\)
\(860\) 154.652 + 369.585i 0.179828 + 0.429750i
\(861\) 0 0
\(862\) −522.401 + 104.893i −0.606034 + 0.121685i
\(863\) 1079.58 1.25096 0.625480 0.780241i \(-0.284903\pi\)
0.625480 + 0.780241i \(0.284903\pi\)
\(864\) 0 0
\(865\) 334.170 0.386324
\(866\) 294.678 + 1467.60i 0.340275 + 1.69469i
\(867\) 0 0
\(868\) −521.264 + 44.0576i −0.600534 + 0.0507576i
\(869\) −616.057 −0.708926
\(870\) 0 0
\(871\) −118.046 −0.135529
\(872\) −174.093 257.520i −0.199648 0.295321i
\(873\) 0 0
\(874\) 352.910 + 1757.61i 0.403787 + 2.01100i
\(875\) 15.9806 49.5489i 0.0182635 0.0566273i
\(876\) 0 0
\(877\) 923.092i 1.05256i −0.850312 0.526278i \(-0.823587\pi\)
0.850312 0.526278i \(-0.176413\pi\)
\(878\) 1304.05 261.840i 1.48525 0.298223i
\(879\) 0 0
\(880\) −1429.77 + 1450.56i −1.62474 + 1.64837i
\(881\) 941.627 1.06882 0.534408 0.845227i \(-0.320535\pi\)
0.534408 + 0.845227i \(0.320535\pi\)
\(882\) 0 0
\(883\) 1197.51 1.35618 0.678089 0.734980i \(-0.262808\pi\)
0.678089 + 0.734980i \(0.262808\pi\)
\(884\) −409.663 + 171.423i −0.463420 + 0.193918i
\(885\) 0 0
\(886\) −79.7962 397.413i −0.0900634 0.448547i
\(887\) 1387.04i 1.56375i 0.623437 + 0.781874i \(0.285736\pi\)
−0.623437 + 0.781874i \(0.714264\pi\)
\(888\) 0 0
\(889\) −25.4867 + 79.0232i −0.0286689 + 0.0888900i
\(890\) 87.2845 + 434.707i 0.0980725 + 0.488435i
\(891\) 0 0
\(892\) 490.108 205.085i 0.549448 0.229916i
\(893\) 1822.99 2.04142
\(894\) 0 0
\(895\) 1327.98 1.48378
\(896\) −426.183 + 788.152i −0.475651 + 0.879634i
\(897\) 0 0
\(898\) 298.854 + 1488.39i 0.332799 + 1.65746i
\(899\) −1033.79 −1.14994
\(900\) 0 0
\(901\) 85.3562 0.0947350
\(902\) −241.008 1200.30i −0.267193 1.33071i
\(903\) 0 0
\(904\) 342.582 + 506.749i 0.378962 + 0.560563i
\(905\) 1563.91i 1.72808i
\(906\) 0 0
\(907\) 661.502 0.729329 0.364665 0.931139i \(-0.381184\pi\)
0.364665 + 0.931139i \(0.381184\pi\)
\(908\) −343.437 + 143.711i −0.378235 + 0.158272i
\(909\) 0 0
\(910\) −74.3396 + 650.229i −0.0816919 + 0.714538i
\(911\) 256.300 0.281339 0.140669 0.990057i \(-0.455075\pi\)
0.140669 + 0.990057i \(0.455075\pi\)
\(912\) 0 0
\(913\) 2314.55i 2.53510i
\(914\) −431.090 + 86.5583i −0.471652 + 0.0947027i
\(915\) 0 0
\(916\) 1492.92 624.709i 1.62982 0.681997i
\(917\) 720.823 + 232.481i 0.786066 + 0.253523i
\(918\) 0 0
\(919\) 1526.69i 1.66125i 0.556834 + 0.830624i \(0.312016\pi\)
−0.556834 + 0.830624i \(0.687984\pi\)
\(920\) 884.274 + 1308.02i 0.961168 + 1.42176i
\(921\) 0 0
\(922\) −155.186 772.880i −0.168315 0.838265i
\(923\) −506.623 −0.548887
\(924\) 0 0
\(925\) 451.212i 0.487796i
\(926\) 162.063 + 807.130i 0.175014 + 0.871631i
\(927\) 0 0
\(928\) −970.407 + 1481.08i −1.04570 + 1.59599i
\(929\) −181.855 −0.195753 −0.0978765 0.995199i \(-0.531205\pi\)
−0.0978765 + 0.995199i \(0.531205\pi\)
\(930\) 0 0
\(931\) −909.583 + 1263.43i −0.976995 + 1.35707i
\(932\) −188.652 450.837i −0.202417 0.483731i
\(933\) 0 0
\(934\) −878.646 + 176.423i −0.940734 + 0.188889i
\(935\) −2114.87 −2.26189
\(936\) 0 0
\(937\) 1347.05i 1.43763i −0.695204 0.718813i \(-0.744686\pi\)
0.695204 0.718813i \(-0.255314\pi\)
\(938\) −245.708 28.0914i −0.261949 0.0299481i
\(939\) 0 0
\(940\) 1481.12 619.773i 1.57566 0.659333i
\(941\) 742.050i 0.788576i −0.918987 0.394288i \(-0.870991\pi\)
0.918987 0.394288i \(-0.129009\pi\)
\(942\) 0 0
\(943\) −949.037 −1.00640
\(944\) 932.665 946.230i 0.987992 1.00236i
\(945\) 0 0
\(946\) 102.580 + 510.884i 0.108436 + 0.540046i
\(947\) 1393.76i 1.47176i −0.677112 0.735880i \(-0.736769\pi\)
0.677112 0.735880i \(-0.263231\pi\)
\(948\) 0 0
\(949\) 694.342i 0.731657i
\(950\) −299.426 1491.24i −0.315185 1.56973i
\(951\) 0 0
\(952\) −893.490 + 259.323i −0.938540 + 0.272398i
\(953\) 1353.08i 1.41981i −0.704295 0.709907i \(-0.748737\pi\)
0.704295 0.709907i \(-0.251263\pi\)
\(954\) 0 0
\(955\) 1829.95i 1.91618i
\(956\) 353.477 147.912i 0.369746 0.154720i
\(957\) 0 0
\(958\) 163.524 + 814.407i 0.170693 + 0.850112i
\(959\) 356.620 1105.73i 0.371867 1.15300i
\(960\) 0 0
\(961\) −611.948 −0.636783
\(962\) −49.5955 247.003i −0.0515546 0.256760i
\(963\) 0 0
\(964\) −240.004 573.557i −0.248967 0.594976i
\(965\) 2086.10i 2.16176i
\(966\) 0 0
\(967\) 249.421i 0.257932i −0.991649 0.128966i \(-0.958834\pi\)
0.991649 0.128966i \(-0.0411659\pi\)
\(968\) −1392.68 + 941.503i −1.43871 + 0.972627i
\(969\) 0 0
\(970\) 1341.31 269.320i 1.38279 0.277650i
\(971\) −462.662 −0.476480 −0.238240 0.971206i \(-0.576570\pi\)
−0.238240 + 0.971206i \(0.576570\pi\)
\(972\) 0 0
\(973\) −150.481 + 466.575i −0.154656 + 0.479523i
\(974\) −252.621 1258.14i −0.259365 1.29173i
\(975\) 0 0
\(976\) −850.097 + 862.461i −0.871001 + 0.883669i
\(977\) 920.090i 0.941751i 0.882200 + 0.470875i \(0.156062\pi\)
−0.882200 + 0.470875i \(0.843938\pi\)
\(978\) 0 0
\(979\) 576.677i 0.589047i
\(980\) −309.469 + 1335.73i −0.315785 + 1.36299i
\(981\) 0 0
\(982\) −72.2447 359.804i −0.0735690 0.366399i
\(983\) 529.109i 0.538259i 0.963104 + 0.269130i \(0.0867360\pi\)
−0.963104 + 0.269130i \(0.913264\pi\)
\(984\) 0 0
\(985\) 103.106i 0.104676i
\(986\) −1802.60 + 361.943i −1.82820 + 0.367082i
\(987\) 0 0
\(988\) −327.824 783.425i −0.331805 0.792941i
\(989\) 403.938 0.408431
\(990\) 0 0
\(991\) 880.886i 0.888886i 0.895807 + 0.444443i \(0.146598\pi\)
−0.895807 + 0.444443i \(0.853402\pi\)
\(992\) 327.650 500.074i 0.330293 0.504107i
\(993\) 0 0
\(994\) −1054.51 120.561i −1.06088 0.121289i
\(995\) 36.0457i 0.0362268i
\(996\) 0 0
\(997\) 1063.46 1.06666 0.533330 0.845907i \(-0.320940\pi\)
0.533330 + 0.845907i \(0.320940\pi\)
\(998\) −347.665 + 69.8073i −0.348361 + 0.0699472i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.e.c.251.46 yes 48
3.2 odd 2 inner 504.3.e.c.251.3 yes 48
4.3 odd 2 2016.3.e.c.1007.32 48
7.6 odd 2 inner 504.3.e.c.251.45 yes 48
8.3 odd 2 inner 504.3.e.c.251.2 yes 48
8.5 even 2 2016.3.e.c.1007.37 48
12.11 even 2 2016.3.e.c.1007.21 48
21.20 even 2 inner 504.3.e.c.251.4 yes 48
24.5 odd 2 2016.3.e.c.1007.2 48
24.11 even 2 inner 504.3.e.c.251.47 yes 48
28.27 even 2 2016.3.e.c.1007.1 48
56.13 odd 2 2016.3.e.c.1007.22 48
56.27 even 2 inner 504.3.e.c.251.1 48
84.83 odd 2 2016.3.e.c.1007.38 48
168.83 odd 2 inner 504.3.e.c.251.48 yes 48
168.125 even 2 2016.3.e.c.1007.31 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.e.c.251.1 48 56.27 even 2 inner
504.3.e.c.251.2 yes 48 8.3 odd 2 inner
504.3.e.c.251.3 yes 48 3.2 odd 2 inner
504.3.e.c.251.4 yes 48 21.20 even 2 inner
504.3.e.c.251.45 yes 48 7.6 odd 2 inner
504.3.e.c.251.46 yes 48 1.1 even 1 trivial
504.3.e.c.251.47 yes 48 24.11 even 2 inner
504.3.e.c.251.48 yes 48 168.83 odd 2 inner
2016.3.e.c.1007.1 48 28.27 even 2
2016.3.e.c.1007.2 48 24.5 odd 2
2016.3.e.c.1007.21 48 12.11 even 2
2016.3.e.c.1007.22 48 56.13 odd 2
2016.3.e.c.1007.31 48 168.125 even 2
2016.3.e.c.1007.32 48 4.3 odd 2
2016.3.e.c.1007.37 48 8.5 even 2
2016.3.e.c.1007.38 48 84.83 odd 2