Properties

Label 504.3.e.b.251.6
Level $504$
Weight $3$
Character 504.251
Analytic conductor $13.733$
Analytic rank $0$
Dimension $8$
CM discriminant -7
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(251,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.251"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,124] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.157351936.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 251.6
Root \(0.581861 + 1.28897i\) of defining polynomial
Character \(\chi\) \(=\) 504.251
Dual form 504.3.e.b.251.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.125246 + 1.99607i) q^{2} +(-3.96863 + 0.500000i) q^{4} -7.00000i q^{7} +(-1.49509 - 7.85905i) q^{8} +10.7240i q^{11} +(13.9725 - 0.876721i) q^{14} +(15.5000 - 3.96863i) q^{16} +(-21.4059 + 1.34313i) q^{22} +42.6612 q^{23} +25.0000 q^{25} +(3.50000 + 27.7804i) q^{28} +53.1504 q^{29} +(9.86299 + 30.4421i) q^{32} +38.0000i q^{37} -63.4980 q^{43} +(-5.36199 - 42.5595i) q^{44} +(5.34313 + 85.1549i) q^{46} -49.0000 q^{49} +(3.13115 + 49.9019i) q^{50} +70.5905 q^{53} +(-55.0134 + 10.4656i) q^{56} +(6.65687 + 106.092i) q^{58} +(-59.5294 + 23.5000i) q^{64} +118.000 q^{67} -20.7437 q^{71} +(-75.8508 + 4.75934i) q^{74} +75.0679 q^{77} -126.996i q^{79} +(-7.95286 - 126.747i) q^{86} +(84.2804 - 16.0333i) q^{88} +(-169.306 + 21.3306i) q^{92} +(-6.13705 - 97.8077i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 124 q^{16} - 76 q^{22} + 200 q^{25} + 28 q^{28} - 116 q^{46} - 392 q^{49} + 212 q^{58} + 944 q^{67} + 452 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.125246 + 1.99607i 0.0626229 + 0.998037i
\(3\) 0 0
\(4\) −3.96863 + 0.500000i −0.992157 + 0.125000i
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 7.00000i 1.00000i
\(8\) −1.49509 7.85905i −0.186886 0.982382i
\(9\) 0 0
\(10\) 0 0
\(11\) 10.7240i 0.974908i 0.873149 + 0.487454i \(0.162074\pi\)
−0.873149 + 0.487454i \(0.837926\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 13.9725 0.876721i 0.998037 0.0626229i
\(15\) 0 0
\(16\) 15.5000 3.96863i 0.968750 0.248039i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −21.4059 + 1.34313i −0.972995 + 0.0610516i
\(23\) 42.6612 1.85483 0.927417 0.374029i \(-0.122024\pi\)
0.927417 + 0.374029i \(0.122024\pi\)
\(24\) 0 0
\(25\) 25.0000 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 3.50000 + 27.7804i 0.125000 + 0.992157i
\(29\) 53.1504 1.83277 0.916386 0.400295i \(-0.131093\pi\)
0.916386 + 0.400295i \(0.131093\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 9.86299 + 30.4421i 0.308218 + 0.951316i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 38.0000i 1.02703i 0.858082 + 0.513514i \(0.171656\pi\)
−0.858082 + 0.513514i \(0.828344\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −63.4980 −1.47670 −0.738349 0.674419i \(-0.764394\pi\)
−0.738349 + 0.674419i \(0.764394\pi\)
\(44\) −5.36199 42.5595i −0.121864 0.967262i
\(45\) 0 0
\(46\) 5.34313 + 85.1549i 0.116155 + 1.85119i
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −49.0000 −1.00000
\(50\) 3.13115 + 49.9019i 0.0626229 + 0.998037i
\(51\) 0 0
\(52\) 0 0
\(53\) 70.5905 1.33190 0.665948 0.745998i \(-0.268027\pi\)
0.665948 + 0.745998i \(0.268027\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −55.0134 + 10.4656i −0.982382 + 0.186886i
\(57\) 0 0
\(58\) 6.65687 + 106.092i 0.114774 + 1.82918i
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −59.5294 + 23.5000i −0.930147 + 0.367188i
\(65\) 0 0
\(66\) 0 0
\(67\) 118.000 1.76119 0.880597 0.473866i \(-0.157142\pi\)
0.880597 + 0.473866i \(0.157142\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −20.7437 −0.292164 −0.146082 0.989272i \(-0.546666\pi\)
−0.146082 + 0.989272i \(0.546666\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) −75.8508 + 4.75934i −1.02501 + 0.0643154i
\(75\) 0 0
\(76\) 0 0
\(77\) 75.0679 0.974908
\(78\) 0 0
\(79\) 126.996i 1.60755i −0.594937 0.803773i \(-0.702823\pi\)
0.594937 0.803773i \(-0.297177\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −7.95286 126.747i −0.0924752 1.47380i
\(87\) 0 0
\(88\) 84.2804 16.0333i 0.957732 0.182197i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −169.306 + 21.3306i −1.84029 + 0.231854i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −6.13705 97.8077i −0.0626229 0.998037i
\(99\) 0 0
\(100\) −99.2157 + 12.5000i −0.992157 + 0.125000i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 8.84117 + 140.904i 0.0834072 + 1.32928i
\(107\) 56.6887i 0.529801i −0.964276 0.264901i \(-0.914661\pi\)
0.964276 0.264901i \(-0.0853391\pi\)
\(108\) 0 0
\(109\) 106.000i 0.972477i 0.873826 + 0.486239i \(0.161631\pi\)
−0.873826 + 0.486239i \(0.838369\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −27.7804 108.500i −0.248039 0.968750i
\(113\) 186.911i 1.65408i 0.562144 + 0.827040i \(0.309977\pi\)
−0.562144 + 0.827040i \(0.690023\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −210.934 + 26.5752i −1.81840 + 0.229097i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.99606 0.0495542
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 253.992i 1.99994i −0.00787402 0.999969i \(-0.502506\pi\)
0.00787402 0.999969i \(-0.497494\pi\)
\(128\) −54.3636 115.882i −0.424715 0.905327i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 14.7790 + 235.537i 0.110291 + 1.75774i
\(135\) 0 0
\(136\) 0 0
\(137\) 26.6297i 0.194377i −0.995266 0.0971887i \(-0.969015\pi\)
0.995266 0.0971887i \(-0.0309850\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2.59806 41.4059i −0.0182962 0.291591i
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −19.0000 150.808i −0.128378 1.01897i
\(149\) 296.155 1.98762 0.993808 0.111111i \(-0.0354409\pi\)
0.993808 + 0.111111i \(0.0354409\pi\)
\(150\) 0 0
\(151\) 274.000i 1.81457i −0.420517 0.907285i \(-0.638151\pi\)
0.420517 0.907285i \(-0.361849\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 9.40194 + 149.841i 0.0610516 + 0.972995i
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 253.494 15.9057i 1.60439 0.100669i
\(159\) 0 0
\(160\) 0 0
\(161\) 298.628i 1.85483i
\(162\) 0 0
\(163\) 74.0000 0.453988 0.226994 0.973896i \(-0.427110\pi\)
0.226994 + 0.973896i \(0.427110\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −169.000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 252.000 31.7490i 1.46512 0.184587i
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 175.000i 1.00000i
\(176\) 42.5595 + 166.222i 0.241815 + 0.944442i
\(177\) 0 0
\(178\) 0 0
\(179\) 316.664i 1.76907i 0.466473 + 0.884535i \(0.345524\pi\)
−0.466473 + 0.884535i \(0.654476\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −63.7824 335.276i −0.346643 1.82215i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −374.526 −1.96087 −0.980435 0.196842i \(-0.936931\pi\)
−0.980435 + 0.196842i \(0.936931\pi\)
\(192\) 0 0
\(193\) 380.988 1.97403 0.987016 0.160622i \(-0.0513499\pi\)
0.987016 + 0.160622i \(0.0513499\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 194.463 24.5000i 0.992157 0.125000i
\(197\) 4.83793 0.0245580 0.0122790 0.999925i \(-0.496091\pi\)
0.0122790 + 0.999925i \(0.496091\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −37.3773 196.476i −0.186886 0.982382i
\(201\) 0 0
\(202\) 0 0
\(203\) 372.053i 1.83277i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −317.490 −1.50469 −0.752346 0.658768i \(-0.771078\pi\)
−0.752346 + 0.658768i \(0.771078\pi\)
\(212\) −280.147 + 35.2953i −1.32145 + 0.166487i
\(213\) 0 0
\(214\) 113.155 7.10002i 0.528761 0.0331777i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −211.584 + 13.2761i −0.970568 + 0.0608993i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 213.095 69.0409i 0.951316 0.308218i
\(225\) 0 0
\(226\) −373.088 + 23.4098i −1.65083 + 0.103583i
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −79.4647 417.712i −0.342520 1.80048i
\(233\) 341.994i 1.46778i 0.679266 + 0.733892i \(0.262298\pi\)
−0.679266 + 0.733892i \(0.737702\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −142.355 −0.595627 −0.297814 0.954624i \(-0.596257\pi\)
−0.297814 + 0.954624i \(0.596257\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0.750982 + 11.9686i 0.00310323 + 0.0494570i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 457.498i 1.80829i
\(254\) 506.987 31.8115i 1.99601 0.125242i
\(255\) 0 0
\(256\) 224.500 123.027i 0.876953 0.480576i
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 266.000 1.02703
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −471.872 −1.79419 −0.897095 0.441837i \(-0.854327\pi\)
−0.897095 + 0.441837i \(0.854327\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −468.298 + 59.0000i −1.74738 + 0.220149i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 53.1549 3.33526i 0.193996 0.0121725i
\(275\) 268.100i 0.974908i
\(276\) 0 0
\(277\) 317.490i 1.14617i 0.819495 + 0.573087i \(0.194254\pi\)
−0.819495 + 0.573087i \(0.805746\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 308.522i 1.09794i −0.835841 0.548972i \(-0.815019\pi\)
0.835841 0.548972i \(-0.184981\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 82.3238 10.3718i 0.289873 0.0365205i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −289.000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 298.644 56.8135i 1.00893 0.191937i
\(297\) 0 0
\(298\) 37.0922 + 591.147i 0.124470 + 1.98371i
\(299\) 0 0
\(300\) 0 0
\(301\) 444.486i 1.47670i
\(302\) 546.924 34.3174i 1.81101 0.113634i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) −297.917 + 37.5340i −0.967262 + 0.121864i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 63.4980 + 504.000i 0.200943 + 1.59494i
\(317\) −623.542 −1.96701 −0.983505 0.180879i \(-0.942106\pi\)
−0.983505 + 0.180879i \(0.942106\pi\)
\(318\) 0 0
\(319\) 569.984i 1.78678i
\(320\) 0 0
\(321\) 0 0
\(322\) 596.084 37.4019i 1.85119 0.116155i
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 9.26819 + 147.710i 0.0284300 + 0.453097i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 190.494 0.575511 0.287755 0.957704i \(-0.407091\pi\)
0.287755 + 0.957704i \(0.407091\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −634.980 −1.88421 −0.942107 0.335312i \(-0.891158\pi\)
−0.942107 + 0.335312i \(0.891158\pi\)
\(338\) −21.1665 337.337i −0.0626229 0.998037i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 343.000i 1.00000i
\(344\) 94.9353 + 499.034i 0.275975 + 1.45068i
\(345\) 0 0
\(346\) 0 0
\(347\) 374.652i 1.07969i −0.841765 0.539844i \(-0.818483\pi\)
0.841765 0.539844i \(-0.181517\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 349.313 21.9180i 0.998037 0.0626229i
\(351\) 0 0
\(352\) −326.461 + 105.771i −0.927445 + 0.300485i
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −632.084 + 39.6608i −1.76560 + 0.110784i
\(359\) 252.915 0.704499 0.352249 0.935906i \(-0.385417\pi\)
0.352249 + 0.935906i \(0.385417\pi\)
\(360\) 0 0
\(361\) 361.000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 661.248 169.306i 1.79687 0.460072i
\(369\) 0 0
\(370\) 0 0
\(371\) 494.134i 1.33190i
\(372\) 0 0
\(373\) 698.478i 1.87260i 0.351206 + 0.936298i \(0.385772\pi\)
−0.351206 + 0.936298i \(0.614228\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −444.486 −1.17279 −0.586393 0.810026i \(-0.699453\pi\)
−0.586393 + 0.810026i \(0.699453\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −46.9078 747.582i −0.122795 1.95702i
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 47.7172 + 760.481i 0.123620 + 1.97016i
\(387\) 0 0
\(388\) 0 0
\(389\) 186.567 0.479607 0.239804 0.970821i \(-0.422917\pi\)
0.239804 + 0.970821i \(0.422917\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 73.2595 + 385.094i 0.186886 + 0.982382i
\(393\) 0 0
\(394\) 0.605930 + 9.65687i 0.00153789 + 0.0245098i
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 387.500 99.2157i 0.968750 0.248039i
\(401\) 759.181i 1.89322i 0.322381 + 0.946610i \(0.395517\pi\)
−0.322381 + 0.946610i \(0.604483\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 742.645 46.5981i 1.82918 0.114774i
\(407\) −407.512 −1.00126
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 825.474i 1.96075i −0.197150 0.980373i \(-0.563168\pi\)
0.197150 0.980373i \(-0.436832\pi\)
\(422\) −39.7643 633.734i −0.0942282 1.50174i
\(423\) 0 0
\(424\) −105.539 554.774i −0.248913 1.30843i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 28.3444 + 224.976i 0.0662251 + 0.525646i
\(429\) 0 0
\(430\) 0 0
\(431\) 484.114 1.12323 0.561617 0.827397i \(-0.310179\pi\)
0.561617 + 0.827397i \(0.310179\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −53.0000 420.674i −0.121560 0.964850i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 867.486i 1.95821i 0.203361 + 0.979104i \(0.434813\pi\)
−0.203361 + 0.979104i \(0.565187\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 164.500 + 416.706i 0.367188 + 0.930147i
\(449\) 572.287i 1.27458i −0.770624 0.637291i \(-0.780055\pi\)
0.770624 0.637291i \(-0.219945\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −93.4555 741.780i −0.206760 1.64111i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 253.992 0.555781 0.277891 0.960613i \(-0.410365\pi\)
0.277891 + 0.960613i \(0.410365\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 634.980i 1.37145i 0.727862 + 0.685724i \(0.240514\pi\)
−0.727862 + 0.685724i \(0.759486\pi\)
\(464\) 823.831 210.934i 1.77550 0.454599i
\(465\) 0 0
\(466\) −682.645 + 42.8333i −1.46490 + 0.0919169i
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 826.000i 1.76119i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 680.952i 1.43965i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −17.8294 284.151i −0.0372999 0.594458i
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −23.7961 + 2.99803i −0.0491656 + 0.00619428i
\(485\) 0 0
\(486\) 0 0
\(487\) 398.000i 0.817248i −0.912703 0.408624i \(-0.866009\pi\)
0.912703 0.408624i \(-0.133991\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 509.947i 1.03859i 0.854596 + 0.519294i \(0.173805\pi\)
−0.854596 + 0.519294i \(0.826195\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 145.206i 0.292164i
\(498\) 0 0
\(499\) 952.470 1.90876 0.954379 0.298597i \(-0.0965187\pi\)
0.954379 + 0.298597i \(0.0965187\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −913.200 + 57.2997i −1.80474 + 0.113241i
\(507\) 0 0
\(508\) 126.996 + 1008.00i 0.249992 + 1.98425i
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 273.690 + 432.710i 0.534550 + 0.845137i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 33.3154 + 530.956i 0.0643154 + 1.02501i
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −59.1000 941.892i −0.112357 1.79067i
\(527\) 0 0
\(528\) 0 0
\(529\) 1290.98 2.44041
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −176.421 927.368i −0.329143 1.73016i
\(537\) 0 0
\(538\) 0 0
\(539\) 525.475i 0.974908i
\(540\) 0 0
\(541\) 1079.47i 1.99532i −0.0683919 0.997659i \(-0.521787\pi\)
0.0683919 0.997659i \(-0.478213\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −842.000 −1.53931 −0.769653 0.638463i \(-0.779571\pi\)
−0.769653 + 0.638463i \(0.779571\pi\)
\(548\) 13.3149 + 105.683i 0.0242972 + 0.192853i
\(549\) 0 0
\(550\) −535.147 + 33.5784i −0.972995 + 0.0610516i
\(551\) 0 0
\(552\) 0 0
\(553\) −888.972 −1.60755
\(554\) −633.734 + 39.7643i −1.14392 + 0.0717767i
\(555\) 0 0
\(556\) 0 0
\(557\) −1052.75 −1.89004 −0.945021 0.327009i \(-0.893959\pi\)
−0.945021 + 0.327009i \(0.893959\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 615.833 38.6411i 1.09579 0.0687564i
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 31.0137 + 163.025i 0.0546015 + 0.287017i
\(569\) 1120.98i 1.97009i 0.172306 + 0.985044i \(0.444878\pi\)
−0.172306 + 0.985044i \(0.555122\pi\)
\(570\) 0 0
\(571\) −1126.00 −1.97198 −0.985989 0.166807i \(-0.946654\pi\)
−0.985989 + 0.166807i \(0.946654\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1066.53 1.85483
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −36.1960 576.866i −0.0626229 0.998037i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 757.012i 1.29848i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 150.808 + 589.000i 0.254743 + 0.994932i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1175.33 + 148.077i −1.97203 + 0.248452i
\(597\) 0 0
\(598\) 0 0
\(599\) 715.095 1.19381 0.596907 0.802310i \(-0.296396\pi\)
0.596907 + 0.802310i \(0.296396\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) −887.228 + 55.6700i −1.47380 + 0.0924752i
\(603\) 0 0
\(604\) 137.000 + 1087.40i 0.226821 + 1.80034i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 1206.46i 1.96813i −0.177814 0.984064i \(-0.556903\pi\)
0.177814 0.984064i \(-0.443097\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −112.233 589.963i −0.182197 0.957732i
\(617\) 383.699i 0.621879i −0.950430 0.310939i \(-0.899356\pi\)
0.950430 0.310939i \(-0.100644\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 625.000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 761.976i 1.20757i −0.797147 0.603785i \(-0.793659\pi\)
0.797147 0.603785i \(-0.206341\pi\)
\(632\) −998.069 + 189.871i −1.57922 + 0.300428i
\(633\) 0 0
\(634\) −78.0961 1244.64i −0.123180 1.96315i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −1137.73 + 71.3881i −1.78328 + 0.111894i
\(639\) 0 0
\(640\) 0 0
\(641\) 1278.19i 1.99406i −0.0770186 0.997030i \(-0.524540\pi\)
0.0770186 0.997030i \(-0.475460\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 149.314 + 1185.14i 0.231854 + 1.84029i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −293.678 + 37.0000i −0.450427 + 0.0567485i
\(653\) −470.120 −0.719938 −0.359969 0.932964i \(-0.617213\pi\)
−0.359969 + 0.932964i \(0.617213\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1260.16i 1.91223i −0.292999 0.956113i \(-0.594653\pi\)
0.292999 0.956113i \(-0.405347\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 23.8586 + 380.240i 0.0360402 + 0.574381i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2267.46 3.39949
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1269.96 −1.88701 −0.943507 0.331352i \(-0.892495\pi\)
−0.943507 + 0.331352i \(0.892495\pi\)
\(674\) −79.5286 1267.47i −0.117995 1.88052i
\(675\) 0 0
\(676\) 670.698 84.5000i 0.992157 0.125000i
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1140.68i 1.67010i 0.550178 + 0.835048i \(0.314560\pi\)
−0.550178 + 0.835048i \(0.685440\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −684.654 + 42.9593i −0.998037 + 0.0626229i
\(687\) 0 0
\(688\) −984.219 + 252.000i −1.43055 + 0.366279i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 747.833 46.9236i 1.07757 0.0676133i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 87.5000 + 694.510i 0.125000 + 0.992157i
\(701\) −913.702 −1.30343 −0.651713 0.758465i \(-0.725949\pi\)
−0.651713 + 0.758465i \(0.725949\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −252.014 638.393i −0.357974 0.906808i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1382.00i 1.94922i −0.223900 0.974612i \(-0.571879\pi\)
0.223900 0.974612i \(-0.428121\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −158.332 1256.72i −0.221134 1.75520i
\(717\) 0 0
\(718\) 31.6766 + 504.837i 0.0441178 + 0.703116i
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 45.2137 + 720.583i 0.0626229 + 0.998037i
\(723\) 0 0
\(724\) 0 0
\(725\) 1328.76 1.83277
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 420.767 + 1298.70i 0.571694 + 1.76453i
\(737\) 1265.43i 1.71700i
\(738\) 0 0
\(739\) −1226.00 −1.65900 −0.829499 0.558508i \(-0.811374\pi\)
−0.829499 + 0.558508i \(0.811374\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 986.327 61.8882i 1.32928 0.0834072i
\(743\) 967.054 1.30155 0.650777 0.759269i \(-0.274443\pi\)
0.650777 + 0.759269i \(0.274443\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −1394.21 + 87.4815i −1.86892 + 0.117267i
\(747\) 0 0
\(748\) 0 0
\(749\) −396.821 −0.529801
\(750\) 0 0
\(751\) 802.000i 1.06791i 0.845513 + 0.533955i \(0.179295\pi\)
−0.845513 + 0.533955i \(0.820705\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1402.00i 1.85205i −0.377465 0.926024i \(-0.623204\pi\)
0.377465 0.926024i \(-0.376796\pi\)
\(758\) −55.6700 887.228i −0.0734433 1.17048i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 742.000 0.972477
\(764\) 1486.35 187.263i 1.94549 0.245109i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1512.00 + 190.494i −1.95855 + 0.246754i
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 23.3668 + 372.402i 0.0300344 + 0.478666i
\(779\) 0 0
\(780\) 0 0
\(781\) 222.455i 0.284833i
\(782\) 0 0
\(783\) 0 0
\(784\) −759.500 + 194.463i −0.968750 + 0.248039i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) −19.1999 + 2.41896i −0.0243654 + 0.00306975i
\(789\) 0 0
\(790\) 0 0
\(791\) 1308.38 1.65408
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 246.575 + 761.053i 0.308218 + 0.951316i
\(801\) 0 0
\(802\) −1515.38 + 95.0843i −1.88950 + 0.118559i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1014.43i 1.25393i 0.779048 + 0.626964i \(0.215703\pi\)
−0.779048 + 0.626964i \(0.784297\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 186.026 + 1476.54i 0.229097 + 1.81840i
\(813\) 0 0
\(814\) −51.0391 813.423i −0.0627016 0.999292i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1641.99 1.99999 0.999997 0.00264006i \(-0.000840357\pi\)
0.999997 + 0.00264006i \(0.000840357\pi\)
\(822\) 0 0
\(823\) 1523.95i 1.85170i 0.377886 + 0.925852i \(0.376651\pi\)
−0.377886 + 0.925852i \(0.623349\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 953.026i 1.15239i −0.817312 0.576195i \(-0.804537\pi\)
0.817312 0.576195i \(-0.195463\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1983.96 2.35905
\(842\) 1647.71 103.387i 1.95690 0.122788i
\(843\) 0 0
\(844\) 1260.00 158.745i 1.49289 0.188087i
\(845\) 0 0
\(846\) 0 0
\(847\) 41.9724i 0.0495542i
\(848\) 1094.15 280.147i 1.29027 0.330362i
\(849\) 0 0
\(850\) 0 0
\(851\) 1621.12i 1.90496i
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −445.520 + 84.7548i −0.520467 + 0.0990126i
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 60.6332 + 966.327i 0.0703402 + 1.12103i
\(863\) 1504.48 1.74331 0.871655 0.490119i \(-0.163047\pi\)
0.871655 + 0.490119i \(0.163047\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1361.90 1.56721
\(870\) 0 0
\(871\) 0 0
\(872\) 833.060 158.480i 0.955344 0.181743i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1587.45i 1.81009i 0.425314 + 0.905046i \(0.360164\pi\)
−0.425314 + 0.905046i \(0.639836\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −698.478 −0.791029 −0.395514 0.918460i \(-0.629434\pi\)
−0.395514 + 0.918460i \(0.629434\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1731.57 + 108.649i −1.95436 + 0.122629i
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) −1777.94 −1.99994
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −811.173 + 380.545i −0.905327 + 0.424715i
\(897\) 0 0
\(898\) 1142.33 71.6766i 1.27208 0.0798180i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 1468.94 279.449i 1.62494 0.309125i
\(905\) 0 0
\(906\) 0 0
\(907\) −317.490 −0.350044 −0.175022 0.984564i \(-0.556000\pi\)
−0.175022 + 0.984564i \(0.556000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −448.798 −0.492643 −0.246321 0.969188i \(-0.579222\pi\)
−0.246321 + 0.969188i \(0.579222\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 31.8115 + 506.987i 0.0348047 + 0.554691i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 466.000i 0.507073i −0.967326 0.253536i \(-0.918406\pi\)
0.967326 0.253536i \(-0.0815938\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 950.000i 1.02703i
\(926\) −1267.47 + 79.5286i −1.36876 + 0.0858841i
\(927\) 0 0
\(928\) 524.222 + 1618.01i 0.564894 + 1.74354i
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −170.997 1357.25i −0.183473 1.45627i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 1648.76 103.453i 1.75774 0.110291i
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 1359.23 85.2864i 1.43682 0.0901548i
\(947\) 233.253i 0.246307i −0.992388 0.123154i \(-0.960699\pi\)
0.992388 0.123154i \(-0.0393008\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1899.03i 1.99268i −0.0854655 0.996341i \(-0.527238\pi\)
0.0854655 0.996341i \(-0.472762\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 564.953 71.1774i 0.590955 0.0744534i
\(957\) 0 0
\(958\) 0 0
\(959\) −186.408 −0.194377
\(960\) 0 0
\(961\) −961.000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1904.94i 1.96995i 0.172699 + 0.984975i \(0.444751\pi\)
−0.172699 + 0.984975i \(0.555249\pi\)
\(968\) −8.96466 47.1234i −0.00926101 0.0486812i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 794.438 49.8478i 0.815644 0.0511785i
\(975\) 0 0
\(976\) 0 0
\(977\) 1262.38i 1.29210i −0.763296 0.646048i \(-0.776420\pi\)
0.763296 0.646048i \(-0.223580\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −1017.89 + 63.8687i −1.03655 + 0.0650394i
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2708.90 −2.73903
\(990\) 0 0
\(991\) 1406.00i 1.41877i −0.704822 0.709384i \(-0.748973\pi\)
0.704822 0.709384i \(-0.251027\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −289.841 + 18.1864i −0.291591 + 0.0182962i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 119.293 + 1901.20i 0.119532 + 1.90501i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.e.b.251.6 yes 8
3.2 odd 2 inner 504.3.e.b.251.3 8
4.3 odd 2 2016.3.e.b.1007.6 8
7.6 odd 2 CM 504.3.e.b.251.6 yes 8
8.3 odd 2 inner 504.3.e.b.251.4 yes 8
8.5 even 2 2016.3.e.b.1007.2 8
12.11 even 2 2016.3.e.b.1007.7 8
21.20 even 2 inner 504.3.e.b.251.3 8
24.5 odd 2 2016.3.e.b.1007.3 8
24.11 even 2 inner 504.3.e.b.251.5 yes 8
28.27 even 2 2016.3.e.b.1007.6 8
56.13 odd 2 2016.3.e.b.1007.2 8
56.27 even 2 inner 504.3.e.b.251.4 yes 8
84.83 odd 2 2016.3.e.b.1007.7 8
168.83 odd 2 inner 504.3.e.b.251.5 yes 8
168.125 even 2 2016.3.e.b.1007.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.e.b.251.3 8 3.2 odd 2 inner
504.3.e.b.251.3 8 21.20 even 2 inner
504.3.e.b.251.4 yes 8 8.3 odd 2 inner
504.3.e.b.251.4 yes 8 56.27 even 2 inner
504.3.e.b.251.5 yes 8 24.11 even 2 inner
504.3.e.b.251.5 yes 8 168.83 odd 2 inner
504.3.e.b.251.6 yes 8 1.1 even 1 trivial
504.3.e.b.251.6 yes 8 7.6 odd 2 CM
2016.3.e.b.1007.2 8 8.5 even 2
2016.3.e.b.1007.2 8 56.13 odd 2
2016.3.e.b.1007.3 8 24.5 odd 2
2016.3.e.b.1007.3 8 168.125 even 2
2016.3.e.b.1007.6 8 4.3 odd 2
2016.3.e.b.1007.6 8 28.27 even 2
2016.3.e.b.1007.7 8 12.11 even 2
2016.3.e.b.1007.7 8 84.83 odd 2