Properties

Label 504.2.cj.e.37.3
Level $504$
Weight $2$
Character 504.37
Analytic conductor $4.024$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(37,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.cj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 37.3
Character \(\chi\) \(=\) 504.37
Dual form 504.2.cj.e.109.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.10325 - 0.884778i) q^{2} +(0.434335 + 1.95227i) q^{4} +(-0.0402223 - 0.0232224i) q^{5} +(-1.97032 + 1.76574i) q^{7} +(1.24814 - 2.53814i) q^{8} +(0.0238287 + 0.0612079i) q^{10} +(-3.11586 + 1.79894i) q^{11} -6.29415i q^{13} +(3.73605 - 0.204763i) q^{14} +(-3.62271 + 1.69588i) q^{16} +(-0.258110 - 0.447060i) q^{17} +(-2.80834 - 1.62140i) q^{19} +(0.0278663 - 0.0886110i) q^{20} +(5.02925 + 0.772156i) q^{22} +(3.47322 - 6.01578i) q^{23} +(-2.49892 - 4.32826i) q^{25} +(-5.56893 + 6.94404i) q^{26} +(-4.30298 - 3.07967i) q^{28} -2.29579i q^{29} +(-1.05460 - 1.82662i) q^{31} +(5.49724 + 1.33431i) q^{32} +(-0.110788 + 0.721591i) q^{34} +(0.120255 - 0.0252667i) q^{35} +(-1.12720 - 0.650790i) q^{37} +(1.66374 + 4.27357i) q^{38} +(-0.109145 + 0.0731049i) q^{40} -10.1883 q^{41} +9.12162i q^{43} +(-4.86535 - 5.30165i) q^{44} +(-9.15447 + 3.56391i) q^{46} +(2.32465 - 4.02641i) q^{47} +(0.764321 - 6.95815i) q^{49} +(-1.07261 + 6.98616i) q^{50} +(12.2879 - 2.73377i) q^{52} +(-4.91727 + 2.83899i) q^{53} +0.167103 q^{55} +(2.02245 + 7.20484i) q^{56} +(-2.03126 + 2.53284i) q^{58} +(1.42910 - 0.825090i) q^{59} +(-1.10386 - 0.637312i) q^{61} +(-0.452663 + 2.94831i) q^{62} +(-4.88428 - 6.33591i) q^{64} +(-0.146165 + 0.253165i) q^{65} +(-6.72366 + 3.88191i) q^{67} +(0.760675 - 0.698075i) q^{68} +(-0.155028 - 0.0785238i) q^{70} -11.8320 q^{71} +(5.57028 + 9.64802i) q^{73} +(0.667784 + 1.71531i) q^{74} +(1.94564 - 6.18687i) q^{76} +(2.96278 - 9.04630i) q^{77} +(-2.75086 + 4.76463i) q^{79} +(0.185096 + 0.0159156i) q^{80} +(11.2403 + 9.01443i) q^{82} +8.25030i q^{83} +0.0239757i q^{85} +(8.07061 - 10.0635i) q^{86} +(0.676926 + 10.1538i) q^{88} +(7.38218 - 12.7863i) q^{89} +(11.1138 + 12.4015i) q^{91} +(13.2530 + 4.16778i) q^{92} +(-6.12716 + 2.38535i) q^{94} +(0.0753053 + 0.130433i) q^{95} -6.16464 q^{97} +(-6.99966 + 7.00034i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2 q^{2} - 2 q^{4} + 16 q^{8} + 6 q^{10} - 22 q^{14} - 10 q^{16} + 40 q^{20} - 12 q^{22} + 8 q^{23} + 16 q^{25} - 6 q^{26} - 26 q^{28} - 24 q^{31} + 8 q^{32} - 24 q^{34} + 26 q^{38} - 6 q^{40} - 20 q^{44}+ \cdots + 64 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.10325 0.884778i −0.780118 0.625633i
\(3\) 0 0
\(4\) 0.434335 + 1.95227i 0.217168 + 0.976134i
\(5\) −0.0402223 0.0232224i −0.0179880 0.0103854i 0.490979 0.871171i \(-0.336639\pi\)
−0.508967 + 0.860786i \(0.669972\pi\)
\(6\) 0 0
\(7\) −1.97032 + 1.76574i −0.744711 + 0.667387i
\(8\) 1.24814 2.53814i 0.441285 0.897367i
\(9\) 0 0
\(10\) 0.0238287 + 0.0612079i 0.00753531 + 0.0193556i
\(11\) −3.11586 + 1.79894i −0.939468 + 0.542402i −0.889793 0.456364i \(-0.849152\pi\)
−0.0496743 + 0.998765i \(0.515818\pi\)
\(12\) 0 0
\(13\) 6.29415i 1.74568i −0.488004 0.872842i \(-0.662275\pi\)
0.488004 0.872842i \(-0.337725\pi\)
\(14\) 3.73605 0.204763i 0.998501 0.0547252i
\(15\) 0 0
\(16\) −3.62271 + 1.69588i −0.905676 + 0.423970i
\(17\) −0.258110 0.447060i −0.0626010 0.108428i 0.833026 0.553233i \(-0.186606\pi\)
−0.895627 + 0.444805i \(0.853273\pi\)
\(18\) 0 0
\(19\) −2.80834 1.62140i −0.644278 0.371974i 0.141983 0.989869i \(-0.454652\pi\)
−0.786261 + 0.617895i \(0.787986\pi\)
\(20\) 0.0278663 0.0886110i 0.00623109 0.0198140i
\(21\) 0 0
\(22\) 5.02925 + 0.772156i 1.07224 + 0.164624i
\(23\) 3.47322 6.01578i 0.724215 1.25438i −0.235081 0.971976i \(-0.575535\pi\)
0.959296 0.282402i \(-0.0911312\pi\)
\(24\) 0 0
\(25\) −2.49892 4.32826i −0.499784 0.865652i
\(26\) −5.56893 + 6.94404i −1.09216 + 1.36184i
\(27\) 0 0
\(28\) −4.30298 3.07967i −0.813187 0.582003i
\(29\) 2.29579i 0.426317i −0.977018 0.213159i \(-0.931625\pi\)
0.977018 0.213159i \(-0.0683751\pi\)
\(30\) 0 0
\(31\) −1.05460 1.82662i −0.189411 0.328070i 0.755643 0.654984i \(-0.227325\pi\)
−0.945054 + 0.326914i \(0.893991\pi\)
\(32\) 5.49724 + 1.33431i 0.971784 + 0.235874i
\(33\) 0 0
\(34\) −0.110788 + 0.721591i −0.0190000 + 0.123752i
\(35\) 0.120255 0.0252667i 0.0203269 0.00427085i
\(36\) 0 0
\(37\) −1.12720 0.650790i −0.185311 0.106989i 0.404475 0.914549i \(-0.367454\pi\)
−0.589785 + 0.807560i \(0.700788\pi\)
\(38\) 1.66374 + 4.27357i 0.269894 + 0.693265i
\(39\) 0 0
\(40\) −0.109145 + 0.0731049i −0.0172573 + 0.0115589i
\(41\) −10.1883 −1.59115 −0.795576 0.605854i \(-0.792832\pi\)
−0.795576 + 0.605854i \(0.792832\pi\)
\(42\) 0 0
\(43\) 9.12162i 1.39103i 0.718510 + 0.695517i \(0.244824\pi\)
−0.718510 + 0.695517i \(0.755176\pi\)
\(44\) −4.86535 5.30165i −0.733479 0.799255i
\(45\) 0 0
\(46\) −9.15447 + 3.56391i −1.34975 + 0.525470i
\(47\) 2.32465 4.02641i 0.339085 0.587313i −0.645176 0.764034i \(-0.723216\pi\)
0.984261 + 0.176722i \(0.0565492\pi\)
\(48\) 0 0
\(49\) 0.764321 6.95815i 0.109189 0.994021i
\(50\) −1.07261 + 6.98616i −0.151689 + 0.987992i
\(51\) 0 0
\(52\) 12.2879 2.73377i 1.70402 0.379106i
\(53\) −4.91727 + 2.83899i −0.675439 + 0.389965i −0.798134 0.602480i \(-0.794179\pi\)
0.122696 + 0.992444i \(0.460846\pi\)
\(54\) 0 0
\(55\) 0.167103 0.0225321
\(56\) 2.02245 + 7.20484i 0.270261 + 0.962787i
\(57\) 0 0
\(58\) −2.03126 + 2.53284i −0.266718 + 0.332578i
\(59\) 1.42910 0.825090i 0.186053 0.107418i −0.404081 0.914723i \(-0.632409\pi\)
0.590133 + 0.807306i \(0.299075\pi\)
\(60\) 0 0
\(61\) −1.10386 0.637312i −0.141334 0.0815995i 0.427665 0.903937i \(-0.359336\pi\)
−0.569000 + 0.822338i \(0.692669\pi\)
\(62\) −0.452663 + 2.94831i −0.0574882 + 0.374436i
\(63\) 0 0
\(64\) −4.88428 6.33591i −0.610535 0.791989i
\(65\) −0.146165 + 0.253165i −0.0181295 + 0.0314013i
\(66\) 0 0
\(67\) −6.72366 + 3.88191i −0.821426 + 0.474251i −0.850908 0.525315i \(-0.823948\pi\)
0.0294820 + 0.999565i \(0.490614\pi\)
\(68\) 0.760675 0.698075i 0.0922454 0.0846540i
\(69\) 0 0
\(70\) −0.155028 0.0785238i −0.0185293 0.00938539i
\(71\) −11.8320 −1.40420 −0.702099 0.712080i \(-0.747753\pi\)
−0.702099 + 0.712080i \(0.747753\pi\)
\(72\) 0 0
\(73\) 5.57028 + 9.64802i 0.651953 + 1.12921i 0.982649 + 0.185478i \(0.0593832\pi\)
−0.330696 + 0.943737i \(0.607283\pi\)
\(74\) 0.667784 + 1.71531i 0.0776283 + 0.199401i
\(75\) 0 0
\(76\) 1.94564 6.18687i 0.223180 0.709683i
\(77\) 2.96278 9.04630i 0.337640 1.03092i
\(78\) 0 0
\(79\) −2.75086 + 4.76463i −0.309496 + 0.536063i −0.978252 0.207419i \(-0.933494\pi\)
0.668756 + 0.743482i \(0.266827\pi\)
\(80\) 0.185096 + 0.0159156i 0.0206943 + 0.00177942i
\(81\) 0 0
\(82\) 11.2403 + 9.01443i 1.24129 + 0.995477i
\(83\) 8.25030i 0.905588i 0.891615 + 0.452794i \(0.149573\pi\)
−0.891615 + 0.452794i \(0.850427\pi\)
\(84\) 0 0
\(85\) 0.0239757i 0.00260053i
\(86\) 8.07061 10.0635i 0.870276 1.08517i
\(87\) 0 0
\(88\) 0.676926 + 10.1538i 0.0721605 + 1.08240i
\(89\) 7.38218 12.7863i 0.782510 1.35535i −0.147966 0.988993i \(-0.547273\pi\)
0.930475 0.366354i \(-0.119394\pi\)
\(90\) 0 0
\(91\) 11.1138 + 12.4015i 1.16505 + 1.30003i
\(92\) 13.2530 + 4.16778i 1.38172 + 0.434521i
\(93\) 0 0
\(94\) −6.12716 + 2.38535i −0.631968 + 0.246030i
\(95\) 0.0753053 + 0.130433i 0.00772616 + 0.0133821i
\(96\) 0 0
\(97\) −6.16464 −0.625925 −0.312962 0.949766i \(-0.601321\pi\)
−0.312962 + 0.949766i \(0.601321\pi\)
\(98\) −6.99966 + 7.00034i −0.707072 + 0.707142i
\(99\) 0 0
\(100\) 7.36455 6.75848i 0.736455 0.675848i
\(101\) 6.93470 4.00375i 0.690029 0.398388i −0.113594 0.993527i \(-0.536236\pi\)
0.803623 + 0.595139i \(0.202903\pi\)
\(102\) 0 0
\(103\) 6.43821 11.1513i 0.634376 1.09877i −0.352271 0.935898i \(-0.614591\pi\)
0.986647 0.162873i \(-0.0520761\pi\)
\(104\) −15.9754 7.85600i −1.56652 0.770344i
\(105\) 0 0
\(106\) 7.93686 + 1.21857i 0.770896 + 0.118358i
\(107\) −8.84815 5.10848i −0.855383 0.493856i 0.00708048 0.999975i \(-0.497746\pi\)
−0.862463 + 0.506119i \(0.831080\pi\)
\(108\) 0 0
\(109\) 10.1275 5.84714i 0.970043 0.560054i 0.0707935 0.997491i \(-0.477447\pi\)
0.899249 + 0.437437i \(0.144114\pi\)
\(110\) −0.184357 0.147849i −0.0175777 0.0140968i
\(111\) 0 0
\(112\) 4.14341 9.73818i 0.391515 0.920172i
\(113\) 9.08476 0.854623 0.427311 0.904105i \(-0.359461\pi\)
0.427311 + 0.904105i \(0.359461\pi\)
\(114\) 0 0
\(115\) −0.279401 + 0.161312i −0.0260543 + 0.0150425i
\(116\) 4.48200 0.997143i 0.416143 0.0925824i
\(117\) 0 0
\(118\) −2.30668 0.354151i −0.212347 0.0326023i
\(119\) 1.29795 + 0.425096i 0.118983 + 0.0389685i
\(120\) 0 0
\(121\) 0.972397 1.68424i 0.0883997 0.153113i
\(122\) 0.653954 + 1.67979i 0.0592062 + 0.152081i
\(123\) 0 0
\(124\) 3.10800 2.85222i 0.279107 0.256137i
\(125\) 0.464347i 0.0415324i
\(126\) 0 0
\(127\) 14.1059 1.25170 0.625849 0.779944i \(-0.284753\pi\)
0.625849 + 0.779944i \(0.284753\pi\)
\(128\) −0.217281 + 11.3116i −0.0192051 + 0.999816i
\(129\) 0 0
\(130\) 0.385252 0.149982i 0.0337888 0.0131543i
\(131\) 14.8183 + 8.55535i 1.29468 + 0.747484i 0.979480 0.201541i \(-0.0645949\pi\)
0.315200 + 0.949025i \(0.397928\pi\)
\(132\) 0 0
\(133\) 8.39630 1.76413i 0.728052 0.152970i
\(134\) 10.8525 + 1.66622i 0.937516 + 0.143940i
\(135\) 0 0
\(136\) −1.45686 + 0.0971245i −0.124925 + 0.00832836i
\(137\) −2.48594 4.30578i −0.212388 0.367867i 0.740073 0.672526i \(-0.234791\pi\)
−0.952462 + 0.304659i \(0.901458\pi\)
\(138\) 0 0
\(139\) 5.20468i 0.441455i 0.975335 + 0.220728i \(0.0708432\pi\)
−0.975335 + 0.220728i \(0.929157\pi\)
\(140\) 0.101559 + 0.223797i 0.00858326 + 0.0189143i
\(141\) 0 0
\(142\) 13.0537 + 10.4687i 1.09544 + 0.878512i
\(143\) 11.3228 + 19.6117i 0.946862 + 1.64001i
\(144\) 0 0
\(145\) −0.0533136 + 0.0923419i −0.00442746 + 0.00766858i
\(146\) 2.39092 15.5727i 0.197874 1.28880i
\(147\) 0 0
\(148\) 0.780933 2.48326i 0.0641923 0.204123i
\(149\) 0.725874 + 0.419084i 0.0594659 + 0.0343327i 0.529438 0.848349i \(-0.322403\pi\)
−0.469972 + 0.882681i \(0.655736\pi\)
\(150\) 0 0
\(151\) −3.21803 5.57379i −0.261879 0.453588i 0.704862 0.709345i \(-0.251009\pi\)
−0.966741 + 0.255756i \(0.917676\pi\)
\(152\) −7.62054 + 5.10422i −0.618108 + 0.414007i
\(153\) 0 0
\(154\) −11.2727 + 7.35896i −0.908377 + 0.593002i
\(155\) 0.0979610i 0.00786842i
\(156\) 0 0
\(157\) −4.73349 + 2.73288i −0.377774 + 0.218108i −0.676849 0.736122i \(-0.736655\pi\)
0.299075 + 0.954229i \(0.403322\pi\)
\(158\) 7.25054 2.82269i 0.576822 0.224561i
\(159\) 0 0
\(160\) −0.190126 0.181328i −0.0150308 0.0143352i
\(161\) 3.77897 + 17.9858i 0.297825 + 1.41748i
\(162\) 0 0
\(163\) −13.2105 7.62708i −1.03473 0.597399i −0.116390 0.993204i \(-0.537132\pi\)
−0.918335 + 0.395805i \(0.870466\pi\)
\(164\) −4.42516 19.8904i −0.345547 1.55318i
\(165\) 0 0
\(166\) 7.29969 9.10217i 0.566566 0.706466i
\(167\) 1.77463 0.137325 0.0686625 0.997640i \(-0.478127\pi\)
0.0686625 + 0.997640i \(0.478127\pi\)
\(168\) 0 0
\(169\) −26.6163 −2.04741
\(170\) 0.0212132 0.0264513i 0.00162698 0.00202872i
\(171\) 0 0
\(172\) −17.8078 + 3.96184i −1.35784 + 0.302087i
\(173\) 2.23631 + 1.29114i 0.170024 + 0.0981633i 0.582597 0.812761i \(-0.302037\pi\)
−0.412573 + 0.910924i \(0.635370\pi\)
\(174\) 0 0
\(175\) 12.5663 + 4.11561i 0.949920 + 0.311111i
\(176\) 8.23706 11.8012i 0.620892 0.889546i
\(177\) 0 0
\(178\) −19.4575 + 7.57495i −1.45840 + 0.567767i
\(179\) −17.0438 + 9.84027i −1.27392 + 0.735496i −0.975723 0.219009i \(-0.929718\pi\)
−0.298194 + 0.954505i \(0.596384\pi\)
\(180\) 0 0
\(181\) 25.5613i 1.89996i −0.312315 0.949979i \(-0.601104\pi\)
0.312315 0.949979i \(-0.398896\pi\)
\(182\) −1.28881 23.5153i −0.0955329 1.74307i
\(183\) 0 0
\(184\) −10.9338 16.3241i −0.806052 1.20343i
\(185\) 0.0302257 + 0.0523525i 0.00222224 + 0.00384903i
\(186\) 0 0
\(187\) 1.60847 + 0.928652i 0.117623 + 0.0679098i
\(188\) 8.87032 + 2.78953i 0.646934 + 0.203447i
\(189\) 0 0
\(190\) 0.0323231 0.210529i 0.00234496 0.0152734i
\(191\) −6.98804 + 12.1036i −0.505637 + 0.875788i 0.494342 + 0.869267i \(0.335409\pi\)
−0.999979 + 0.00652098i \(0.997924\pi\)
\(192\) 0 0
\(193\) 9.00706 + 15.6007i 0.648342 + 1.12296i 0.983519 + 0.180806i \(0.0578707\pi\)
−0.335176 + 0.942155i \(0.608796\pi\)
\(194\) 6.80116 + 5.45434i 0.488295 + 0.391599i
\(195\) 0 0
\(196\) 13.9161 1.53001i 0.994010 0.109286i
\(197\) 3.70082i 0.263672i 0.991272 + 0.131836i \(0.0420873\pi\)
−0.991272 + 0.131836i \(0.957913\pi\)
\(198\) 0 0
\(199\) 0.882192 + 1.52800i 0.0625369 + 0.108317i 0.895599 0.444863i \(-0.146748\pi\)
−0.833062 + 0.553180i \(0.813414\pi\)
\(200\) −14.1047 + 0.940321i −0.997355 + 0.0664907i
\(201\) 0 0
\(202\) −11.1932 1.71852i −0.787549 0.120915i
\(203\) 4.05377 + 4.52344i 0.284519 + 0.317483i
\(204\) 0 0
\(205\) 0.409799 + 0.236597i 0.0286216 + 0.0165247i
\(206\) −16.9694 + 6.60633i −1.18231 + 0.460285i
\(207\) 0 0
\(208\) 10.6741 + 22.8019i 0.740117 + 1.58102i
\(209\) 11.6672 0.807038
\(210\) 0 0
\(211\) 10.6757i 0.734945i −0.930034 0.367473i \(-0.880223\pi\)
0.930034 0.367473i \(-0.119777\pi\)
\(212\) −7.67821 8.36676i −0.527341 0.574631i
\(213\) 0 0
\(214\) 5.24188 + 13.4646i 0.358327 + 0.920421i
\(215\) 0.211825 0.366892i 0.0144464 0.0250218i
\(216\) 0 0
\(217\) 5.30323 + 1.73688i 0.360007 + 0.117907i
\(218\) −16.3467 2.50975i −1.10714 0.169982i
\(219\) 0 0
\(220\) 0.0725787 + 0.326230i 0.00489325 + 0.0219944i
\(221\) −2.81386 + 1.62459i −0.189281 + 0.109281i
\(222\) 0 0
\(223\) −22.2212 −1.48804 −0.744020 0.668158i \(-0.767083\pi\)
−0.744020 + 0.668158i \(0.767083\pi\)
\(224\) −13.1874 + 7.07768i −0.881117 + 0.472898i
\(225\) 0 0
\(226\) −10.0228 8.03800i −0.666706 0.534680i
\(227\) 17.0728 9.85697i 1.13316 0.654230i 0.188432 0.982086i \(-0.439660\pi\)
0.944728 + 0.327856i \(0.106326\pi\)
\(228\) 0 0
\(229\) 6.06806 + 3.50340i 0.400989 + 0.231511i 0.686911 0.726742i \(-0.258966\pi\)
−0.285922 + 0.958253i \(0.592300\pi\)
\(230\) 0.450976 + 0.0692397i 0.0297365 + 0.00456553i
\(231\) 0 0
\(232\) −5.82703 2.86547i −0.382563 0.188128i
\(233\) −12.3717 + 21.4284i −0.810495 + 1.40382i 0.102023 + 0.994782i \(0.467468\pi\)
−0.912518 + 0.409036i \(0.865865\pi\)
\(234\) 0 0
\(235\) −0.187006 + 0.107968i −0.0121989 + 0.00704303i
\(236\) 2.23150 + 2.43162i 0.145259 + 0.158285i
\(237\) 0 0
\(238\) −1.05585 1.61739i −0.0684409 0.104840i
\(239\) −21.9503 −1.41985 −0.709924 0.704278i \(-0.751271\pi\)
−0.709924 + 0.704278i \(0.751271\pi\)
\(240\) 0 0
\(241\) 7.39162 + 12.8027i 0.476136 + 0.824692i 0.999626 0.0273397i \(-0.00870359\pi\)
−0.523490 + 0.852032i \(0.675370\pi\)
\(242\) −2.56298 + 0.997789i −0.164755 + 0.0641403i
\(243\) 0 0
\(244\) 0.764761 2.43183i 0.0489588 0.155682i
\(245\) −0.192327 + 0.262123i −0.0122873 + 0.0167464i
\(246\) 0 0
\(247\) −10.2053 + 17.6761i −0.649349 + 1.12471i
\(248\) −5.95250 + 0.396836i −0.377984 + 0.0251991i
\(249\) 0 0
\(250\) 0.410844 0.512292i 0.0259841 0.0324002i
\(251\) 14.4785i 0.913876i −0.889499 0.456938i \(-0.848946\pi\)
0.889499 0.456938i \(-0.151054\pi\)
\(252\) 0 0
\(253\) 24.9925i 1.57126i
\(254\) −15.5624 12.4806i −0.976472 0.783103i
\(255\) 0 0
\(256\) 10.2480 12.2873i 0.640499 0.767959i
\(257\) 7.93731 13.7478i 0.495116 0.857566i −0.504868 0.863196i \(-0.668459\pi\)
0.999984 + 0.00563049i \(0.00179225\pi\)
\(258\) 0 0
\(259\) 3.37007 0.708080i 0.209406 0.0439980i
\(260\) −0.557731 0.175395i −0.0345890 0.0108775i
\(261\) 0 0
\(262\) −8.77875 22.5496i −0.542353 1.39312i
\(263\) 0.162710 + 0.281822i 0.0100331 + 0.0173779i 0.870998 0.491286i \(-0.163473\pi\)
−0.860965 + 0.508664i \(0.830140\pi\)
\(264\) 0 0
\(265\) 0.263712 0.0161997
\(266\) −10.8241 5.48258i −0.663669 0.336158i
\(267\) 0 0
\(268\) −10.4989 11.4403i −0.641319 0.698830i
\(269\) −20.3761 + 11.7642i −1.24235 + 0.717273i −0.969573 0.244803i \(-0.921277\pi\)
−0.272780 + 0.962076i \(0.587943\pi\)
\(270\) 0 0
\(271\) −0.751567 + 1.30175i −0.0456544 + 0.0790758i −0.887950 0.459941i \(-0.847871\pi\)
0.842295 + 0.539017i \(0.181204\pi\)
\(272\) 1.69322 + 1.18184i 0.102666 + 0.0716598i
\(273\) 0 0
\(274\) −1.06703 + 6.94987i −0.0644619 + 0.419857i
\(275\) 15.5726 + 8.99084i 0.939062 + 0.542168i
\(276\) 0 0
\(277\) −12.6685 + 7.31418i −0.761178 + 0.439466i −0.829719 0.558182i \(-0.811499\pi\)
0.0685405 + 0.997648i \(0.478166\pi\)
\(278\) 4.60499 5.74208i 0.276189 0.344387i
\(279\) 0 0
\(280\) 0.0859657 0.336761i 0.00513743 0.0201253i
\(281\) −21.3285 −1.27235 −0.636175 0.771545i \(-0.719484\pi\)
−0.636175 + 0.771545i \(0.719484\pi\)
\(282\) 0 0
\(283\) 15.0068 8.66416i 0.892059 0.515031i 0.0174438 0.999848i \(-0.494447\pi\)
0.874616 + 0.484817i \(0.161114\pi\)
\(284\) −5.13905 23.0992i −0.304946 1.37068i
\(285\) 0 0
\(286\) 4.86007 31.6549i 0.287382 1.87179i
\(287\) 20.0743 17.9900i 1.18495 1.06191i
\(288\) 0 0
\(289\) 8.36676 14.4917i 0.492162 0.852450i
\(290\) 0.140521 0.0547058i 0.00825165 0.00321243i
\(291\) 0 0
\(292\) −16.4161 + 15.0652i −0.960682 + 0.881622i
\(293\) 29.6927i 1.73466i −0.497730 0.867332i \(-0.665833\pi\)
0.497730 0.867332i \(-0.334167\pi\)
\(294\) 0 0
\(295\) −0.0766421 −0.00446228
\(296\) −3.05870 + 2.04871i −0.177783 + 0.119079i
\(297\) 0 0
\(298\) −0.430027 1.10459i −0.0249108 0.0639873i
\(299\) −37.8643 21.8609i −2.18975 1.26425i
\(300\) 0 0
\(301\) −16.1064 17.9725i −0.928358 1.03592i
\(302\) −1.38127 + 8.99654i −0.0794829 + 0.517693i
\(303\) 0 0
\(304\) 12.9235 + 1.11124i 0.741213 + 0.0637338i
\(305\) 0.0295998 + 0.0512683i 0.00169488 + 0.00293562i
\(306\) 0 0
\(307\) 4.88243i 0.278655i −0.990246 0.139327i \(-0.955506\pi\)
0.990246 0.139327i \(-0.0444940\pi\)
\(308\) 18.9476 + 1.85501i 1.07964 + 0.105699i
\(309\) 0 0
\(310\) 0.0866738 0.108076i 0.00492274 0.00613829i
\(311\) 9.08277 + 15.7318i 0.515036 + 0.892069i 0.999848 + 0.0174504i \(0.00555493\pi\)
−0.484811 + 0.874619i \(0.661112\pi\)
\(312\) 0 0
\(313\) 6.80533 11.7872i 0.384660 0.666251i −0.607062 0.794655i \(-0.707652\pi\)
0.991722 + 0.128404i \(0.0409853\pi\)
\(314\) 7.64023 + 1.17303i 0.431163 + 0.0661978i
\(315\) 0 0
\(316\) −10.4966 3.30097i −0.590482 0.185694i
\(317\) 21.6407 + 12.4943i 1.21546 + 0.701749i 0.963944 0.266103i \(-0.0857363\pi\)
0.251520 + 0.967852i \(0.419070\pi\)
\(318\) 0 0
\(319\) 4.13000 + 7.15336i 0.231235 + 0.400511i
\(320\) 0.0493221 + 0.368269i 0.00275719 + 0.0205869i
\(321\) 0 0
\(322\) 11.7443 23.1865i 0.654484 1.29213i
\(323\) 1.67400i 0.0931437i
\(324\) 0 0
\(325\) −27.2427 + 15.7286i −1.51115 + 0.872465i
\(326\) 7.82624 + 20.1029i 0.433455 + 1.11340i
\(327\) 0 0
\(328\) −12.7165 + 25.8594i −0.702152 + 1.42785i
\(329\) 2.52929 + 12.0380i 0.139445 + 0.663679i
\(330\) 0 0
\(331\) −6.34783 3.66492i −0.348908 0.201442i 0.315296 0.948993i \(-0.397896\pi\)
−0.664204 + 0.747551i \(0.731229\pi\)
\(332\) −16.1068 + 3.58340i −0.883976 + 0.196665i
\(333\) 0 0
\(334\) −1.95787 1.57015i −0.107130 0.0859150i
\(335\) 0.360588 0.0197010
\(336\) 0 0
\(337\) 1.49107 0.0812237 0.0406118 0.999175i \(-0.487069\pi\)
0.0406118 + 0.999175i \(0.487069\pi\)
\(338\) 29.3646 + 23.5495i 1.59722 + 1.28093i
\(339\) 0 0
\(340\) −0.0468070 + 0.0104135i −0.00253847 + 0.000564751i
\(341\) 6.57197 + 3.79433i 0.355892 + 0.205474i
\(342\) 0 0
\(343\) 10.7803 + 15.0594i 0.582083 + 0.813129i
\(344\) 23.1519 + 11.3851i 1.24827 + 0.613842i
\(345\) 0 0
\(346\) −1.32485 3.40309i −0.0712244 0.182951i
\(347\) 20.6494 11.9219i 1.10852 0.640003i 0.170073 0.985431i \(-0.445600\pi\)
0.938445 + 0.345428i \(0.112266\pi\)
\(348\) 0 0
\(349\) 11.5733i 0.619504i 0.950817 + 0.309752i \(0.100246\pi\)
−0.950817 + 0.309752i \(0.899754\pi\)
\(350\) −10.2224 15.6589i −0.546408 0.837004i
\(351\) 0 0
\(352\) −19.5290 + 5.73171i −1.04090 + 0.305501i
\(353\) 5.01488 + 8.68603i 0.266915 + 0.462311i 0.968064 0.250705i \(-0.0806623\pi\)
−0.701148 + 0.713015i \(0.747329\pi\)
\(354\) 0 0
\(355\) 0.475909 + 0.274766i 0.0252586 + 0.0145831i
\(356\) 28.1687 + 8.85845i 1.49294 + 0.469497i
\(357\) 0 0
\(358\) 27.5101 + 4.22371i 1.45396 + 0.223230i
\(359\) 1.80639 3.12876i 0.0953375 0.165129i −0.814412 0.580287i \(-0.802940\pi\)
0.909749 + 0.415158i \(0.136274\pi\)
\(360\) 0 0
\(361\) −4.24214 7.34760i −0.223271 0.386716i
\(362\) −22.6161 + 28.2006i −1.18868 + 1.48219i
\(363\) 0 0
\(364\) −19.3839 + 27.0836i −1.01599 + 1.41957i
\(365\) 0.517420i 0.0270830i
\(366\) 0 0
\(367\) −11.0055 19.0620i −0.574480 0.995029i −0.996098 0.0882554i \(-0.971871\pi\)
0.421617 0.906774i \(-0.361463\pi\)
\(368\) −2.38039 + 27.6836i −0.124087 + 1.44311i
\(369\) 0 0
\(370\) 0.0129737 0.0845012i 0.000674471 0.00439301i
\(371\) 4.67568 14.2763i 0.242749 0.741190i
\(372\) 0 0
\(373\) 27.9915 + 16.1609i 1.44934 + 0.836780i 0.998442 0.0557935i \(-0.0177688\pi\)
0.450903 + 0.892573i \(0.351102\pi\)
\(374\) −0.952901 2.44768i −0.0492734 0.126566i
\(375\) 0 0
\(376\) −7.31809 10.9258i −0.377402 0.563456i
\(377\) −14.4500 −0.744215
\(378\) 0 0
\(379\) 16.6668i 0.856115i −0.903751 0.428058i \(-0.859198\pi\)
0.903751 0.428058i \(-0.140802\pi\)
\(380\) −0.221932 + 0.203668i −0.0113849 + 0.0104479i
\(381\) 0 0
\(382\) 18.4186 7.17051i 0.942378 0.366875i
\(383\) 12.1998 21.1307i 0.623383 1.07973i −0.365468 0.930824i \(-0.619091\pi\)
0.988851 0.148907i \(-0.0475755\pi\)
\(384\) 0 0
\(385\) −0.329246 + 0.295060i −0.0167799 + 0.0150377i
\(386\) 3.86608 25.1808i 0.196778 1.28167i
\(387\) 0 0
\(388\) −2.67752 12.0350i −0.135931 0.610986i
\(389\) 7.38356 4.26290i 0.374362 0.216138i −0.301001 0.953624i \(-0.597321\pi\)
0.675362 + 0.737486i \(0.263987\pi\)
\(390\) 0 0
\(391\) −3.58589 −0.181346
\(392\) −16.7067 10.6247i −0.843818 0.536629i
\(393\) 0 0
\(394\) 3.27440 4.08294i 0.164962 0.205696i
\(395\) 0.221292 0.127763i 0.0111344 0.00642845i
\(396\) 0 0
\(397\) 5.91805 + 3.41679i 0.297019 + 0.171484i 0.641103 0.767455i \(-0.278477\pi\)
−0.344084 + 0.938939i \(0.611811\pi\)
\(398\) 0.378661 2.46632i 0.0189806 0.123625i
\(399\) 0 0
\(400\) 16.3931 + 11.4421i 0.819653 + 0.572107i
\(401\) −5.24408 + 9.08301i −0.261877 + 0.453584i −0.966741 0.255759i \(-0.917675\pi\)
0.704864 + 0.709343i \(0.251008\pi\)
\(402\) 0 0
\(403\) −11.4970 + 6.63780i −0.572707 + 0.330652i
\(404\) 10.8284 + 11.7994i 0.538733 + 0.587044i
\(405\) 0 0
\(406\) −0.470093 8.57719i −0.0233303 0.425679i
\(407\) 4.68294 0.232125
\(408\) 0 0
\(409\) −4.01466 6.95360i −0.198512 0.343833i 0.749534 0.661966i \(-0.230278\pi\)
−0.948046 + 0.318133i \(0.896944\pi\)
\(410\) −0.242775 0.623608i −0.0119898 0.0307978i
\(411\) 0 0
\(412\) 24.5667 + 7.72571i 1.21031 + 0.380618i
\(413\) −1.35888 + 4.14911i −0.0668663 + 0.204164i
\(414\) 0 0
\(415\) 0.191591 0.331846i 0.00940485 0.0162897i
\(416\) 8.39833 34.6004i 0.411762 1.69643i
\(417\) 0 0
\(418\) −12.8719 10.3229i −0.629585 0.504909i
\(419\) 16.7264i 0.817139i 0.912727 + 0.408570i \(0.133972\pi\)
−0.912727 + 0.408570i \(0.866028\pi\)
\(420\) 0 0
\(421\) 14.7157i 0.717199i 0.933492 + 0.358599i \(0.116746\pi\)
−0.933492 + 0.358599i \(0.883254\pi\)
\(422\) −9.44562 + 11.7780i −0.459806 + 0.573344i
\(423\) 0 0
\(424\) 1.06828 + 16.0242i 0.0518804 + 0.778202i
\(425\) −1.28999 + 2.23434i −0.0625739 + 0.108381i
\(426\) 0 0
\(427\) 3.30028 0.693416i 0.159712 0.0335568i
\(428\) 6.13006 19.4928i 0.296308 0.942218i
\(429\) 0 0
\(430\) −0.558315 + 0.217357i −0.0269244 + 0.0104819i
\(431\) −1.57036 2.71995i −0.0756416 0.131015i 0.825723 0.564075i \(-0.190767\pi\)
−0.901365 + 0.433060i \(0.857434\pi\)
\(432\) 0 0
\(433\) 33.6748 1.61831 0.809155 0.587595i \(-0.199925\pi\)
0.809155 + 0.587595i \(0.199925\pi\)
\(434\) −4.31406 6.60840i −0.207081 0.317213i
\(435\) 0 0
\(436\) 15.8139 + 17.2321i 0.757350 + 0.825266i
\(437\) −19.5080 + 11.2629i −0.933192 + 0.538779i
\(438\) 0 0
\(439\) 3.68016 6.37423i 0.175645 0.304225i −0.764740 0.644340i \(-0.777132\pi\)
0.940384 + 0.340114i \(0.110466\pi\)
\(440\) 0.208568 0.424130i 0.00994310 0.0202196i
\(441\) 0 0
\(442\) 4.54180 + 0.697317i 0.216032 + 0.0331680i
\(443\) −22.3955 12.9300i −1.06404 0.614325i −0.137494 0.990503i \(-0.543905\pi\)
−0.926547 + 0.376178i \(0.877238\pi\)
\(444\) 0 0
\(445\) −0.593857 + 0.342863i −0.0281515 + 0.0162533i
\(446\) 24.5156 + 19.6608i 1.16085 + 0.930966i
\(447\) 0 0
\(448\) 20.8112 + 3.85941i 0.983236 + 0.182340i
\(449\) 19.7508 0.932096 0.466048 0.884759i \(-0.345677\pi\)
0.466048 + 0.884759i \(0.345677\pi\)
\(450\) 0 0
\(451\) 31.7455 18.3283i 1.49484 0.863044i
\(452\) 3.94583 + 17.7359i 0.185596 + 0.834227i
\(453\) 0 0
\(454\) −27.5568 4.23088i −1.29331 0.198565i
\(455\) −0.159032 0.756906i −0.00745555 0.0354843i
\(456\) 0 0
\(457\) −1.28552 + 2.22658i −0.0601339 + 0.104155i −0.894525 0.447018i \(-0.852486\pi\)
0.834391 + 0.551173i \(0.185819\pi\)
\(458\) −3.59488 9.23402i −0.167978 0.431478i
\(459\) 0 0
\(460\) −0.436279 0.475403i −0.0203416 0.0221658i
\(461\) 30.2081i 1.40693i 0.710728 + 0.703467i \(0.248366\pi\)
−0.710728 + 0.703467i \(0.751634\pi\)
\(462\) 0 0
\(463\) −20.1707 −0.937412 −0.468706 0.883354i \(-0.655280\pi\)
−0.468706 + 0.883354i \(0.655280\pi\)
\(464\) 3.89338 + 8.31697i 0.180746 + 0.386106i
\(465\) 0 0
\(466\) 32.6084 12.6947i 1.51056 0.588072i
\(467\) 7.99333 + 4.61495i 0.369887 + 0.213554i 0.673409 0.739270i \(-0.264829\pi\)
−0.303522 + 0.952824i \(0.598163\pi\)
\(468\) 0 0
\(469\) 6.39332 19.5208i 0.295216 0.901389i
\(470\) 0.301842 + 0.0463427i 0.0139229 + 0.00213763i
\(471\) 0 0
\(472\) −0.310474 4.65707i −0.0142907 0.214359i
\(473\) −16.4093 28.4217i −0.754499 1.30683i
\(474\) 0 0
\(475\) 16.2070i 0.743627i
\(476\) −0.266155 + 2.71859i −0.0121992 + 0.124606i
\(477\) 0 0
\(478\) 24.2168 + 19.4212i 1.10765 + 0.888303i
\(479\) −19.6055 33.9577i −0.895797 1.55157i −0.832815 0.553551i \(-0.813272\pi\)
−0.0629820 0.998015i \(-0.520061\pi\)
\(480\) 0 0
\(481\) −4.09617 + 7.09477i −0.186769 + 0.323494i
\(482\) 3.17269 20.6645i 0.144512 0.941243i
\(483\) 0 0
\(484\) 3.71044 + 1.16685i 0.168656 + 0.0530389i
\(485\) 0.247956 + 0.143157i 0.0112591 + 0.00650045i
\(486\) 0 0
\(487\) −3.06454 5.30794i −0.138868 0.240526i 0.788201 0.615418i \(-0.211013\pi\)
−0.927068 + 0.374893i \(0.877680\pi\)
\(488\) −2.99536 + 2.00628i −0.135593 + 0.0908202i
\(489\) 0 0
\(490\) 0.444107 0.119021i 0.0200627 0.00537684i
\(491\) 20.5291i 0.926463i 0.886237 + 0.463232i \(0.153310\pi\)
−0.886237 + 0.463232i \(0.846690\pi\)
\(492\) 0 0
\(493\) −1.02636 + 0.592567i −0.0462248 + 0.0266879i
\(494\) 26.8985 10.4718i 1.21022 0.471149i
\(495\) 0 0
\(496\) 6.91822 + 4.82883i 0.310637 + 0.216821i
\(497\) 23.3128 20.8922i 1.04572 0.937143i
\(498\) 0 0
\(499\) −9.57940 5.53067i −0.428833 0.247587i 0.270016 0.962856i \(-0.412971\pi\)
−0.698849 + 0.715269i \(0.746304\pi\)
\(500\) −0.906530 + 0.201682i −0.0405412 + 0.00901950i
\(501\) 0 0
\(502\) −12.8103 + 15.9735i −0.571751 + 0.712931i
\(503\) −2.64242 −0.117820 −0.0589099 0.998263i \(-0.518762\pi\)
−0.0589099 + 0.998263i \(0.518762\pi\)
\(504\) 0 0
\(505\) −0.371906 −0.0165496
\(506\) 22.1128 27.5730i 0.983034 1.22577i
\(507\) 0 0
\(508\) 6.12670 + 27.5385i 0.271828 + 1.22183i
\(509\) −28.9903 16.7376i −1.28497 0.741880i −0.307220 0.951638i \(-0.599399\pi\)
−0.977753 + 0.209758i \(0.932732\pi\)
\(510\) 0 0
\(511\) −28.0111 9.17400i −1.23914 0.405834i
\(512\) −22.1777 + 4.48885i −0.980125 + 0.198381i
\(513\) 0 0
\(514\) −20.9206 + 8.14458i −0.922770 + 0.359242i
\(515\) −0.517919 + 0.299021i −0.0228222 + 0.0131764i
\(516\) 0 0
\(517\) 16.7277i 0.735682i
\(518\) −4.34454 2.20057i −0.190888 0.0966877i
\(519\) 0 0
\(520\) 0.460133 + 0.686973i 0.0201782 + 0.0301258i
\(521\) −12.4133 21.5005i −0.543837 0.941954i −0.998679 0.0513815i \(-0.983638\pi\)
0.454842 0.890572i \(-0.349696\pi\)
\(522\) 0 0
\(523\) −4.00205 2.31058i −0.174997 0.101035i 0.409943 0.912111i \(-0.365549\pi\)
−0.584940 + 0.811076i \(0.698882\pi\)
\(524\) −10.2662 + 32.6452i −0.448482 + 1.42611i
\(525\) 0 0
\(526\) 0.0698396 0.454883i 0.00304515 0.0198338i
\(527\) −0.544406 + 0.942938i −0.0237147 + 0.0410750i
\(528\) 0 0
\(529\) −12.6264 21.8696i −0.548976 0.950854i
\(530\) −0.290941 0.233326i −0.0126377 0.0101350i
\(531\) 0 0
\(532\) 7.09087 + 15.6256i 0.307428 + 0.677456i
\(533\) 64.1270i 2.77765i
\(534\) 0 0
\(535\) 0.237262 + 0.410950i 0.0102577 + 0.0177669i
\(536\) 1.46073 + 21.9107i 0.0630937 + 0.946400i
\(537\) 0 0
\(538\) 32.8887 + 5.04950i 1.41793 + 0.217699i
\(539\) 10.1358 + 23.0556i 0.436580 + 0.993075i
\(540\) 0 0
\(541\) 21.7241 + 12.5424i 0.933992 + 0.539241i 0.888072 0.459704i \(-0.152045\pi\)
0.0459203 + 0.998945i \(0.485378\pi\)
\(542\) 1.98093 0.771192i 0.0850882 0.0331255i
\(543\) 0 0
\(544\) −0.822378 2.80199i −0.0352592 0.120135i
\(545\) −0.543137 −0.0232654
\(546\) 0 0
\(547\) 38.8014i 1.65903i −0.558487 0.829514i \(-0.688618\pi\)
0.558487 0.829514i \(-0.311382\pi\)
\(548\) 7.32630 6.72338i 0.312964 0.287208i
\(549\) 0 0
\(550\) −9.22561 23.6975i −0.393381 1.01046i
\(551\) −3.72239 + 6.44736i −0.158579 + 0.274667i
\(552\) 0 0
\(553\) −2.99303 14.2452i −0.127276 0.605766i
\(554\) 20.4480 + 3.13945i 0.868753 + 0.133382i
\(555\) 0 0
\(556\) −10.1609 + 2.26058i −0.430920 + 0.0958699i
\(557\) 27.2335 15.7233i 1.15392 0.666217i 0.204082 0.978954i \(-0.434579\pi\)
0.949840 + 0.312737i \(0.101246\pi\)
\(558\) 0 0
\(559\) 57.4128 2.42830
\(560\) −0.392801 + 0.295472i −0.0165989 + 0.0124860i
\(561\) 0 0
\(562\) 23.5307 + 18.8710i 0.992583 + 0.796024i
\(563\) 9.22107 5.32379i 0.388622 0.224371i −0.292941 0.956131i \(-0.594634\pi\)
0.681563 + 0.731760i \(0.261301\pi\)
\(564\) 0 0
\(565\) −0.365410 0.210970i −0.0153729 0.00887556i
\(566\) −24.2221 3.71889i −1.01813 0.156317i
\(567\) 0 0
\(568\) −14.7680 + 30.0312i −0.619651 + 1.26008i
\(569\) 13.1394 22.7581i 0.550832 0.954069i −0.447383 0.894343i \(-0.647644\pi\)
0.998215 0.0597265i \(-0.0190229\pi\)
\(570\) 0 0
\(571\) 6.37133 3.67849i 0.266632 0.153940i −0.360724 0.932673i \(-0.617470\pi\)
0.627356 + 0.778733i \(0.284137\pi\)
\(572\) −33.3694 + 30.6232i −1.39525 + 1.28042i
\(573\) 0 0
\(574\) −38.0642 + 2.08620i −1.58877 + 0.0870761i
\(575\) −34.7172 −1.44781
\(576\) 0 0
\(577\) 6.42935 + 11.1360i 0.267658 + 0.463596i 0.968256 0.249959i \(-0.0804171\pi\)
−0.700599 + 0.713555i \(0.747084\pi\)
\(578\) −22.0525 + 8.58524i −0.917265 + 0.357099i
\(579\) 0 0
\(580\) −0.203432 0.0639752i −0.00844706 0.00265642i
\(581\) −14.5679 16.2557i −0.604378 0.674402i
\(582\) 0 0
\(583\) 10.2144 17.6918i 0.423035 0.732719i
\(584\) 31.4405 2.09605i 1.30102 0.0867350i
\(585\) 0 0
\(586\) −26.2714 + 32.7585i −1.08526 + 1.35324i
\(587\) 7.51402i 0.310137i −0.987904 0.155068i \(-0.950440\pi\)
0.987904 0.155068i \(-0.0495598\pi\)
\(588\) 0 0
\(589\) 6.83969i 0.281825i
\(590\) 0.0845556 + 0.0678113i 0.00348110 + 0.00279174i
\(591\) 0 0
\(592\) 5.18718 + 0.446024i 0.213192 + 0.0183315i
\(593\) 9.63761 16.6928i 0.395769 0.685492i −0.597430 0.801921i \(-0.703811\pi\)
0.993199 + 0.116429i \(0.0371448\pi\)
\(594\) 0 0
\(595\) −0.0423349 0.0472398i −0.00173556 0.00193664i
\(596\) −0.502891 + 1.59912i −0.0205992 + 0.0655027i
\(597\) 0 0
\(598\) 22.4318 + 57.6196i 0.917304 + 2.35624i
\(599\) −7.76773 13.4541i −0.317381 0.549720i 0.662560 0.749009i \(-0.269470\pi\)
−0.979941 + 0.199289i \(0.936137\pi\)
\(600\) 0 0
\(601\) −44.5011 −1.81524 −0.907620 0.419793i \(-0.862103\pi\)
−0.907620 + 0.419793i \(0.862103\pi\)
\(602\) 1.86777 + 34.0788i 0.0761246 + 1.38895i
\(603\) 0 0
\(604\) 9.48383 8.70335i 0.385892 0.354134i
\(605\) −0.0782241 + 0.0451627i −0.00318026 + 0.00183612i
\(606\) 0 0
\(607\) 11.9183 20.6432i 0.483751 0.837881i −0.516075 0.856543i \(-0.672607\pi\)
0.999826 + 0.0186624i \(0.00594079\pi\)
\(608\) −13.2747 12.6604i −0.538360 0.513447i
\(609\) 0 0
\(610\) 0.0127050 0.0827512i 0.000514412 0.00335050i
\(611\) −25.3428 14.6317i −1.02526 0.591935i
\(612\) 0 0
\(613\) −17.7261 + 10.2342i −0.715950 + 0.413354i −0.813260 0.581900i \(-0.802310\pi\)
0.0973099 + 0.995254i \(0.468976\pi\)
\(614\) −4.31986 + 5.38655i −0.174336 + 0.217384i
\(615\) 0 0
\(616\) −19.2628 18.8110i −0.776119 0.757917i
\(617\) −19.3039 −0.777146 −0.388573 0.921418i \(-0.627032\pi\)
−0.388573 + 0.921418i \(0.627032\pi\)
\(618\) 0 0
\(619\) 21.1475 12.2095i 0.849990 0.490742i −0.0106577 0.999943i \(-0.503393\pi\)
0.860647 + 0.509201i \(0.170059\pi\)
\(620\) −0.191246 + 0.0425479i −0.00768063 + 0.00170877i
\(621\) 0 0
\(622\) 3.89857 25.3924i 0.156319 1.01814i
\(623\) 8.03205 + 38.2282i 0.321797 + 1.53158i
\(624\) 0 0
\(625\) −12.4838 + 21.6226i −0.499353 + 0.864905i
\(626\) −17.9370 + 6.98304i −0.716909 + 0.279098i
\(627\) 0 0
\(628\) −7.39124 8.05406i −0.294943 0.321392i
\(629\) 0.671902i 0.0267905i
\(630\) 0 0
\(631\) −20.7613 −0.826494 −0.413247 0.910619i \(-0.635605\pi\)
−0.413247 + 0.910619i \(0.635605\pi\)
\(632\) 8.65982 + 12.9290i 0.344469 + 0.514288i
\(633\) 0 0
\(634\) −12.8205 32.9316i −0.509169 1.30788i
\(635\) −0.567372 0.327573i −0.0225155 0.0129993i
\(636\) 0 0
\(637\) −43.7956 4.81075i −1.73525 0.190609i
\(638\) 1.77271 11.5461i 0.0701822 0.457115i
\(639\) 0 0
\(640\) 0.271422 0.449934i 0.0107289 0.0177852i
\(641\) 11.0483 + 19.1363i 0.436383 + 0.755838i 0.997407 0.0719616i \(-0.0229259\pi\)
−0.561024 + 0.827799i \(0.689593\pi\)
\(642\) 0 0
\(643\) 31.9358i 1.25943i 0.776828 + 0.629713i \(0.216827\pi\)
−0.776828 + 0.629713i \(0.783173\pi\)
\(644\) −33.4718 + 15.1894i −1.31897 + 0.598548i
\(645\) 0 0
\(646\) 1.48112 1.84684i 0.0582738 0.0726631i
\(647\) 1.48741 + 2.57626i 0.0584760 + 0.101283i 0.893781 0.448503i \(-0.148043\pi\)
−0.835305 + 0.549786i \(0.814709\pi\)
\(648\) 0 0
\(649\) −2.96858 + 5.14173i −0.116527 + 0.201831i
\(650\) 43.9719 + 6.75114i 1.72472 + 0.264802i
\(651\) 0 0
\(652\) 9.15232 29.1031i 0.358433 1.13977i
\(653\) −14.9217 8.61507i −0.583933 0.337134i 0.178762 0.983892i \(-0.442791\pi\)
−0.762695 + 0.646758i \(0.776124\pi\)
\(654\) 0 0
\(655\) −0.397351 0.688231i −0.0155258 0.0268914i
\(656\) 36.9094 17.2782i 1.44107 0.674600i
\(657\) 0 0
\(658\) 7.86055 15.5189i 0.306436 0.604989i
\(659\) 27.7588i 1.08133i −0.841238 0.540665i \(-0.818173\pi\)
0.841238 0.540665i \(-0.181827\pi\)
\(660\) 0 0
\(661\) −28.3232 + 16.3524i −1.10164 + 0.636034i −0.936652 0.350261i \(-0.886093\pi\)
−0.164991 + 0.986295i \(0.552759\pi\)
\(662\) 3.76062 + 9.65975i 0.146161 + 0.375437i
\(663\) 0 0
\(664\) 20.9404 + 10.2976i 0.812645 + 0.399623i
\(665\) −0.378686 0.124024i −0.0146848 0.00480946i
\(666\) 0 0
\(667\) −13.8110 7.97377i −0.534763 0.308746i
\(668\) 0.770785 + 3.46456i 0.0298226 + 0.134048i
\(669\) 0 0
\(670\) −0.397820 0.319040i −0.0153691 0.0123256i
\(671\) 4.58596 0.177039
\(672\) 0 0
\(673\) 12.9387 0.498752 0.249376 0.968407i \(-0.419775\pi\)
0.249376 + 0.968407i \(0.419775\pi\)
\(674\) −1.64503 1.31926i −0.0633640 0.0508162i
\(675\) 0 0
\(676\) −11.5604 51.9622i −0.444631 1.99855i
\(677\) 1.12548 + 0.649798i 0.0432558 + 0.0249738i 0.521472 0.853268i \(-0.325383\pi\)
−0.478216 + 0.878242i \(0.658716\pi\)
\(678\) 0 0
\(679\) 12.1463 10.8852i 0.466133 0.417734i
\(680\) 0.0608537 + 0.0299251i 0.00233363 + 0.00114758i
\(681\) 0 0
\(682\) −3.89341 10.0008i −0.149086 0.382952i
\(683\) 16.8225 9.71249i 0.643696 0.371638i −0.142341 0.989818i \(-0.545463\pi\)
0.786037 + 0.618179i \(0.212130\pi\)
\(684\) 0 0
\(685\) 0.230918i 0.00882291i
\(686\) 1.43077 26.1525i 0.0546271 0.998507i
\(687\) 0 0
\(688\) −15.4692 33.0449i −0.589756 1.25983i
\(689\) 17.8690 + 30.9500i 0.680755 + 1.17910i
\(690\) 0 0
\(691\) −11.1725 6.45042i −0.425020 0.245386i 0.272203 0.962240i \(-0.412248\pi\)
−0.697223 + 0.716854i \(0.745581\pi\)
\(692\) −1.54933 + 4.92667i −0.0588969 + 0.187284i
\(693\) 0 0
\(694\) −33.3298 5.11722i −1.26518 0.194247i
\(695\) 0.120865 0.209344i 0.00458467 0.00794088i
\(696\) 0 0
\(697\) 2.62972 + 4.55480i 0.0996076 + 0.172526i
\(698\) 10.2398 12.7683i 0.387582 0.483286i
\(699\) 0 0
\(700\) −2.57680 + 26.3203i −0.0973940 + 0.994812i
\(701\) 34.3868i 1.29877i −0.760460 0.649385i \(-0.775026\pi\)
0.760460 0.649385i \(-0.224974\pi\)
\(702\) 0 0
\(703\) 2.11038 + 3.65528i 0.0795944 + 0.137862i
\(704\) 26.6167 + 10.9553i 1.00315 + 0.412893i
\(705\) 0 0
\(706\) 2.15253 14.0200i 0.0810114 0.527648i
\(707\) −6.59400 + 20.1336i −0.247993 + 0.757201i
\(708\) 0 0
\(709\) 19.7915 + 11.4266i 0.743284 + 0.429135i 0.823262 0.567661i \(-0.192152\pi\)
−0.0799779 + 0.996797i \(0.525485\pi\)
\(710\) −0.281941 0.724211i −0.0105811 0.0271791i
\(711\) 0 0
\(712\) −23.2394 34.6961i −0.870934 1.30029i
\(713\) −14.6514 −0.548699
\(714\) 0 0
\(715\) 1.05177i 0.0393340i
\(716\) −26.6136 29.0002i −0.994597 1.08379i
\(717\) 0 0
\(718\) −4.76116 + 1.85356i −0.177685 + 0.0691741i
\(719\) −5.21620 + 9.03472i −0.194531 + 0.336938i −0.946747 0.321979i \(-0.895652\pi\)
0.752215 + 0.658917i \(0.228985\pi\)
\(720\) 0 0
\(721\) 7.00498 + 33.3399i 0.260879 + 1.24164i
\(722\) −1.82084 + 11.8596i −0.0677648 + 0.441369i
\(723\) 0 0
\(724\) 49.9025 11.1022i 1.85461 0.412609i
\(725\) −9.93677 + 5.73700i −0.369042 + 0.213067i
\(726\) 0 0
\(727\) −2.48753 −0.0922572 −0.0461286 0.998936i \(-0.514688\pi\)
−0.0461286 + 0.998936i \(0.514688\pi\)
\(728\) 45.3483 12.7296i 1.68072 0.471791i
\(729\) 0 0
\(730\) −0.457802 + 0.570846i −0.0169440 + 0.0211279i
\(731\) 4.07791 2.35438i 0.150827 0.0870800i
\(732\) 0 0
\(733\) 0.674033 + 0.389153i 0.0248960 + 0.0143737i 0.512396 0.858749i \(-0.328758\pi\)
−0.487500 + 0.873123i \(0.662091\pi\)
\(734\) −4.72385 + 30.7676i −0.174360 + 1.13565i
\(735\) 0 0
\(736\) 27.1200 28.4359i 0.999656 1.04816i
\(737\) 13.9667 24.1910i 0.514469 0.891086i
\(738\) 0 0
\(739\) −22.4331 + 12.9518i −0.825215 + 0.476438i −0.852212 0.523197i \(-0.824739\pi\)
0.0269963 + 0.999636i \(0.491406\pi\)
\(740\) −0.0890781 + 0.0817473i −0.00327458 + 0.00300509i
\(741\) 0 0
\(742\) −17.7898 + 11.6135i −0.653086 + 0.426344i
\(743\) 27.7729 1.01889 0.509445 0.860503i \(-0.329851\pi\)
0.509445 + 0.860503i \(0.329851\pi\)
\(744\) 0 0
\(745\) −0.0194642 0.0337130i −0.000713113 0.00123515i
\(746\) −16.5829 42.5958i −0.607143 1.55954i
\(747\) 0 0
\(748\) −1.11436 + 3.54352i −0.0407451 + 0.129564i
\(749\) 26.4539 5.55819i 0.966606 0.203092i
\(750\) 0 0
\(751\) −10.5549 + 18.2816i −0.385153 + 0.667105i −0.991790 0.127874i \(-0.959185\pi\)
0.606637 + 0.794979i \(0.292518\pi\)
\(752\) −1.59322 + 18.5288i −0.0580986 + 0.675677i
\(753\) 0 0
\(754\) 15.9421 + 12.7851i 0.580576 + 0.465605i
\(755\) 0.298921i 0.0108788i
\(756\) 0 0
\(757\) 46.6419i 1.69523i −0.530612 0.847615i \(-0.678038\pi\)
0.530612 0.847615i \(-0.321962\pi\)
\(758\) −14.7464 + 18.3877i −0.535614 + 0.667871i
\(759\) 0 0
\(760\) 0.425048 0.0283367i 0.0154181 0.00102788i
\(761\) −12.5114 + 21.6703i −0.453537 + 0.785550i −0.998603 0.0528439i \(-0.983171\pi\)
0.545066 + 0.838393i \(0.316505\pi\)
\(762\) 0 0
\(763\) −9.62997 + 29.4034i −0.348628 + 1.06447i
\(764\) −26.6647 8.38549i −0.964695 0.303376i
\(765\) 0 0
\(766\) −32.1555 + 12.5184i −1.16183 + 0.452309i
\(767\) −5.19324 8.99495i −0.187517 0.324789i
\(768\) 0 0
\(769\) 1.32800 0.0478891 0.0239445 0.999713i \(-0.492377\pi\)
0.0239445 + 0.999713i \(0.492377\pi\)
\(770\) 0.624305 0.0342165i 0.0224984 0.00123308i
\(771\) 0 0
\(772\) −26.5446 + 24.3601i −0.955363 + 0.876740i
\(773\) 19.2488 11.1133i 0.692332 0.399718i −0.112153 0.993691i \(-0.535775\pi\)
0.804485 + 0.593973i \(0.202441\pi\)
\(774\) 0 0
\(775\) −5.27072 + 9.12915i −0.189330 + 0.327929i
\(776\) −7.69435 + 15.6467i −0.276211 + 0.561684i
\(777\) 0 0
\(778\) −11.9177 1.82975i −0.427269 0.0655999i
\(779\) 28.6124 + 16.5194i 1.02514 + 0.591867i
\(780\) 0 0
\(781\) 36.8668 21.2851i 1.31920 0.761639i
\(782\) 3.95615 + 3.17272i 0.141471 + 0.113456i
\(783\) 0 0
\(784\) 9.03126 + 26.5035i 0.322545 + 0.946554i
\(785\) 0.253856 0.00906050
\(786\) 0 0
\(787\) 16.5930 9.57996i 0.591476 0.341489i −0.174205 0.984709i \(-0.555736\pi\)
0.765681 + 0.643221i \(0.222402\pi\)
\(788\) −7.22499 + 1.60740i −0.257380 + 0.0572611i
\(789\) 0 0
\(790\) −0.357183 0.0548394i −0.0127080 0.00195110i
\(791\) −17.8999 + 16.0413i −0.636447 + 0.570364i
\(792\) 0 0
\(793\) −4.01134 + 6.94784i −0.142447 + 0.246725i
\(794\) −3.50601 9.00575i −0.124424 0.319602i
\(795\) 0 0
\(796\) −2.59990 + 2.38594i −0.0921511 + 0.0845674i
\(797\) 35.9779i 1.27440i −0.770697 0.637201i \(-0.780092\pi\)
0.770697 0.637201i \(-0.219908\pi\)
\(798\) 0 0
\(799\) −2.40006 −0.0849082
\(800\) −7.96194 27.1278i −0.281497 0.959112i
\(801\) 0 0
\(802\) 13.8220 5.38101i 0.488071 0.190010i
\(803\) −34.7125 20.0413i −1.22498 0.707241i
\(804\) 0 0
\(805\) 0.265674 0.811187i 0.00936378 0.0285906i
\(806\) 18.5571 + 2.84913i 0.653646 + 0.100356i
\(807\) 0 0
\(808\) −1.50657 22.5985i −0.0530011 0.795012i
\(809\) −4.56264 7.90272i −0.160414 0.277845i 0.774603 0.632447i \(-0.217950\pi\)
−0.935017 + 0.354603i \(0.884616\pi\)
\(810\) 0 0
\(811\) 9.64051i 0.338524i 0.985571 + 0.169262i \(0.0541384\pi\)
−0.985571 + 0.169262i \(0.945862\pi\)
\(812\) −7.07027 + 9.87873i −0.248118 + 0.346676i
\(813\) 0 0
\(814\) −5.16647 4.14336i −0.181085 0.145225i
\(815\) 0.354237 + 0.613557i 0.0124084 + 0.0214920i
\(816\) 0 0
\(817\) 14.7898 25.6166i 0.517428 0.896212i
\(818\) −1.72320 + 11.2237i −0.0602504 + 0.392426i
\(819\) 0 0
\(820\) −0.283912 + 0.902800i −0.00991462 + 0.0315271i
\(821\) 16.6309 + 9.60187i 0.580423 + 0.335107i 0.761301 0.648398i \(-0.224561\pi\)
−0.180878 + 0.983505i \(0.557894\pi\)
\(822\) 0 0
\(823\) 0.820157 + 1.42055i 0.0285889 + 0.0495174i 0.879966 0.475037i \(-0.157565\pi\)
−0.851377 + 0.524554i \(0.824232\pi\)
\(824\) −20.2677 30.2595i −0.706060 1.05414i
\(825\) 0 0
\(826\) 5.17023 3.37520i 0.179895 0.117438i
\(827\) 27.3891i 0.952412i −0.879334 0.476206i \(-0.842012\pi\)
0.879334 0.476206i \(-0.157988\pi\)
\(828\) 0 0
\(829\) 15.4922 8.94441i 0.538065 0.310652i −0.206229 0.978504i \(-0.566119\pi\)
0.744294 + 0.667852i \(0.232786\pi\)
\(830\) −0.504984 + 0.196594i −0.0175282 + 0.00682389i
\(831\) 0 0
\(832\) −39.8792 + 30.7424i −1.38256 + 1.06580i
\(833\) −3.30799 + 1.45427i −0.114615 + 0.0503875i
\(834\) 0 0
\(835\) −0.0713797 0.0412111i −0.00247020 0.00142617i
\(836\) 5.06748 + 22.7775i 0.175263 + 0.787777i
\(837\) 0 0
\(838\) 14.7992 18.4535i 0.511229 0.637465i
\(839\) −11.0644 −0.381986 −0.190993 0.981591i \(-0.561171\pi\)
−0.190993 + 0.981591i \(0.561171\pi\)
\(840\) 0 0
\(841\) 23.7294 0.818253
\(842\) 13.0201 16.2351i 0.448703 0.559499i
\(843\) 0 0
\(844\) 20.8418 4.63683i 0.717405 0.159606i
\(845\) 1.07057 + 0.618094i 0.0368287 + 0.0212631i
\(846\) 0 0
\(847\) 1.05800 + 5.03550i 0.0363533 + 0.173022i
\(848\) 12.9992 18.6239i 0.446396 0.639547i
\(849\) 0 0
\(850\) 3.40008 1.32368i 0.116622 0.0454018i
\(851\) −7.83002 + 4.52067i −0.268410 + 0.154966i
\(852\) 0 0
\(853\) 29.4621i 1.00876i −0.863480 0.504382i \(-0.831720\pi\)
0.863480 0.504382i \(-0.168280\pi\)
\(854\) −4.25456 2.15500i −0.145588 0.0737426i
\(855\) 0 0
\(856\) −24.0098 + 16.0817i −0.820637 + 0.549661i
\(857\) 8.88103 + 15.3824i 0.303370 + 0.525453i 0.976897 0.213710i \(-0.0685548\pi\)
−0.673527 + 0.739163i \(0.735221\pi\)
\(858\) 0 0
\(859\) −31.7456 18.3283i −1.08314 0.625354i −0.151402 0.988472i \(-0.548379\pi\)
−0.931743 + 0.363118i \(0.881712\pi\)
\(860\) 0.808276 + 0.254186i 0.0275620 + 0.00866766i
\(861\) 0 0
\(862\) −0.674042 + 4.39021i −0.0229580 + 0.149531i
\(863\) −1.57129 + 2.72156i −0.0534874 + 0.0926429i −0.891529 0.452963i \(-0.850367\pi\)
0.838042 + 0.545606i \(0.183700\pi\)
\(864\) 0 0
\(865\) −0.0599664 0.103865i −0.00203892 0.00353151i
\(866\) −37.1519 29.7948i −1.26247 1.01247i
\(867\) 0 0
\(868\) −1.08747 + 11.1077i −0.0369110 + 0.377020i
\(869\) 19.7946i 0.671485i
\(870\) 0 0
\(871\) 24.4333 + 42.3197i 0.827891 + 1.43395i
\(872\) −2.20022 33.0032i −0.0745090 1.11763i
\(873\) 0 0
\(874\) 31.4874 + 4.83436i 1.06508 + 0.163525i
\(875\) −0.819916 0.914912i −0.0277182 0.0309297i
\(876\) 0 0
\(877\) −12.4428 7.18384i −0.420162 0.242581i 0.274984 0.961449i \(-0.411327\pi\)
−0.695147 + 0.718868i \(0.744661\pi\)
\(878\) −9.69993 + 3.77626i −0.327357 + 0.127443i
\(879\) 0 0
\(880\) −0.605364 + 0.283386i −0.0204068 + 0.00955294i
\(881\) 21.4314 0.722043 0.361022 0.932557i \(-0.382428\pi\)
0.361022 + 0.932557i \(0.382428\pi\)
\(882\) 0 0
\(883\) 29.5761i 0.995316i 0.867373 + 0.497658i \(0.165806\pi\)
−0.867373 + 0.497658i \(0.834194\pi\)
\(884\) −4.39379 4.78780i −0.147779 0.161031i
\(885\) 0 0
\(886\) 13.2677 + 34.0801i 0.445736 + 1.14494i
\(887\) −1.90744 + 3.30379i −0.0640456 + 0.110930i −0.896270 0.443508i \(-0.853734\pi\)
0.832225 + 0.554439i \(0.187067\pi\)
\(888\) 0 0
\(889\) −27.7932 + 24.9074i −0.932153 + 0.835367i
\(890\) 0.958532 + 0.147166i 0.0321301 + 0.00493303i
\(891\) 0 0
\(892\) −9.65144 43.3817i −0.323154 1.45253i
\(893\) −13.0568 + 7.53836i −0.436930 + 0.252262i
\(894\) 0 0
\(895\) 0.914057 0.0305536
\(896\) −19.5453 22.6712i −0.652962 0.757391i
\(897\) 0 0
\(898\) −21.7901 17.4750i −0.727145 0.583150i
\(899\) −4.19353 + 2.42114i −0.139862 + 0.0807494i
\(900\) 0 0
\(901\) 2.53840 + 1.46554i 0.0845662 + 0.0488243i
\(902\) −51.2397 7.86699i −1.70610 0.261942i
\(903\) 0 0
\(904\) 11.3391 23.0584i 0.377132 0.766910i
\(905\) −0.593594 + 1.02813i −0.0197317 + 0.0341763i
\(906\) 0 0
\(907\) 4.23020 2.44231i 0.140462 0.0810955i −0.428122 0.903721i \(-0.640825\pi\)
0.568584 + 0.822625i \(0.307491\pi\)
\(908\) 26.6588 + 29.0494i 0.884702 + 0.964038i
\(909\) 0 0
\(910\) −0.494241 + 0.975767i −0.0163839 + 0.0323464i
\(911\) 47.3325 1.56820 0.784098 0.620637i \(-0.213126\pi\)
0.784098 + 0.620637i \(0.213126\pi\)
\(912\) 0 0
\(913\) −14.8418 25.7068i −0.491193 0.850771i
\(914\) 3.38828 1.31908i 0.112074 0.0436314i
\(915\) 0 0
\(916\) −4.20400 + 13.3681i −0.138904 + 0.441696i
\(917\) −44.3033 + 9.30849i −1.46302 + 0.307394i
\(918\) 0 0
\(919\) 15.5826 26.9898i 0.514022 0.890312i −0.485846 0.874044i \(-0.661488\pi\)
0.999868 0.0162672i \(-0.00517825\pi\)
\(920\) 0.0607003 + 0.910500i 0.00200123 + 0.0300183i
\(921\) 0 0
\(922\) 26.7275 33.3272i 0.880223 1.09757i
\(923\) 74.4722i 2.45128i
\(924\) 0 0
\(925\) 6.50509i 0.213886i
\(926\) 22.2534 + 17.8466i 0.731292 + 0.586476i
\(927\) 0 0
\(928\) 3.06329 12.6205i 0.100557 0.414288i
\(929\) −14.3019 + 24.7717i −0.469231 + 0.812733i −0.999381 0.0351712i \(-0.988802\pi\)
0.530150 + 0.847904i \(0.322136\pi\)
\(930\) 0 0
\(931\) −13.4284 + 18.3016i −0.440098 + 0.599811i
\(932\) −47.2074 14.8457i −1.54633 0.486288i
\(933\) 0 0
\(934\) −4.73546 12.1638i −0.154949 0.398011i
\(935\) −0.0431310 0.0747050i −0.00141053 0.00244312i
\(936\) 0 0
\(937\) 5.62816 0.183864 0.0919320 0.995765i \(-0.470696\pi\)
0.0919320 + 0.995765i \(0.470696\pi\)
\(938\) −24.3251 + 15.8798i −0.794242 + 0.518493i
\(939\) 0 0
\(940\) −0.292005 0.318191i −0.00952415 0.0103782i
\(941\) −29.2442 + 16.8842i −0.953334 + 0.550408i −0.894115 0.447837i \(-0.852194\pi\)
−0.0592190 + 0.998245i \(0.518861\pi\)
\(942\) 0 0
\(943\) −35.3863 + 61.2909i −1.15234 + 1.99591i
\(944\) −3.77795 + 5.41263i −0.122962 + 0.176166i
\(945\) 0 0
\(946\) −7.04331 + 45.8749i −0.228998 + 1.49152i
\(947\) −10.1554 5.86321i −0.330005 0.190529i 0.325838 0.945426i \(-0.394354\pi\)
−0.655843 + 0.754897i \(0.727687\pi\)
\(948\) 0 0
\(949\) 60.7261 35.0602i 1.97125 1.13810i
\(950\) 14.3396 17.8804i 0.465237 0.580117i
\(951\) 0 0
\(952\) 2.69898 2.76380i 0.0874745 0.0895753i
\(953\) −37.7047 −1.22137 −0.610687 0.791872i \(-0.709107\pi\)
−0.610687 + 0.791872i \(0.709107\pi\)
\(954\) 0 0
\(955\) 0.562150 0.324557i 0.0181907 0.0105024i
\(956\) −9.53380 42.8529i −0.308345 1.38596i
\(957\) 0 0
\(958\) −8.41521 + 54.8104i −0.271883 + 1.77084i
\(959\) 12.5010 + 4.09423i 0.403678 + 0.132210i
\(960\) 0 0
\(961\) 13.2756 22.9941i 0.428247 0.741745i
\(962\) 10.7964 4.20313i 0.348090 0.135514i
\(963\) 0 0
\(964\) −21.7838 + 19.9911i −0.701609 + 0.643869i
\(965\) 0.836660i 0.0269330i
\(966\) 0 0
\(967\) −8.89648 −0.286092 −0.143046 0.989716i \(-0.545690\pi\)
−0.143046 + 0.989716i \(0.545690\pi\)
\(968\) −3.06114 4.57025i −0.0983889 0.146893i
\(969\) 0 0
\(970\) −0.146896 0.377325i −0.00471654 0.0121152i
\(971\) 52.8744 + 30.5270i 1.69682 + 0.979659i 0.948745 + 0.316044i \(0.102355\pi\)
0.748074 + 0.663615i \(0.230979\pi\)
\(972\) 0 0
\(973\) −9.19012 10.2549i −0.294622 0.328757i
\(974\) −1.31539 + 8.56744i −0.0421477 + 0.274519i
\(975\) 0 0
\(976\) 5.07975 + 0.436787i 0.162599 + 0.0139812i
\(977\) 23.8132 + 41.2456i 0.761851 + 1.31956i 0.941896 + 0.335906i \(0.109042\pi\)
−0.180045 + 0.983658i \(0.557624\pi\)
\(978\) 0 0
\(979\) 53.1205i 1.69774i
\(980\) −0.595270 0.261625i −0.0190152 0.00835731i
\(981\) 0 0
\(982\) 18.1637 22.6487i 0.579626 0.722750i
\(983\) 6.89129 + 11.9361i 0.219798 + 0.380701i 0.954746 0.297422i \(-0.0961268\pi\)
−0.734948 + 0.678123i \(0.762793\pi\)
\(984\) 0 0
\(985\) 0.0859417 0.148855i 0.00273833 0.00474293i
\(986\) 1.65662 + 0.254346i 0.0527576 + 0.00810003i
\(987\) 0 0
\(988\) −38.9411 12.2462i −1.23888 0.389602i
\(989\) 54.8737 + 31.6813i 1.74488 + 1.00741i
\(990\) 0 0
\(991\) −4.32034 7.48305i −0.137240 0.237707i 0.789211 0.614122i \(-0.210490\pi\)
−0.926451 + 0.376415i \(0.877157\pi\)
\(992\) −3.36011 11.4485i −0.106684 0.363491i
\(993\) 0 0
\(994\) −44.2049 + 2.42275i −1.40209 + 0.0768450i
\(995\) 0.0819463i 0.00259787i
\(996\) 0 0
\(997\) −38.0017 + 21.9403i −1.20353 + 0.694856i −0.961337 0.275374i \(-0.911198\pi\)
−0.242188 + 0.970229i \(0.577865\pi\)
\(998\) 5.67509 + 14.5774i 0.179642 + 0.461439i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.cj.e.37.3 32
3.2 odd 2 168.2.bc.a.37.14 yes 32
4.3 odd 2 2016.2.cr.e.1297.8 32
7.4 even 3 inner 504.2.cj.e.109.14 32
8.3 odd 2 2016.2.cr.e.1297.9 32
8.5 even 2 inner 504.2.cj.e.37.14 32
12.11 even 2 672.2.bk.a.625.4 32
21.2 odd 6 1176.2.c.e.589.9 16
21.5 even 6 1176.2.c.f.589.9 16
21.11 odd 6 168.2.bc.a.109.3 yes 32
24.5 odd 2 168.2.bc.a.37.3 32
24.11 even 2 672.2.bk.a.625.13 32
28.11 odd 6 2016.2.cr.e.1873.9 32
56.11 odd 6 2016.2.cr.e.1873.8 32
56.53 even 6 inner 504.2.cj.e.109.3 32
84.11 even 6 672.2.bk.a.529.13 32
84.23 even 6 4704.2.c.e.2353.5 16
84.47 odd 6 4704.2.c.f.2353.12 16
168.5 even 6 1176.2.c.f.589.10 16
168.11 even 6 672.2.bk.a.529.4 32
168.53 odd 6 168.2.bc.a.109.14 yes 32
168.107 even 6 4704.2.c.e.2353.12 16
168.131 odd 6 4704.2.c.f.2353.5 16
168.149 odd 6 1176.2.c.e.589.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.bc.a.37.3 32 24.5 odd 2
168.2.bc.a.37.14 yes 32 3.2 odd 2
168.2.bc.a.109.3 yes 32 21.11 odd 6
168.2.bc.a.109.14 yes 32 168.53 odd 6
504.2.cj.e.37.3 32 1.1 even 1 trivial
504.2.cj.e.37.14 32 8.5 even 2 inner
504.2.cj.e.109.3 32 56.53 even 6 inner
504.2.cj.e.109.14 32 7.4 even 3 inner
672.2.bk.a.529.4 32 168.11 even 6
672.2.bk.a.529.13 32 84.11 even 6
672.2.bk.a.625.4 32 12.11 even 2
672.2.bk.a.625.13 32 24.11 even 2
1176.2.c.e.589.9 16 21.2 odd 6
1176.2.c.e.589.10 16 168.149 odd 6
1176.2.c.f.589.9 16 21.5 even 6
1176.2.c.f.589.10 16 168.5 even 6
2016.2.cr.e.1297.8 32 4.3 odd 2
2016.2.cr.e.1297.9 32 8.3 odd 2
2016.2.cr.e.1873.8 32 56.11 odd 6
2016.2.cr.e.1873.9 32 28.11 odd 6
4704.2.c.e.2353.5 16 84.23 even 6
4704.2.c.e.2353.12 16 168.107 even 6
4704.2.c.f.2353.5 16 168.131 odd 6
4704.2.c.f.2353.12 16 84.47 odd 6