Properties

Label 504.2.bk.c.451.13
Level $504$
Weight $2$
Character 504.451
Analytic conductor $4.024$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(19,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 451.13
Character \(\chi\) \(=\) 504.451
Dual form 504.2.bk.c.19.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.03162 + 0.967346i) q^{2} +(0.128485 + 1.99587i) q^{4} +(1.25150 + 2.16767i) q^{5} +(-1.36321 - 2.26752i) q^{7} +(-1.79815 + 2.18327i) q^{8} +(-0.805806 + 3.44685i) q^{10} +(-2.83809 + 4.91572i) q^{11} +5.31228 q^{13} +(0.787162 - 3.65792i) q^{14} +(-3.96698 + 0.512879i) q^{16} +(0.393919 + 0.227429i) q^{17} +(-3.19938 + 1.84716i) q^{19} +(-4.16558 + 2.77635i) q^{20} +(-7.68304 + 2.32575i) q^{22} +(4.43443 - 2.56022i) q^{23} +(-0.632521 + 1.09556i) q^{25} +(5.48026 + 5.13881i) q^{26} +(4.35053 - 3.01213i) q^{28} -2.57962i q^{29} +(-3.00333 + 5.20192i) q^{31} +(-4.58856 - 3.30835i) q^{32} +(0.186372 + 0.615676i) q^{34} +(3.20917 - 5.79280i) q^{35} +(7.80778 - 4.50782i) q^{37} +(-5.08739 - 1.18933i) q^{38} +(-6.98299 - 1.16541i) q^{40} -4.65692i q^{41} +3.66703 q^{43} +(-10.1758 - 5.03286i) q^{44} +(7.05126 + 1.64845i) q^{46} +(-0.478841 - 0.829377i) q^{47} +(-3.28332 + 6.18222i) q^{49} +(-1.71230 + 0.518335i) q^{50} +(0.682549 + 10.6026i) q^{52} +(-5.41124 - 3.12418i) q^{53} -14.2075 q^{55} +(7.40187 + 1.10108i) q^{56} +(2.49539 - 2.66119i) q^{58} +(8.76604 + 5.06108i) q^{59} +(2.50184 + 4.33331i) q^{61} +(-8.13036 + 2.46115i) q^{62} +(-1.53334 - 7.85168i) q^{64} +(6.64834 + 11.5153i) q^{65} +(4.65133 - 8.05634i) q^{67} +(-0.403306 + 0.815431i) q^{68} +(8.91429 - 2.87159i) q^{70} -7.35240i q^{71} +(5.93541 + 3.42681i) q^{73} +(12.4153 + 2.90245i) q^{74} +(-4.09777 - 6.14821i) q^{76} +(15.0154 - 0.265718i) q^{77} +(7.71882 - 4.45646i) q^{79} +(-6.07644 - 7.95723i) q^{80} +(4.50485 - 4.80418i) q^{82} -1.96259i q^{83} +1.13851i q^{85} +(3.78299 + 3.54728i) q^{86} +(-5.62904 - 15.0355i) q^{88} +(-5.91361 + 3.41423i) q^{89} +(-7.24175 - 12.0457i) q^{91} +(5.67961 + 8.52158i) q^{92} +(0.308312 - 1.31881i) q^{94} +(-8.00807 - 4.62346i) q^{95} +3.71270i q^{97} +(-9.36748 + 3.20160i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{2} - 2 q^{4} - 16 q^{8} - 18 q^{10} - 8 q^{11} + 10 q^{14} + 6 q^{16} - 20 q^{22} - 16 q^{25} + 30 q^{26} - 14 q^{28} + 12 q^{32} + 24 q^{35} + 18 q^{38} - 30 q^{40} - 16 q^{43} - 24 q^{44}+ \cdots - 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.03162 + 0.967346i 0.729466 + 0.684017i
\(3\) 0 0
\(4\) 0.128485 + 1.99587i 0.0642426 + 0.997934i
\(5\) 1.25150 + 2.16767i 0.559689 + 0.969410i 0.997522 + 0.0703538i \(0.0224128\pi\)
−0.437833 + 0.899056i \(0.644254\pi\)
\(6\) 0 0
\(7\) −1.36321 2.26752i −0.515245 0.857043i
\(8\) −1.79815 + 2.18327i −0.635741 + 0.771903i
\(9\) 0 0
\(10\) −0.805806 + 3.44685i −0.254818 + 1.08999i
\(11\) −2.83809 + 4.91572i −0.855717 + 1.48215i 0.0202603 + 0.999795i \(0.493550\pi\)
−0.875978 + 0.482351i \(0.839783\pi\)
\(12\) 0 0
\(13\) 5.31228 1.47336 0.736681 0.676241i \(-0.236392\pi\)
0.736681 + 0.676241i \(0.236392\pi\)
\(14\) 0.787162 3.65792i 0.210378 0.977620i
\(15\) 0 0
\(16\) −3.96698 + 0.512879i −0.991746 + 0.128220i
\(17\) 0.393919 + 0.227429i 0.0955393 + 0.0551596i 0.547008 0.837127i \(-0.315767\pi\)
−0.451469 + 0.892287i \(0.649100\pi\)
\(18\) 0 0
\(19\) −3.19938 + 1.84716i −0.733988 + 0.423768i −0.819879 0.572536i \(-0.805960\pi\)
0.0858912 + 0.996305i \(0.472626\pi\)
\(20\) −4.16558 + 2.77635i −0.931452 + 0.620811i
\(21\) 0 0
\(22\) −7.68304 + 2.32575i −1.63803 + 0.495851i
\(23\) 4.43443 2.56022i 0.924642 0.533842i 0.0395287 0.999218i \(-0.487414\pi\)
0.885113 + 0.465376i \(0.154081\pi\)
\(24\) 0 0
\(25\) −0.632521 + 1.09556i −0.126504 + 0.219112i
\(26\) 5.48026 + 5.13881i 1.07477 + 1.00780i
\(27\) 0 0
\(28\) 4.35053 3.01213i 0.822172 0.569239i
\(29\) 2.57962i 0.479024i −0.970893 0.239512i \(-0.923013\pi\)
0.970893 0.239512i \(-0.0769874\pi\)
\(30\) 0 0
\(31\) −3.00333 + 5.20192i −0.539414 + 0.934293i 0.459521 + 0.888167i \(0.348021\pi\)
−0.998936 + 0.0461260i \(0.985312\pi\)
\(32\) −4.58856 3.30835i −0.811150 0.584839i
\(33\) 0 0
\(34\) 0.186372 + 0.615676i 0.0319626 + 0.105588i
\(35\) 3.20917 5.79280i 0.542449 0.979161i
\(36\) 0 0
\(37\) 7.80778 4.50782i 1.28359 0.741082i 0.306088 0.952003i \(-0.400980\pi\)
0.977503 + 0.210922i \(0.0676465\pi\)
\(38\) −5.08739 1.18933i −0.825284 0.192935i
\(39\) 0 0
\(40\) −6.98299 1.16541i −1.10411 0.184268i
\(41\) 4.65692i 0.727289i −0.931538 0.363644i \(-0.881532\pi\)
0.931538 0.363644i \(-0.118468\pi\)
\(42\) 0 0
\(43\) 3.66703 0.559217 0.279608 0.960114i \(-0.409795\pi\)
0.279608 + 0.960114i \(0.409795\pi\)
\(44\) −10.1758 5.03286i −1.53406 0.758733i
\(45\) 0 0
\(46\) 7.05126 + 1.64845i 1.03965 + 0.243050i
\(47\) −0.478841 0.829377i −0.0698461 0.120977i 0.828987 0.559267i \(-0.188918\pi\)
−0.898833 + 0.438290i \(0.855584\pi\)
\(48\) 0 0
\(49\) −3.28332 + 6.18222i −0.469046 + 0.883174i
\(50\) −1.71230 + 0.518335i −0.242156 + 0.0733036i
\(51\) 0 0
\(52\) 0.682549 + 10.6026i 0.0946526 + 1.47032i
\(53\) −5.41124 3.12418i −0.743290 0.429139i 0.0799741 0.996797i \(-0.474516\pi\)
−0.823264 + 0.567658i \(0.807850\pi\)
\(54\) 0 0
\(55\) −14.2075 −1.91574
\(56\) 7.40187 + 1.10108i 0.989116 + 0.147138i
\(57\) 0 0
\(58\) 2.49539 2.66119i 0.327660 0.349432i
\(59\) 8.76604 + 5.06108i 1.14124 + 0.658896i 0.946738 0.322006i \(-0.104357\pi\)
0.194503 + 0.980902i \(0.437690\pi\)
\(60\) 0 0
\(61\) 2.50184 + 4.33331i 0.320327 + 0.554823i 0.980555 0.196242i \(-0.0628738\pi\)
−0.660228 + 0.751065i \(0.729540\pi\)
\(62\) −8.13036 + 2.46115i −1.03256 + 0.312567i
\(63\) 0 0
\(64\) −1.53334 7.85168i −0.191667 0.981460i
\(65\) 6.64834 + 11.5153i 0.824625 + 1.42829i
\(66\) 0 0
\(67\) 4.65133 8.05634i 0.568251 0.984239i −0.428489 0.903547i \(-0.640954\pi\)
0.996739 0.0806916i \(-0.0257129\pi\)
\(68\) −0.403306 + 0.815431i −0.0489080 + 0.0988856i
\(69\) 0 0
\(70\) 8.91429 2.87159i 1.06546 0.343221i
\(71\) 7.35240i 0.872569i −0.899809 0.436285i \(-0.856294\pi\)
0.899809 0.436285i \(-0.143706\pi\)
\(72\) 0 0
\(73\) 5.93541 + 3.42681i 0.694687 + 0.401078i 0.805366 0.592779i \(-0.201969\pi\)
−0.110678 + 0.993856i \(0.535302\pi\)
\(74\) 12.4153 + 2.90245i 1.44325 + 0.337403i
\(75\) 0 0
\(76\) −4.09777 6.14821i −0.470046 0.705248i
\(77\) 15.0154 0.265718i 1.71117 0.0302814i
\(78\) 0 0
\(79\) 7.71882 4.45646i 0.868435 0.501391i 0.00160740 0.999999i \(-0.499488\pi\)
0.866828 + 0.498607i \(0.166155\pi\)
\(80\) −6.07644 7.95723i −0.679367 0.889645i
\(81\) 0 0
\(82\) 4.50485 4.80418i 0.497478 0.530533i
\(83\) 1.96259i 0.215423i −0.994182 0.107711i \(-0.965648\pi\)
0.994182 0.107711i \(-0.0343522\pi\)
\(84\) 0 0
\(85\) 1.13851i 0.123489i
\(86\) 3.78299 + 3.54728i 0.407930 + 0.382514i
\(87\) 0 0
\(88\) −5.62904 15.0355i −0.600058 1.60279i
\(89\) −5.91361 + 3.41423i −0.626842 + 0.361907i −0.779528 0.626367i \(-0.784541\pi\)
0.152686 + 0.988275i \(0.451208\pi\)
\(90\) 0 0
\(91\) −7.24175 12.0457i −0.759142 1.26273i
\(92\) 5.67961 + 8.52158i 0.592141 + 0.888436i
\(93\) 0 0
\(94\) 0.308312 1.31881i 0.0317999 0.136025i
\(95\) −8.00807 4.62346i −0.821611 0.474357i
\(96\) 0 0
\(97\) 3.71270i 0.376967i 0.982076 + 0.188484i \(0.0603573\pi\)
−0.982076 + 0.188484i \(0.939643\pi\)
\(98\) −9.36748 + 3.20160i −0.946259 + 0.323411i
\(99\) 0 0
\(100\) −2.26786 1.12167i −0.226786 0.112167i
\(101\) 2.84077 4.92036i 0.282667 0.489594i −0.689373 0.724406i \(-0.742114\pi\)
0.972041 + 0.234812i \(0.0754474\pi\)
\(102\) 0 0
\(103\) −2.95345 5.11553i −0.291013 0.504049i 0.683037 0.730384i \(-0.260659\pi\)
−0.974049 + 0.226335i \(0.927325\pi\)
\(104\) −9.55226 + 11.5981i −0.936676 + 1.13729i
\(105\) 0 0
\(106\) −2.56019 8.45750i −0.248667 0.821465i
\(107\) −5.33045 9.23261i −0.515314 0.892550i −0.999842 0.0177741i \(-0.994342\pi\)
0.484528 0.874776i \(-0.338991\pi\)
\(108\) 0 0
\(109\) −2.75319 1.58956i −0.263708 0.152252i 0.362317 0.932055i \(-0.381986\pi\)
−0.626025 + 0.779803i \(0.715319\pi\)
\(110\) −14.6568 13.7436i −1.39747 1.31040i
\(111\) 0 0
\(112\) 6.57079 + 8.29606i 0.620882 + 0.783904i
\(113\) 0.302446 0.0284518 0.0142259 0.999899i \(-0.495472\pi\)
0.0142259 + 0.999899i \(0.495472\pi\)
\(114\) 0 0
\(115\) 11.0994 + 6.40824i 1.03502 + 0.597571i
\(116\) 5.14859 0.331443i 0.478034 0.0307737i
\(117\) 0 0
\(118\) 4.14742 + 13.7009i 0.381801 + 1.26127i
\(119\) −0.0212932 1.20325i −0.00195194 0.110302i
\(120\) 0 0
\(121\) −10.6096 18.3763i −0.964505 1.67057i
\(122\) −1.61086 + 6.89047i −0.145840 + 0.623834i
\(123\) 0 0
\(124\) −10.7682 5.32588i −0.967016 0.478278i
\(125\) 9.34863 0.836167
\(126\) 0 0
\(127\) 6.39751i 0.567687i −0.958871 0.283843i \(-0.908390\pi\)
0.958871 0.283843i \(-0.0916096\pi\)
\(128\) 6.01346 9.58323i 0.531520 0.847046i
\(129\) 0 0
\(130\) −4.28067 + 18.3106i −0.375439 + 1.60595i
\(131\) 12.5596 7.25130i 1.09734 0.633549i 0.161818 0.986821i \(-0.448264\pi\)
0.935521 + 0.353272i \(0.114931\pi\)
\(132\) 0 0
\(133\) 8.54991 + 4.73660i 0.741371 + 0.410715i
\(134\) 12.5917 3.81165i 1.08776 0.329276i
\(135\) 0 0
\(136\) −1.20486 + 0.451080i −0.103316 + 0.0386798i
\(137\) 0.615559 1.06618i 0.0525908 0.0910899i −0.838532 0.544853i \(-0.816585\pi\)
0.891122 + 0.453763i \(0.149919\pi\)
\(138\) 0 0
\(139\) 15.7788i 1.33834i 0.743108 + 0.669172i \(0.233351\pi\)
−0.743108 + 0.669172i \(0.766649\pi\)
\(140\) 11.9740 + 5.66080i 1.01199 + 0.478425i
\(141\) 0 0
\(142\) 7.11231 7.58489i 0.596852 0.636510i
\(143\) −15.0768 + 26.1137i −1.26078 + 2.18374i
\(144\) 0 0
\(145\) 5.59176 3.22841i 0.464371 0.268104i
\(146\) 2.80819 + 9.27676i 0.232407 + 0.767750i
\(147\) 0 0
\(148\) 10.0002 + 15.0041i 0.822012 + 1.23333i
\(149\) −5.15767 + 2.97778i −0.422532 + 0.243949i −0.696160 0.717886i \(-0.745110\pi\)
0.273628 + 0.961836i \(0.411776\pi\)
\(150\) 0 0
\(151\) −3.11126 1.79629i −0.253191 0.146180i 0.368034 0.929812i \(-0.380031\pi\)
−0.621224 + 0.783633i \(0.713364\pi\)
\(152\) 1.72010 10.3066i 0.139518 0.835974i
\(153\) 0 0
\(154\) 15.7473 + 14.2510i 1.26895 + 1.14838i
\(155\) −15.0347 −1.20762
\(156\) 0 0
\(157\) 0.491762 0.851757i 0.0392469 0.0679776i −0.845735 0.533604i \(-0.820837\pi\)
0.884982 + 0.465626i \(0.154171\pi\)
\(158\) 12.2738 + 2.86939i 0.976455 + 0.228276i
\(159\) 0 0
\(160\) 1.42880 14.0869i 0.112957 1.11366i
\(161\) −11.8504 6.56505i −0.933942 0.517398i
\(162\) 0 0
\(163\) −1.26083 2.18383i −0.0987562 0.171051i 0.812414 0.583081i \(-0.198153\pi\)
−0.911170 + 0.412030i \(0.864820\pi\)
\(164\) 9.29460 0.598345i 0.725787 0.0467229i
\(165\) 0 0
\(166\) 1.89851 2.02465i 0.147353 0.157144i
\(167\) −5.26232 −0.407211 −0.203605 0.979053i \(-0.565266\pi\)
−0.203605 + 0.979053i \(0.565266\pi\)
\(168\) 0 0
\(169\) 15.2203 1.17079
\(170\) −1.10134 + 1.17451i −0.0844686 + 0.0900811i
\(171\) 0 0
\(172\) 0.471159 + 7.31891i 0.0359255 + 0.558062i
\(173\) −0.0718117 0.124381i −0.00545974 0.00945654i 0.863283 0.504721i \(-0.168405\pi\)
−0.868742 + 0.495264i \(0.835071\pi\)
\(174\) 0 0
\(175\) 3.34646 0.0592202i 0.252969 0.00447662i
\(176\) 8.73750 20.9562i 0.658614 1.57963i
\(177\) 0 0
\(178\) −9.40335 2.19832i −0.704811 0.164771i
\(179\) −9.46239 + 16.3893i −0.707252 + 1.22500i 0.258621 + 0.965979i \(0.416732\pi\)
−0.965873 + 0.259018i \(0.916601\pi\)
\(180\) 0 0
\(181\) −22.2260 −1.65204 −0.826022 0.563637i \(-0.809402\pi\)
−0.826022 + 0.563637i \(0.809402\pi\)
\(182\) 4.18163 19.4319i 0.309963 1.44039i
\(183\) 0 0
\(184\) −2.38410 + 14.2852i −0.175758 + 1.05312i
\(185\) 19.5429 + 11.2831i 1.43682 + 0.829551i
\(186\) 0 0
\(187\) −2.23596 + 1.29093i −0.163509 + 0.0944021i
\(188\) 1.59380 1.06227i 0.116240 0.0774737i
\(189\) 0 0
\(190\) −3.78881 12.5162i −0.274869 0.908023i
\(191\) −10.2112 + 5.89547i −0.738860 + 0.426581i −0.821655 0.569986i \(-0.806949\pi\)
0.0827947 + 0.996567i \(0.473615\pi\)
\(192\) 0 0
\(193\) −13.4112 + 23.2289i −0.965361 + 1.67205i −0.256719 + 0.966486i \(0.582641\pi\)
−0.708642 + 0.705568i \(0.750692\pi\)
\(194\) −3.59146 + 3.83010i −0.257852 + 0.274985i
\(195\) 0 0
\(196\) −12.7608 5.75875i −0.911482 0.411339i
\(197\) 16.5842i 1.18157i 0.806828 + 0.590786i \(0.201182\pi\)
−0.806828 + 0.590786i \(0.798818\pi\)
\(198\) 0 0
\(199\) −5.70420 + 9.87996i −0.404360 + 0.700372i −0.994247 0.107114i \(-0.965839\pi\)
0.589887 + 0.807486i \(0.299172\pi\)
\(200\) −1.25453 3.35094i −0.0887090 0.236947i
\(201\) 0 0
\(202\) 7.69029 2.32794i 0.541087 0.163793i
\(203\) −5.84935 + 3.51657i −0.410544 + 0.246815i
\(204\) 0 0
\(205\) 10.0947 5.82815i 0.705041 0.407056i
\(206\) 1.90164 8.13430i 0.132494 0.566744i
\(207\) 0 0
\(208\) −21.0737 + 2.72456i −1.46120 + 0.188914i
\(209\) 20.9697i 1.45050i
\(210\) 0 0
\(211\) −4.13300 −0.284527 −0.142264 0.989829i \(-0.545438\pi\)
−0.142264 + 0.989829i \(0.545438\pi\)
\(212\) 5.54019 11.2015i 0.380502 0.769324i
\(213\) 0 0
\(214\) 3.43212 14.6809i 0.234615 1.00357i
\(215\) 4.58930 + 7.94890i 0.312988 + 0.542110i
\(216\) 0 0
\(217\) 15.8896 0.281189i 1.07866 0.0190883i
\(218\) −1.30260 4.30311i −0.0882233 0.291443i
\(219\) 0 0
\(220\) −1.82546 28.3564i −0.123072 1.91179i
\(221\) 2.09261 + 1.20817i 0.140764 + 0.0812701i
\(222\) 0 0
\(223\) 18.1063 1.21249 0.606245 0.795278i \(-0.292675\pi\)
0.606245 + 0.795278i \(0.292675\pi\)
\(224\) −1.24659 + 14.9146i −0.0832911 + 0.996525i
\(225\) 0 0
\(226\) 0.312010 + 0.292570i 0.0207546 + 0.0194615i
\(227\) −6.86343 3.96260i −0.455542 0.263007i 0.254626 0.967040i \(-0.418048\pi\)
−0.710168 + 0.704032i \(0.751381\pi\)
\(228\) 0 0
\(229\) −1.07787 1.86692i −0.0712274 0.123370i 0.828212 0.560415i \(-0.189358\pi\)
−0.899440 + 0.437045i \(0.856025\pi\)
\(230\) 5.25139 + 17.3478i 0.346266 + 1.14388i
\(231\) 0 0
\(232\) 5.63201 + 4.63854i 0.369760 + 0.304535i
\(233\) −10.0072 17.3330i −0.655594 1.13552i −0.981745 0.190204i \(-0.939085\pi\)
0.326151 0.945318i \(-0.394248\pi\)
\(234\) 0 0
\(235\) 1.19854 2.07594i 0.0781843 0.135419i
\(236\) −8.97493 + 18.1461i −0.584219 + 1.18121i
\(237\) 0 0
\(238\) 1.14199 1.26190i 0.0740245 0.0817968i
\(239\) 18.8923i 1.22204i −0.791614 0.611021i \(-0.790759\pi\)
0.791614 0.611021i \(-0.209241\pi\)
\(240\) 0 0
\(241\) −15.8555 9.15417i −1.02134 0.589672i −0.106849 0.994275i \(-0.534076\pi\)
−0.914492 + 0.404603i \(0.867410\pi\)
\(242\) 6.83118 29.2205i 0.439125 1.87836i
\(243\) 0 0
\(244\) −8.32726 + 5.55010i −0.533098 + 0.355309i
\(245\) −17.5101 + 0.619923i −1.11868 + 0.0396054i
\(246\) 0 0
\(247\) −16.9960 + 9.81265i −1.08143 + 0.624364i
\(248\) −5.95677 15.9109i −0.378255 1.01034i
\(249\) 0 0
\(250\) 9.64424 + 9.04335i 0.609955 + 0.571952i
\(251\) 3.43251i 0.216658i −0.994115 0.108329i \(-0.965450\pi\)
0.994115 0.108329i \(-0.0345500\pi\)
\(252\) 0 0
\(253\) 29.0645i 1.82727i
\(254\) 6.18860 6.59981i 0.388307 0.414109i
\(255\) 0 0
\(256\) 15.4739 4.06917i 0.967119 0.254323i
\(257\) −21.7104 + 12.5345i −1.35426 + 0.781882i −0.988843 0.148962i \(-0.952407\pi\)
−0.365417 + 0.930844i \(0.619073\pi\)
\(258\) 0 0
\(259\) −20.8652 11.5592i −1.29650 0.718254i
\(260\) −22.1287 + 14.7487i −1.37237 + 0.914678i
\(261\) 0 0
\(262\) 19.9713 + 4.66890i 1.23383 + 0.288445i
\(263\) 13.4314 + 7.75460i 0.828214 + 0.478169i 0.853241 0.521517i \(-0.174634\pi\)
−0.0250270 + 0.999687i \(0.507967\pi\)
\(264\) 0 0
\(265\) 15.6397i 0.960738i
\(266\) 4.23834 + 13.1571i 0.259870 + 0.806713i
\(267\) 0 0
\(268\) 16.6770 + 8.24832i 1.01871 + 0.503847i
\(269\) −11.8667 + 20.5537i −0.723523 + 1.25318i 0.236055 + 0.971740i \(0.424145\pi\)
−0.959579 + 0.281440i \(0.909188\pi\)
\(270\) 0 0
\(271\) −7.35684 12.7424i −0.446896 0.774047i 0.551286 0.834316i \(-0.314137\pi\)
−0.998182 + 0.0602693i \(0.980804\pi\)
\(272\) −1.67931 0.700175i −0.101823 0.0424543i
\(273\) 0 0
\(274\) 1.66639 0.504436i 0.100670 0.0304741i
\(275\) −3.59031 6.21859i −0.216504 0.374995i
\(276\) 0 0
\(277\) −6.16822 3.56123i −0.370613 0.213973i 0.303113 0.952954i \(-0.401974\pi\)
−0.673726 + 0.738981i \(0.735307\pi\)
\(278\) −15.2636 + 16.2778i −0.915449 + 0.976277i
\(279\) 0 0
\(280\) 6.87668 + 17.4228i 0.410960 + 1.04121i
\(281\) 13.0561 0.778861 0.389430 0.921056i \(-0.372672\pi\)
0.389430 + 0.921056i \(0.372672\pi\)
\(282\) 0 0
\(283\) −1.83051 1.05685i −0.108813 0.0628230i 0.444606 0.895726i \(-0.353344\pi\)
−0.553419 + 0.832903i \(0.686677\pi\)
\(284\) 14.6744 0.944674i 0.870767 0.0560561i
\(285\) 0 0
\(286\) −40.8145 + 12.3550i −2.41341 + 0.730568i
\(287\) −10.5597 + 6.34836i −0.623318 + 0.374732i
\(288\) 0 0
\(289\) −8.39655 14.5433i −0.493915 0.855486i
\(290\) 8.89156 + 2.07867i 0.522131 + 0.122064i
\(291\) 0 0
\(292\) −6.07685 + 12.2866i −0.355621 + 0.719018i
\(293\) 0.334002 0.0195126 0.00975630 0.999952i \(-0.496894\pi\)
0.00975630 + 0.999952i \(0.496894\pi\)
\(294\) 0 0
\(295\) 25.3358i 1.47511i
\(296\) −4.19774 + 25.1522i −0.243988 + 1.46194i
\(297\) 0 0
\(298\) −8.20130 1.91730i −0.475089 0.111066i
\(299\) 23.5569 13.6006i 1.36233 0.786542i
\(300\) 0 0
\(301\) −4.99893 8.31507i −0.288134 0.479273i
\(302\) −1.47201 4.86275i −0.0847047 0.279820i
\(303\) 0 0
\(304\) 11.7445 8.96856i 0.673594 0.514382i
\(305\) −6.26211 + 10.8463i −0.358567 + 0.621057i
\(306\) 0 0
\(307\) 9.39141i 0.535996i −0.963419 0.267998i \(-0.913638\pi\)
0.963419 0.267998i \(-0.0863621\pi\)
\(308\) 2.45960 + 29.9347i 0.140149 + 1.70569i
\(309\) 0 0
\(310\) −15.5101 14.5438i −0.880916 0.826030i
\(311\) 7.93750 13.7482i 0.450095 0.779587i −0.548297 0.836284i \(-0.684724\pi\)
0.998391 + 0.0566971i \(0.0180569\pi\)
\(312\) 0 0
\(313\) −27.8562 + 16.0828i −1.57453 + 0.909054i −0.578924 + 0.815381i \(0.696527\pi\)
−0.995603 + 0.0936727i \(0.970139\pi\)
\(314\) 1.33125 0.402987i 0.0751271 0.0227418i
\(315\) 0 0
\(316\) 9.88627 + 14.8332i 0.556146 + 0.834431i
\(317\) 13.2252 7.63558i 0.742802 0.428857i −0.0802854 0.996772i \(-0.525583\pi\)
0.823087 + 0.567915i \(0.192250\pi\)
\(318\) 0 0
\(319\) 12.6807 + 7.32121i 0.709983 + 0.409909i
\(320\) 15.1009 13.1502i 0.844163 0.735117i
\(321\) 0 0
\(322\) −5.87446 18.2361i −0.327371 1.01626i
\(323\) −1.68039 −0.0934996
\(324\) 0 0
\(325\) −3.36013 + 5.81991i −0.186386 + 0.322831i
\(326\) 0.811814 3.47255i 0.0449622 0.192327i
\(327\) 0 0
\(328\) 10.1673 + 8.37383i 0.561396 + 0.462367i
\(329\) −1.22787 + 2.21640i −0.0676947 + 0.122194i
\(330\) 0 0
\(331\) 10.5189 + 18.2193i 0.578174 + 1.00143i 0.995689 + 0.0927561i \(0.0295677\pi\)
−0.417515 + 0.908670i \(0.637099\pi\)
\(332\) 3.91708 0.252164i 0.214978 0.0138393i
\(333\) 0 0
\(334\) −5.42872 5.09048i −0.297046 0.278539i
\(335\) 23.2846 1.27217
\(336\) 0 0
\(337\) 1.18351 0.0644697 0.0322348 0.999480i \(-0.489738\pi\)
0.0322348 + 0.999480i \(0.489738\pi\)
\(338\) 15.7016 + 14.7233i 0.854056 + 0.800843i
\(339\) 0 0
\(340\) −2.27232 + 0.146282i −0.123234 + 0.00793326i
\(341\) −17.0475 29.5271i −0.923172 1.59898i
\(342\) 0 0
\(343\) 18.4942 0.982659i 0.998591 0.0530586i
\(344\) −6.59386 + 8.00612i −0.355517 + 0.431661i
\(345\) 0 0
\(346\) 0.0462374 0.197781i 0.00248574 0.0106328i
\(347\) −2.40670 + 4.16854i −0.129199 + 0.223779i −0.923366 0.383920i \(-0.874574\pi\)
0.794168 + 0.607699i \(0.207907\pi\)
\(348\) 0 0
\(349\) 35.4792 1.89916 0.949578 0.313530i \(-0.101512\pi\)
0.949578 + 0.313530i \(0.101512\pi\)
\(350\) 3.50957 + 3.17609i 0.187594 + 0.169769i
\(351\) 0 0
\(352\) 29.2857 13.1667i 1.56093 0.701786i
\(353\) 4.13712 + 2.38857i 0.220197 + 0.127131i 0.606041 0.795433i \(-0.292757\pi\)
−0.385845 + 0.922564i \(0.626090\pi\)
\(354\) 0 0
\(355\) 15.9375 9.20155i 0.845877 0.488367i
\(356\) −7.57416 11.3641i −0.401430 0.602297i
\(357\) 0 0
\(358\) −25.6158 + 7.75419i −1.35383 + 0.409822i
\(359\) 31.9690 18.4573i 1.68726 0.974140i 0.730656 0.682745i \(-0.239214\pi\)
0.956603 0.291394i \(-0.0941192\pi\)
\(360\) 0 0
\(361\) −2.67598 + 4.63493i −0.140841 + 0.243943i
\(362\) −22.9288 21.5002i −1.20511 1.13003i
\(363\) 0 0
\(364\) 23.1112 16.0013i 1.21136 0.838695i
\(365\) 17.1547i 0.897916i
\(366\) 0 0
\(367\) −0.284416 + 0.492623i −0.0148464 + 0.0257147i −0.873353 0.487088i \(-0.838059\pi\)
0.858507 + 0.512802i \(0.171393\pi\)
\(368\) −16.2782 + 12.4307i −0.848560 + 0.647993i
\(369\) 0 0
\(370\) 9.24623 + 30.5447i 0.480689 + 1.58794i
\(371\) 0.292503 + 16.5290i 0.0151860 + 0.858143i
\(372\) 0 0
\(373\) −20.2929 + 11.7161i −1.05073 + 0.606638i −0.922853 0.385153i \(-0.874149\pi\)
−0.127874 + 0.991790i \(0.540815\pi\)
\(374\) −3.55544 0.831191i −0.183847 0.0429799i
\(375\) 0 0
\(376\) 2.67178 + 0.445902i 0.137787 + 0.0229956i
\(377\) 13.7037i 0.705775i
\(378\) 0 0
\(379\) −14.7240 −0.756320 −0.378160 0.925740i \(-0.623443\pi\)
−0.378160 + 0.925740i \(0.623443\pi\)
\(380\) 8.19890 16.5771i 0.420595 0.850387i
\(381\) 0 0
\(382\) −16.2371 3.79592i −0.830762 0.194216i
\(383\) −2.49754 4.32587i −0.127618 0.221042i 0.795135 0.606432i \(-0.207400\pi\)
−0.922753 + 0.385391i \(0.874067\pi\)
\(384\) 0 0
\(385\) 19.3678 + 32.2159i 0.987077 + 1.64187i
\(386\) −36.3057 + 10.9902i −1.84791 + 0.559385i
\(387\) 0 0
\(388\) −7.41006 + 0.477027i −0.376189 + 0.0242174i
\(389\) −27.6098 15.9405i −1.39987 0.808216i −0.405492 0.914099i \(-0.632900\pi\)
−0.994379 + 0.105883i \(0.966233\pi\)
\(390\) 0 0
\(391\) 2.32907 0.117786
\(392\) −7.59356 18.2849i −0.383533 0.923527i
\(393\) 0 0
\(394\) −16.0426 + 17.1086i −0.808215 + 0.861917i
\(395\) 19.3203 + 11.1546i 0.972108 + 0.561247i
\(396\) 0 0
\(397\) −16.4530 28.4975i −0.825753 1.43025i −0.901343 0.433107i \(-0.857417\pi\)
0.0755896 0.997139i \(-0.475916\pi\)
\(398\) −15.4419 + 4.67445i −0.774033 + 0.234309i
\(399\) 0 0
\(400\) 1.94731 4.67047i 0.0973655 0.233523i
\(401\) 0.106236 + 0.184006i 0.00530517 + 0.00918883i 0.868666 0.495399i \(-0.164978\pi\)
−0.863361 + 0.504587i \(0.831645\pi\)
\(402\) 0 0
\(403\) −15.9545 + 27.6341i −0.794752 + 1.37655i
\(404\) 10.1854 + 5.03762i 0.506742 + 0.250631i
\(405\) 0 0
\(406\) −9.43605 2.03058i −0.468303 0.100776i
\(407\) 51.1745i 2.53663i
\(408\) 0 0
\(409\) 17.7288 + 10.2357i 0.876633 + 0.506124i 0.869547 0.493851i \(-0.164411\pi\)
0.00708628 + 0.999975i \(0.497744\pi\)
\(410\) 16.0517 + 3.75257i 0.792737 + 0.185326i
\(411\) 0 0
\(412\) 9.83046 6.55198i 0.484312 0.322793i
\(413\) −0.473847 26.7765i −0.0233165 1.31759i
\(414\) 0 0
\(415\) 4.25425 2.45619i 0.208833 0.120570i
\(416\) −24.3757 17.5749i −1.19512 0.861679i
\(417\) 0 0
\(418\) 20.2849 21.6328i 0.992169 1.05809i
\(419\) 11.8439i 0.578614i 0.957236 + 0.289307i \(0.0934248\pi\)
−0.957236 + 0.289307i \(0.906575\pi\)
\(420\) 0 0
\(421\) 21.7928i 1.06211i −0.847336 0.531057i \(-0.821795\pi\)
0.847336 0.531057i \(-0.178205\pi\)
\(422\) −4.26369 3.99804i −0.207553 0.194621i
\(423\) 0 0
\(424\) 16.5511 6.19646i 0.803793 0.300927i
\(425\) −0.498323 + 0.287707i −0.0241722 + 0.0139558i
\(426\) 0 0
\(427\) 6.41534 11.5802i 0.310460 0.560404i
\(428\) 17.7422 11.8251i 0.857601 0.571589i
\(429\) 0 0
\(430\) −2.95491 + 12.6397i −0.142499 + 0.609540i
\(431\) −14.3234 8.26964i −0.689936 0.398335i 0.113652 0.993521i \(-0.463745\pi\)
−0.803588 + 0.595186i \(0.797078\pi\)
\(432\) 0 0
\(433\) 39.2724i 1.88731i −0.330929 0.943656i \(-0.607362\pi\)
0.330929 0.943656i \(-0.392638\pi\)
\(434\) 16.6641 + 15.0807i 0.799903 + 0.723897i
\(435\) 0 0
\(436\) 2.81880 5.69924i 0.134996 0.272944i
\(437\) −9.45828 + 16.3822i −0.452451 + 0.783668i
\(438\) 0 0
\(439\) 15.5165 + 26.8754i 0.740564 + 1.28269i 0.952239 + 0.305355i \(0.0987750\pi\)
−0.211674 + 0.977340i \(0.567892\pi\)
\(440\) 25.5472 31.0189i 1.21792 1.47877i
\(441\) 0 0
\(442\) 0.990063 + 3.27064i 0.0470925 + 0.155569i
\(443\) −0.422464 0.731729i −0.0200719 0.0347655i 0.855815 0.517282i \(-0.173056\pi\)
−0.875887 + 0.482517i \(0.839723\pi\)
\(444\) 0 0
\(445\) −14.8018 8.54583i −0.701673 0.405111i
\(446\) 18.6789 + 17.5151i 0.884470 + 0.829363i
\(447\) 0 0
\(448\) −15.7136 + 14.1804i −0.742398 + 0.669959i
\(449\) 41.7433 1.96999 0.984995 0.172585i \(-0.0552119\pi\)
0.984995 + 0.172585i \(0.0552119\pi\)
\(450\) 0 0
\(451\) 22.8921 + 13.2168i 1.07795 + 0.622354i
\(452\) 0.0388599 + 0.603643i 0.00182782 + 0.0283930i
\(453\) 0 0
\(454\) −3.24726 10.7272i −0.152401 0.503453i
\(455\) 17.0480 30.7730i 0.799224 1.44266i
\(456\) 0 0
\(457\) 3.74286 + 6.48282i 0.175083 + 0.303254i 0.940190 0.340650i \(-0.110647\pi\)
−0.765107 + 0.643904i \(0.777314\pi\)
\(458\) 0.694006 2.96862i 0.0324288 0.138715i
\(459\) 0 0
\(460\) −11.3639 + 22.9763i −0.529844 + 1.07128i
\(461\) 4.33499 0.201901 0.100950 0.994891i \(-0.467812\pi\)
0.100950 + 0.994891i \(0.467812\pi\)
\(462\) 0 0
\(463\) 35.3200i 1.64146i −0.571316 0.820730i \(-0.693567\pi\)
0.571316 0.820730i \(-0.306433\pi\)
\(464\) 1.32303 + 10.2333i 0.0614203 + 0.475070i
\(465\) 0 0
\(466\) 6.44334 27.5615i 0.298482 1.27676i
\(467\) −9.09213 + 5.24934i −0.420733 + 0.242911i −0.695391 0.718632i \(-0.744769\pi\)
0.274658 + 0.961542i \(0.411435\pi\)
\(468\) 0 0
\(469\) −24.6087 + 0.435484i −1.13632 + 0.0201088i
\(470\) 3.24459 0.982175i 0.149662 0.0453044i
\(471\) 0 0
\(472\) −26.8123 + 10.0381i −1.23414 + 0.462040i
\(473\) −10.4074 + 18.0261i −0.478532 + 0.828841i
\(474\) 0 0
\(475\) 4.67348i 0.214434i
\(476\) 2.39880 0.197099i 0.109949 0.00903400i
\(477\) 0 0
\(478\) 18.2754 19.4897i 0.835897 0.891439i
\(479\) 8.46375 14.6596i 0.386719 0.669816i −0.605287 0.796007i \(-0.706942\pi\)
0.992006 + 0.126191i \(0.0402752\pi\)
\(480\) 0 0
\(481\) 41.4771 23.9468i 1.89119 1.09188i
\(482\) −7.50161 24.7814i −0.341689 1.12876i
\(483\) 0 0
\(484\) 35.3135 23.5364i 1.60516 1.06983i
\(485\) −8.04790 + 4.64645i −0.365436 + 0.210985i
\(486\) 0 0
\(487\) −20.5482 11.8635i −0.931127 0.537586i −0.0439591 0.999033i \(-0.513997\pi\)
−0.887168 + 0.461447i \(0.847330\pi\)
\(488\) −13.9594 2.32974i −0.631914 0.105462i
\(489\) 0 0
\(490\) −18.6634 16.2988i −0.843129 0.736303i
\(491\) 3.41198 0.153980 0.0769901 0.997032i \(-0.475469\pi\)
0.0769901 + 0.997032i \(0.475469\pi\)
\(492\) 0 0
\(493\) 0.586681 1.01616i 0.0264228 0.0457656i
\(494\) −27.0257 6.31807i −1.21594 0.284264i
\(495\) 0 0
\(496\) 9.24621 22.1763i 0.415167 0.995744i
\(497\) −16.6717 + 10.0229i −0.747829 + 0.449587i
\(498\) 0 0
\(499\) 8.72998 + 15.1208i 0.390808 + 0.676899i 0.992556 0.121787i \(-0.0388624\pi\)
−0.601749 + 0.798686i \(0.705529\pi\)
\(500\) 1.20116 + 18.6586i 0.0537175 + 0.834439i
\(501\) 0 0
\(502\) 3.32043 3.54105i 0.148198 0.158045i
\(503\) 7.08646 0.315970 0.157985 0.987442i \(-0.449500\pi\)
0.157985 + 0.987442i \(0.449500\pi\)
\(504\) 0 0
\(505\) 14.2209 0.632824
\(506\) −28.1155 + 29.9836i −1.24988 + 1.33293i
\(507\) 0 0
\(508\) 12.7686 0.821985i 0.566514 0.0364697i
\(509\) 18.9653 + 32.8488i 0.840622 + 1.45600i 0.889370 + 0.457188i \(0.151143\pi\)
−0.0487485 + 0.998811i \(0.515523\pi\)
\(510\) 0 0
\(511\) −0.320837 18.1301i −0.0141930 0.802030i
\(512\) 19.8995 + 10.7708i 0.879442 + 0.476006i
\(513\) 0 0
\(514\) −34.5222 8.07061i −1.52271 0.355979i
\(515\) 7.39252 12.8042i 0.325753 0.564221i
\(516\) 0 0
\(517\) 5.43598 0.239074
\(518\) −10.3433 32.1086i −0.454457 1.41077i
\(519\) 0 0
\(520\) −37.0956 6.19100i −1.62675 0.271494i
\(521\) −6.91166 3.99045i −0.302805 0.174825i 0.340897 0.940101i \(-0.389269\pi\)
−0.643702 + 0.765276i \(0.722603\pi\)
\(522\) 0 0
\(523\) 12.3267 7.11681i 0.539008 0.311196i −0.205669 0.978622i \(-0.565937\pi\)
0.744677 + 0.667425i \(0.232604\pi\)
\(524\) 16.0864 + 24.1357i 0.702736 + 1.05437i
\(525\) 0 0
\(526\) 6.35470 + 20.9926i 0.277078 + 0.915320i
\(527\) −2.36614 + 1.36609i −0.103071 + 0.0595078i
\(528\) 0 0
\(529\) 1.60942 2.78759i 0.0699747 0.121200i
\(530\) 15.1290 16.1342i 0.657161 0.700826i
\(531\) 0 0
\(532\) −8.35509 + 17.6731i −0.362239 + 0.766225i
\(533\) 24.7389i 1.07156i
\(534\) 0 0
\(535\) 13.3421 23.1093i 0.576831 0.999101i
\(536\) 9.22540 + 24.6416i 0.398476 + 1.06435i
\(537\) 0 0
\(538\) −32.1244 + 9.72444i −1.38498 + 0.419250i
\(539\) −21.0717 33.6856i −0.907622 1.45094i
\(540\) 0 0
\(541\) 6.43282 3.71399i 0.276569 0.159677i −0.355300 0.934752i \(-0.615621\pi\)
0.631869 + 0.775075i \(0.282288\pi\)
\(542\) 4.73685 20.2620i 0.203465 0.870326i
\(543\) 0 0
\(544\) −1.05510 2.34679i −0.0452372 0.100618i
\(545\) 7.95734i 0.340855i
\(546\) 0 0
\(547\) −28.2287 −1.20697 −0.603485 0.797374i \(-0.706222\pi\)
−0.603485 + 0.797374i \(0.706222\pi\)
\(548\) 2.20705 + 1.09159i 0.0942803 + 0.0466303i
\(549\) 0 0
\(550\) 2.31169 9.88830i 0.0985708 0.421638i
\(551\) 4.76498 + 8.25319i 0.202995 + 0.351598i
\(552\) 0 0
\(553\) −20.6275 11.4275i −0.877171 0.485947i
\(554\) −2.91834 9.64064i −0.123988 0.409592i
\(555\) 0 0
\(556\) −31.4925 + 2.02735i −1.33558 + 0.0859787i
\(557\) 29.9378 + 17.2846i 1.26850 + 0.732371i 0.974705 0.223496i \(-0.0717470\pi\)
0.293799 + 0.955867i \(0.405080\pi\)
\(558\) 0 0
\(559\) 19.4803 0.823929
\(560\) −9.75973 + 24.6258i −0.412424 + 1.04063i
\(561\) 0 0
\(562\) 13.4689 + 12.6297i 0.568153 + 0.532754i
\(563\) 10.1504 + 5.86033i 0.427788 + 0.246983i 0.698404 0.715704i \(-0.253894\pi\)
−0.270616 + 0.962687i \(0.587227\pi\)
\(564\) 0 0
\(565\) 0.378513 + 0.655603i 0.0159242 + 0.0275814i
\(566\) −0.866059 2.86100i −0.0364032 0.120257i
\(567\) 0 0
\(568\) 16.0523 + 13.2207i 0.673538 + 0.554728i
\(569\) −5.55324 9.61849i −0.232804 0.403228i 0.725828 0.687876i \(-0.241457\pi\)
−0.958632 + 0.284648i \(0.908123\pi\)
\(570\) 0 0
\(571\) 17.7557 30.7537i 0.743052 1.28700i −0.208047 0.978119i \(-0.566711\pi\)
0.951099 0.308885i \(-0.0999558\pi\)
\(572\) −54.0567 26.7360i −2.26022 1.11789i
\(573\) 0 0
\(574\) −17.0346 3.66575i −0.711012 0.153005i
\(575\) 6.47756i 0.270133i
\(576\) 0 0
\(577\) −23.4304 13.5276i −0.975421 0.563159i −0.0745363 0.997218i \(-0.523748\pi\)
−0.900885 + 0.434059i \(0.857081\pi\)
\(578\) 5.40629 23.1255i 0.224872 0.961894i
\(579\) 0 0
\(580\) 7.16193 + 10.7456i 0.297383 + 0.446188i
\(581\) −4.45023 + 2.67543i −0.184627 + 0.110995i
\(582\) 0 0
\(583\) 30.7152 17.7334i 1.27209 0.734443i
\(584\) −18.1544 + 6.79669i −0.751234 + 0.281249i
\(585\) 0 0
\(586\) 0.344563 + 0.323095i 0.0142338 + 0.0133469i
\(587\) 35.3797i 1.46027i 0.683300 + 0.730137i \(0.260544\pi\)
−0.683300 + 0.730137i \(0.739456\pi\)
\(588\) 0 0
\(589\) 22.1906i 0.914347i
\(590\) −24.5085 + 26.1370i −1.00900 + 1.07604i
\(591\) 0 0
\(592\) −28.6614 + 21.8869i −1.17797 + 0.899546i
\(593\) 33.9659 19.6102i 1.39481 0.805294i 0.400968 0.916092i \(-0.368674\pi\)
0.993843 + 0.110798i \(0.0353406\pi\)
\(594\) 0 0
\(595\) 2.58160 1.55203i 0.105835 0.0636271i
\(596\) −6.60594 9.91142i −0.270590 0.405988i
\(597\) 0 0
\(598\) 37.4583 + 8.75702i 1.53178 + 0.358101i
\(599\) −41.2853 23.8361i −1.68687 0.973916i −0.956890 0.290450i \(-0.906195\pi\)
−0.729982 0.683466i \(-0.760472\pi\)
\(600\) 0 0
\(601\) 13.4207i 0.547442i −0.961809 0.273721i \(-0.911746\pi\)
0.961809 0.273721i \(-0.0882544\pi\)
\(602\) 2.88655 13.4137i 0.117647 0.546702i
\(603\) 0 0
\(604\) 3.18540 6.44046i 0.129612 0.262058i
\(605\) 26.5558 45.9960i 1.07965 1.87000i
\(606\) 0 0
\(607\) 19.1391 + 33.1498i 0.776831 + 1.34551i 0.933760 + 0.357901i \(0.116507\pi\)
−0.156929 + 0.987610i \(0.550159\pi\)
\(608\) 20.7916 + 2.10885i 0.843210 + 0.0855251i
\(609\) 0 0
\(610\) −16.9522 + 5.13164i −0.686376 + 0.207774i
\(611\) −2.54374 4.40588i −0.102909 0.178243i
\(612\) 0 0
\(613\) −16.9225 9.77021i −0.683493 0.394615i 0.117677 0.993052i \(-0.462455\pi\)
−0.801170 + 0.598437i \(0.795789\pi\)
\(614\) 9.08474 9.68838i 0.366630 0.390991i
\(615\) 0 0
\(616\) −26.4198 + 33.2605i −1.06448 + 1.34011i
\(617\) 1.16195 0.0467785 0.0233892 0.999726i \(-0.492554\pi\)
0.0233892 + 0.999726i \(0.492554\pi\)
\(618\) 0 0
\(619\) 31.0842 + 17.9465i 1.24938 + 0.721330i 0.970986 0.239137i \(-0.0768645\pi\)
0.278394 + 0.960467i \(0.410198\pi\)
\(620\) −1.93174 30.0073i −0.0775805 1.20512i
\(621\) 0 0
\(622\) 21.4877 6.50459i 0.861579 0.260810i
\(623\) 15.8033 + 8.75495i 0.633147 + 0.350759i
\(624\) 0 0
\(625\) 14.8624 + 25.7425i 0.594498 + 1.02970i
\(626\) −44.2947 10.3552i −1.77037 0.413879i
\(627\) 0 0
\(628\) 1.76318 + 0.872054i 0.0703585 + 0.0347987i
\(629\) 4.10084 0.163511
\(630\) 0 0
\(631\) 8.26460i 0.329008i −0.986376 0.164504i \(-0.947398\pi\)
0.986376 0.164504i \(-0.0526024\pi\)
\(632\) −4.14991 + 24.8657i −0.165075 + 0.989103i
\(633\) 0 0
\(634\) 21.0296 + 4.91632i 0.835194 + 0.195252i
\(635\) 13.8677 8.00650i 0.550322 0.317728i
\(636\) 0 0
\(637\) −17.4419 + 32.8417i −0.691074 + 1.30123i
\(638\) 5.99955 + 19.8193i 0.237524 + 0.784655i
\(639\) 0 0
\(640\) 28.2991 + 1.04175i 1.11862 + 0.0411787i
\(641\) 14.4955 25.1070i 0.572539 0.991666i −0.423766 0.905772i \(-0.639292\pi\)
0.996304 0.0858940i \(-0.0273747\pi\)
\(642\) 0 0
\(643\) 39.1239i 1.54289i 0.636293 + 0.771447i \(0.280467\pi\)
−0.636293 + 0.771447i \(0.719533\pi\)
\(644\) 11.5804 24.4954i 0.456331 0.965252i
\(645\) 0 0
\(646\) −1.73353 1.62552i −0.0682049 0.0639553i
\(647\) 6.09491 10.5567i 0.239616 0.415027i −0.720988 0.692947i \(-0.756312\pi\)
0.960604 + 0.277921i \(0.0896452\pi\)
\(648\) 0 0
\(649\) −49.7577 + 28.7276i −1.95316 + 1.12766i
\(650\) −9.09624 + 2.75354i −0.356784 + 0.108003i
\(651\) 0 0
\(652\) 4.19664 2.79705i 0.164353 0.109541i
\(653\) 8.80194 5.08180i 0.344446 0.198866i −0.317790 0.948161i \(-0.602941\pi\)
0.662237 + 0.749295i \(0.269607\pi\)
\(654\) 0 0
\(655\) 31.4368 + 18.1500i 1.22834 + 0.709181i
\(656\) 2.38844 + 18.4739i 0.0932528 + 0.721286i
\(657\) 0 0
\(658\) −3.41072 + 1.09871i −0.132964 + 0.0428321i
\(659\) 8.28558 0.322760 0.161380 0.986892i \(-0.448405\pi\)
0.161380 + 0.986892i \(0.448405\pi\)
\(660\) 0 0
\(661\) −8.30890 + 14.3914i −0.323179 + 0.559762i −0.981142 0.193288i \(-0.938085\pi\)
0.657963 + 0.753050i \(0.271418\pi\)
\(662\) −6.77284 + 28.9709i −0.263234 + 1.12599i
\(663\) 0 0
\(664\) 4.28487 + 3.52903i 0.166285 + 0.136953i
\(665\) 0.432875 + 24.4612i 0.0167862 + 0.948566i
\(666\) 0 0
\(667\) −6.60439 11.4391i −0.255723 0.442925i
\(668\) −0.676130 10.5029i −0.0261603 0.406369i
\(669\) 0 0
\(670\) 24.0209 + 22.5243i 0.928009 + 0.870189i
\(671\) −28.4018 −1.09644
\(672\) 0 0
\(673\) 13.1599 0.507278 0.253639 0.967299i \(-0.418372\pi\)
0.253639 + 0.967299i \(0.418372\pi\)
\(674\) 1.22093 + 1.14486i 0.0470285 + 0.0440983i
\(675\) 0 0
\(676\) 1.95559 + 30.3778i 0.0752149 + 1.16838i
\(677\) −10.2201 17.7017i −0.392790 0.680332i 0.600026 0.799980i \(-0.295157\pi\)
−0.992816 + 0.119648i \(0.961823\pi\)
\(678\) 0 0
\(679\) 8.41863 5.06119i 0.323077 0.194231i
\(680\) −2.48568 2.04721i −0.0953215 0.0785070i
\(681\) 0 0
\(682\) 10.9764 46.9516i 0.420307 1.79787i
\(683\) −7.87273 + 13.6360i −0.301242 + 0.521766i −0.976418 0.215891i \(-0.930734\pi\)
0.675176 + 0.737657i \(0.264068\pi\)
\(684\) 0 0
\(685\) 3.08150 0.117738
\(686\) 20.0296 + 16.8765i 0.764732 + 0.644349i
\(687\) 0 0
\(688\) −14.5470 + 1.88074i −0.554601 + 0.0717026i
\(689\) −28.7460 16.5965i −1.09514 0.632277i
\(690\) 0 0
\(691\) 2.76346 1.59549i 0.105127 0.0606952i −0.446515 0.894776i \(-0.647335\pi\)
0.551642 + 0.834081i \(0.314002\pi\)
\(692\) 0.239022 0.159308i 0.00908626 0.00605597i
\(693\) 0 0
\(694\) −6.51522 + 1.97223i −0.247314 + 0.0748650i
\(695\) −34.2033 + 19.7473i −1.29740 + 0.749057i
\(696\) 0 0
\(697\) 1.05912 1.83445i 0.0401170 0.0694847i
\(698\) 36.6011 + 34.3206i 1.38537 + 1.29905i
\(699\) 0 0
\(700\) 0.548166 + 6.67149i 0.0207187 + 0.252158i
\(701\) 39.2121i 1.48102i −0.672045 0.740511i \(-0.734584\pi\)
0.672045 0.740511i \(-0.265416\pi\)
\(702\) 0 0
\(703\) −16.6534 + 28.8445i −0.628094 + 1.08789i
\(704\) 42.9484 + 14.7463i 1.61868 + 0.555774i
\(705\) 0 0
\(706\) 1.95737 + 6.46612i 0.0736666 + 0.243356i
\(707\) −15.0296 + 0.265969i −0.565246 + 0.0100028i
\(708\) 0 0
\(709\) −33.3653 + 19.2635i −1.25306 + 0.723454i −0.971716 0.236153i \(-0.924113\pi\)
−0.281343 + 0.959607i \(0.590780\pi\)
\(710\) 25.3426 + 5.92460i 0.951091 + 0.222346i
\(711\) 0 0
\(712\) 3.17936 19.0503i 0.119152 0.713940i
\(713\) 30.7567i 1.15185i
\(714\) 0 0
\(715\) −75.4744 −2.82258
\(716\) −33.9267 16.7799i −1.26790 0.627094i
\(717\) 0 0
\(718\) 50.8345 + 11.8841i 1.89713 + 0.443511i
\(719\) 11.5009 + 19.9202i 0.428912 + 0.742897i 0.996777 0.0802246i \(-0.0255637\pi\)
−0.567865 + 0.823122i \(0.692230\pi\)
\(720\) 0 0
\(721\) −7.57341 + 13.6706i −0.282049 + 0.509119i
\(722\) −7.24417 + 2.19289i −0.269600 + 0.0816111i
\(723\) 0 0
\(724\) −2.85571 44.3602i −0.106132 1.64863i
\(725\) 2.82613 + 1.63166i 0.104960 + 0.0605985i
\(726\) 0 0
\(727\) −21.8433 −0.810125 −0.405062 0.914289i \(-0.632750\pi\)
−0.405062 + 0.914289i \(0.632750\pi\)
\(728\) 39.3208 + 5.84926i 1.45733 + 0.216788i
\(729\) 0 0
\(730\) −16.5945 + 17.6971i −0.614189 + 0.654999i
\(731\) 1.44451 + 0.833989i 0.0534272 + 0.0308462i
\(732\) 0 0
\(733\) 24.0681 + 41.6871i 0.888974 + 1.53975i 0.841089 + 0.540896i \(0.181915\pi\)
0.0478850 + 0.998853i \(0.484752\pi\)
\(734\) −0.769946 + 0.233072i −0.0284192 + 0.00860283i
\(735\) 0 0
\(736\) −28.8177 2.92292i −1.06223 0.107740i
\(737\) 26.4018 + 45.7293i 0.972524 + 1.68446i
\(738\) 0 0
\(739\) 3.23455 5.60241i 0.118985 0.206088i −0.800381 0.599492i \(-0.795369\pi\)
0.919366 + 0.393404i \(0.128703\pi\)
\(740\) −20.0086 + 40.4548i −0.735532 + 1.48715i
\(741\) 0 0
\(742\) −15.6875 + 17.3346i −0.575907 + 0.636374i
\(743\) 16.6709i 0.611597i −0.952096 0.305798i \(-0.901077\pi\)
0.952096 0.305798i \(-0.0989234\pi\)
\(744\) 0 0
\(745\) −12.9097 7.45340i −0.472974 0.273072i
\(746\) −32.2681 7.54366i −1.18142 0.276193i
\(747\) 0 0
\(748\) −2.86381 4.29681i −0.104711 0.157107i
\(749\) −13.6686 + 24.6729i −0.499441 + 0.901528i
\(750\) 0 0
\(751\) −21.2698 + 12.2801i −0.776145 + 0.448108i −0.835062 0.550155i \(-0.814569\pi\)
0.0589171 + 0.998263i \(0.481235\pi\)
\(752\) 2.32492 + 3.04454i 0.0847813 + 0.111023i
\(753\) 0 0
\(754\) 13.2562 14.1370i 0.482762 0.514839i
\(755\) 8.99223i 0.327261i
\(756\) 0 0
\(757\) 2.80888i 0.102091i −0.998696 0.0510453i \(-0.983745\pi\)
0.998696 0.0510453i \(-0.0162553\pi\)
\(758\) −15.1896 14.2432i −0.551710 0.517335i
\(759\) 0 0
\(760\) 24.4940 9.17012i 0.888489 0.332635i
\(761\) 17.4708 10.0868i 0.633317 0.365646i −0.148718 0.988880i \(-0.547515\pi\)
0.782036 + 0.623234i \(0.214181\pi\)
\(762\) 0 0
\(763\) 0.148823 + 8.40982i 0.00538776 + 0.304456i
\(764\) −13.0786 19.6228i −0.473166 0.709929i
\(765\) 0 0
\(766\) 1.60809 6.87864i 0.0581028 0.248536i
\(767\) 46.5677 + 26.8859i 1.68146 + 0.970792i
\(768\) 0 0
\(769\) 32.1388i 1.15895i −0.814988 0.579477i \(-0.803257\pi\)
0.814988 0.579477i \(-0.196743\pi\)
\(770\) −11.1836 + 51.9700i −0.403030 + 1.87287i
\(771\) 0 0
\(772\) −48.0850 23.7825i −1.73062 0.855950i
\(773\) −11.2931 + 19.5603i −0.406186 + 0.703534i −0.994459 0.105128i \(-0.966475\pi\)
0.588273 + 0.808662i \(0.299808\pi\)
\(774\) 0 0
\(775\) −3.79934 6.58065i −0.136476 0.236384i
\(776\) −8.10583 6.67598i −0.290982 0.239654i
\(777\) 0 0
\(778\) −13.0628 43.1528i −0.468326 1.54710i
\(779\) 8.60209 + 14.8993i 0.308202 + 0.533822i
\(780\) 0 0
\(781\) 36.1423 + 20.8668i 1.29327 + 0.746673i
\(782\) 2.40272 + 2.25302i 0.0859210 + 0.0805677i
\(783\) 0 0
\(784\) 9.85414 26.2087i 0.351934 0.936025i
\(785\) 2.46177 0.0878642
\(786\) 0 0
\(787\) −29.2593 16.8929i −1.04298 0.602166i −0.122306 0.992492i \(-0.539029\pi\)
−0.920677 + 0.390326i \(0.872362\pi\)
\(788\) −33.0998 + 2.13082i −1.17913 + 0.0759073i
\(789\) 0 0
\(790\) 9.14088 + 30.1967i 0.325218 + 1.07435i
\(791\) −0.412298 0.685804i −0.0146596 0.0243844i
\(792\) 0 0
\(793\) 13.2905 + 23.0197i 0.471958 + 0.817455i
\(794\) 10.5936 45.3143i 0.375953 1.60815i
\(795\) 0 0
\(796\) −20.4520 10.1154i −0.724902 0.358531i
\(797\) 27.0472 0.958061 0.479030 0.877798i \(-0.340988\pi\)
0.479030 + 0.877798i \(0.340988\pi\)
\(798\) 0 0
\(799\) 0.435609i 0.0154108i
\(800\) 6.52684 2.93443i 0.230759 0.103748i
\(801\) 0 0
\(802\) −0.0684022 + 0.292591i −0.00241536 + 0.0103318i
\(803\) −33.6905 + 19.4512i −1.18891 + 0.686418i
\(804\) 0 0
\(805\) −0.599976 33.9039i −0.0211464 1.19496i
\(806\) −43.1907 + 13.0743i −1.52133 + 0.460524i
\(807\) 0 0
\(808\) 5.63436 + 15.0497i 0.198216 + 0.529447i
\(809\) −24.9224 + 43.1669i −0.876226 + 1.51767i −0.0207751 + 0.999784i \(0.506613\pi\)
−0.855451 + 0.517884i \(0.826720\pi\)
\(810\) 0 0
\(811\) 36.5330i 1.28285i 0.767188 + 0.641423i \(0.221655\pi\)
−0.767188 + 0.641423i \(0.778345\pi\)
\(812\) −7.77016 11.2227i −0.272679 0.393840i
\(813\) 0 0
\(814\) −49.5034 + 52.7927i −1.73509 + 1.85038i
\(815\) 3.15588 5.46614i 0.110546 0.191470i
\(816\) 0 0
\(817\) −11.7322 + 6.77360i −0.410459 + 0.236978i
\(818\) 8.38793 + 27.7093i 0.293277 + 0.968832i
\(819\) 0 0
\(820\) 12.9292 + 19.3988i 0.451509 + 0.677435i
\(821\) −2.59911 + 1.50060i −0.0907095 + 0.0523711i −0.544669 0.838651i \(-0.683345\pi\)
0.453959 + 0.891023i \(0.350011\pi\)
\(822\) 0 0
\(823\) −13.8543 7.99877i −0.482930 0.278820i 0.238707 0.971092i \(-0.423277\pi\)
−0.721637 + 0.692272i \(0.756610\pi\)
\(824\) 16.4793 + 2.75029i 0.574085 + 0.0958109i
\(825\) 0 0
\(826\) 25.4133 28.0816i 0.884242 0.977083i
\(827\) −4.57856 −0.159212 −0.0796060 0.996826i \(-0.525366\pi\)
−0.0796060 + 0.996826i \(0.525366\pi\)
\(828\) 0 0
\(829\) 1.53077 2.65136i 0.0531657 0.0920857i −0.838218 0.545336i \(-0.816402\pi\)
0.891383 + 0.453250i \(0.149736\pi\)
\(830\) 6.76477 + 1.58147i 0.234808 + 0.0548936i
\(831\) 0 0
\(832\) −8.14552 41.7103i −0.282395 1.44605i
\(833\) −2.69938 + 1.68857i −0.0935279 + 0.0585054i
\(834\) 0 0
\(835\) −6.58581 11.4070i −0.227911 0.394754i
\(836\) 41.8527 2.69429i 1.44751 0.0931841i
\(837\) 0 0
\(838\) −11.4572 + 12.2184i −0.395781 + 0.422079i
\(839\) −39.0864 −1.34941 −0.674706 0.738087i \(-0.735730\pi\)
−0.674706 + 0.738087i \(0.735730\pi\)
\(840\) 0 0
\(841\) 22.3456 0.770536
\(842\) 21.0811 22.4819i 0.726504 0.774777i
\(843\) 0 0
\(844\) −0.531029 8.24892i −0.0182788 0.283940i
\(845\) 19.0483 + 32.9926i 0.655281 + 1.13498i
\(846\) 0 0
\(847\) −27.2056 + 49.1081i −0.934795 + 1.68738i
\(848\) 23.0686 + 9.61825i 0.792179 + 0.330292i
\(849\) 0 0
\(850\) −0.792393 0.185246i −0.0271789 0.00635389i
\(851\) 23.0820 39.9792i 0.791241 1.37047i
\(852\) 0 0
\(853\) 26.4897 0.906989 0.453495 0.891259i \(-0.350177\pi\)
0.453495 + 0.891259i \(0.350177\pi\)
\(854\) 17.8202 5.74050i 0.609796 0.196436i
\(855\) 0 0
\(856\) 29.7422 + 4.96377i 1.01657 + 0.169658i
\(857\) −38.9066 22.4627i −1.32902 0.767312i −0.343875 0.939015i \(-0.611740\pi\)
−0.985149 + 0.171703i \(0.945073\pi\)
\(858\) 0 0
\(859\) 30.6621 17.7028i 1.04618 0.604011i 0.124601 0.992207i \(-0.460235\pi\)
0.921577 + 0.388196i \(0.126902\pi\)
\(860\) −15.2753 + 10.1810i −0.520883 + 0.347168i
\(861\) 0 0
\(862\) −6.77677 22.3869i −0.230818 0.762499i
\(863\) 2.40437 1.38816i 0.0818456 0.0472536i −0.458519 0.888685i \(-0.651620\pi\)
0.540364 + 0.841431i \(0.318286\pi\)
\(864\) 0 0
\(865\) 0.179745 0.311328i 0.00611151 0.0105855i
\(866\) 37.9900 40.5143i 1.29095 1.37673i
\(867\) 0 0
\(868\) 2.60280 + 31.6775i 0.0883448 + 1.07520i
\(869\) 50.5915i 1.71620i
\(870\) 0 0
\(871\) 24.7092 42.7976i 0.837239 1.45014i
\(872\) 8.42107 3.15271i 0.285174 0.106764i
\(873\) 0 0
\(874\) −25.6046 + 7.75082i −0.866089 + 0.262175i
\(875\) −12.7441 21.1982i −0.430830 0.716631i
\(876\) 0 0
\(877\) 14.3264 8.27135i 0.483768 0.279304i −0.238217 0.971212i \(-0.576563\pi\)
0.721986 + 0.691908i \(0.243230\pi\)
\(878\) −9.99064 + 42.7351i −0.337168 + 1.44224i
\(879\) 0 0
\(880\) 56.3610 7.28675i 1.89993 0.245636i
\(881\) 24.6158i 0.829327i −0.909975 0.414664i \(-0.863899\pi\)
0.909975 0.414664i \(-0.136101\pi\)
\(882\) 0 0
\(883\) 40.4623 1.36167 0.680833 0.732439i \(-0.261618\pi\)
0.680833 + 0.732439i \(0.261618\pi\)
\(884\) −2.14247 + 4.33180i −0.0720592 + 0.145694i
\(885\) 0 0
\(886\) 0.272012 1.16354i 0.00913843 0.0390898i
\(887\) 4.64231 + 8.04072i 0.155873 + 0.269981i 0.933377 0.358898i \(-0.116847\pi\)
−0.777503 + 0.628879i \(0.783514\pi\)
\(888\) 0 0
\(889\) −14.5065 + 8.72114i −0.486532 + 0.292498i
\(890\) −7.00309 23.1345i −0.234744 0.775471i
\(891\) 0 0
\(892\) 2.32639 + 36.1379i 0.0778935 + 1.20998i
\(893\) 3.06399 + 1.76900i 0.102533 + 0.0591972i
\(894\) 0 0
\(895\) −47.3688 −1.58337
\(896\) −29.9278 0.571717i −0.999818 0.0190997i
\(897\) 0 0
\(898\) 43.0633 + 40.3802i 1.43704 + 1.34751i
\(899\) 13.4190 + 7.74746i 0.447548 + 0.258392i
\(900\) 0 0
\(901\) −1.42106 2.46134i −0.0473423 0.0819993i
\(902\) 10.8308 + 35.7793i 0.360627 + 1.19132i
\(903\) 0 0
\(904\) −0.543843 + 0.660322i −0.0180880 + 0.0219620i
\(905\) −27.8159 48.1786i −0.924632 1.60151i
\(906\) 0 0
\(907\) −2.55327 + 4.42240i −0.0847800 + 0.146843i −0.905297 0.424778i \(-0.860352\pi\)
0.820517 + 0.571621i \(0.193685\pi\)
\(908\) 7.02699 14.2076i 0.233199 0.471497i
\(909\) 0 0
\(910\) 47.3552 15.2547i 1.56981 0.505689i
\(911\) 36.3702i 1.20500i −0.798119 0.602500i \(-0.794171\pi\)
0.798119 0.602500i \(-0.205829\pi\)
\(912\) 0 0
\(913\) 9.64757 + 5.57003i 0.319288 + 0.184341i
\(914\) −2.40991 + 10.3085i −0.0797129 + 0.340973i
\(915\) 0 0
\(916\) 3.58764 2.39115i 0.118539 0.0790059i
\(917\) −33.5639 18.5942i −1.10838 0.614034i
\(918\) 0 0
\(919\) −40.4248 + 23.3393i −1.33349 + 0.769892i −0.985833 0.167729i \(-0.946357\pi\)
−0.347659 + 0.937621i \(0.613023\pi\)
\(920\) −33.9493 + 12.7100i −1.11927 + 0.419037i
\(921\) 0 0
\(922\) 4.47207 + 4.19343i 0.147280 + 0.138103i
\(923\) 39.0580i 1.28561i
\(924\) 0 0
\(925\) 11.4052i 0.375000i
\(926\) 34.1666 36.4369i 1.12279 1.19739i
\(927\) 0 0
\(928\) −8.53428 + 11.8367i −0.280152 + 0.388560i
\(929\) −33.8671 + 19.5532i −1.11114 + 0.641518i −0.939125 0.343576i \(-0.888362\pi\)
−0.172017 + 0.985094i \(0.555028\pi\)
\(930\) 0 0
\(931\) −0.914979 25.8441i −0.0299872 0.847006i
\(932\) 33.3086 22.2001i 1.09106 0.727188i
\(933\) 0 0
\(934\) −14.4576 3.37990i −0.473066 0.110594i
\(935\) −5.59661 3.23121i −0.183029 0.105672i
\(936\) 0 0
\(937\) 14.4038i 0.470551i −0.971929 0.235275i \(-0.924401\pi\)
0.971929 0.235275i \(-0.0755992\pi\)
\(938\) −25.8081 23.3558i −0.842664 0.762595i
\(939\) 0 0
\(940\) 4.29729 + 2.12541i 0.140162 + 0.0693231i
\(941\) −13.1269 + 22.7364i −0.427924 + 0.741186i −0.996688 0.0813146i \(-0.974088\pi\)
0.568765 + 0.822500i \(0.307421\pi\)
\(942\) 0 0
\(943\) −11.9227 20.6508i −0.388257 0.672482i
\(944\) −37.3704 15.5813i −1.21630 0.507128i
\(945\) 0 0
\(946\) −28.1739 + 8.52858i −0.916014 + 0.277288i
\(947\) 7.85354 + 13.6027i 0.255206 + 0.442030i 0.964951 0.262429i \(-0.0845234\pi\)
−0.709746 + 0.704458i \(0.751190\pi\)
\(948\) 0 0
\(949\) 31.5306 + 18.2042i 1.02353 + 0.590933i
\(950\) 4.52087 4.82126i 0.146676 0.156422i
\(951\) 0 0
\(952\) 2.66531 + 2.11714i 0.0863833 + 0.0686168i
\(953\) −42.8466 −1.38794 −0.693968 0.720006i \(-0.744139\pi\)
−0.693968 + 0.720006i \(0.744139\pi\)
\(954\) 0 0
\(955\) −25.5588 14.7564i −0.827064 0.477506i
\(956\) 37.7066 2.42738i 1.21952 0.0785072i
\(957\) 0 0
\(958\) 22.9123 6.93583i 0.740264 0.224087i
\(959\) −3.25672 + 0.0576322i −0.105165 + 0.00186104i
\(960\) 0 0
\(961\) −2.53999 4.39939i −0.0819352 0.141916i
\(962\) 65.9535 + 15.4187i 2.12643 + 0.497117i
\(963\) 0 0
\(964\) 16.2333 32.8216i 0.522840 1.05711i
\(965\) −67.1368 −2.16121
\(966\) 0 0
\(967\) 0.672082i 0.0216127i 0.999942 + 0.0108063i \(0.00343983\pi\)
−0.999942 + 0.0108063i \(0.996560\pi\)
\(968\) 59.1979 + 9.87973i 1.90269 + 0.317547i
\(969\) 0 0
\(970\) −12.7971 2.99171i −0.410890 0.0960582i
\(971\) 6.45838 3.72875i 0.207259 0.119661i −0.392778 0.919633i \(-0.628486\pi\)
0.600037 + 0.799972i \(0.295153\pi\)
\(972\) 0 0
\(973\) 35.7789 21.5099i 1.14702 0.689575i
\(974\) −9.72184 32.1158i −0.311508 1.02906i
\(975\) 0 0
\(976\) −12.1472 15.9070i −0.388822 0.509171i
\(977\) 8.78701 15.2195i 0.281121 0.486916i −0.690540 0.723294i \(-0.742627\pi\)
0.971661 + 0.236378i \(0.0759603\pi\)
\(978\) 0 0
\(979\) 38.7596i 1.23876i
\(980\) −3.48707 34.8682i −0.111390 1.11382i
\(981\) 0 0
\(982\) 3.51987 + 3.30056i 0.112323 + 0.105325i
\(983\) −21.3661 + 37.0072i −0.681472 + 1.18034i 0.293059 + 0.956094i \(0.405327\pi\)
−0.974532 + 0.224250i \(0.928007\pi\)
\(984\) 0 0
\(985\) −35.9489 + 20.7551i −1.14543 + 0.661313i
\(986\) 1.58821 0.480770i 0.0505790 0.0153108i
\(987\) 0 0
\(988\) −21.7685 32.6610i −0.692548 1.03909i
\(989\) 16.2612 9.38839i 0.517075 0.298533i
\(990\) 0 0
\(991\) −39.3373 22.7114i −1.24959 0.721451i −0.278563 0.960418i \(-0.589858\pi\)
−0.971028 + 0.238967i \(0.923191\pi\)
\(992\) 30.9907 13.9332i 0.983956 0.442381i
\(993\) 0 0
\(994\) −26.8945 5.78753i −0.853041 0.183569i
\(995\) −28.5553 −0.905264
\(996\) 0 0
\(997\) 21.8718 37.8831i 0.692687 1.19977i −0.278268 0.960504i \(-0.589760\pi\)
0.970954 0.239265i \(-0.0769065\pi\)
\(998\) −5.62098 + 24.0438i −0.177929 + 0.761094i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.bk.c.451.13 32
3.2 odd 2 168.2.t.a.115.4 yes 32
4.3 odd 2 2016.2.bs.c.1711.13 32
7.5 odd 6 inner 504.2.bk.c.19.9 32
8.3 odd 2 inner 504.2.bk.c.451.9 32
8.5 even 2 2016.2.bs.c.1711.4 32
12.11 even 2 672.2.bb.a.367.2 32
21.5 even 6 168.2.t.a.19.8 yes 32
21.11 odd 6 1176.2.p.a.979.25 32
21.17 even 6 1176.2.p.a.979.26 32
24.5 odd 2 672.2.bb.a.367.7 32
24.11 even 2 168.2.t.a.115.8 yes 32
28.19 even 6 2016.2.bs.c.271.4 32
56.5 odd 6 2016.2.bs.c.271.13 32
56.19 even 6 inner 504.2.bk.c.19.13 32
84.11 even 6 4704.2.p.a.3919.2 32
84.47 odd 6 672.2.bb.a.271.7 32
84.59 odd 6 4704.2.p.a.3919.15 32
168.5 even 6 672.2.bb.a.271.2 32
168.11 even 6 1176.2.p.a.979.28 32
168.53 odd 6 4704.2.p.a.3919.16 32
168.59 odd 6 1176.2.p.a.979.27 32
168.101 even 6 4704.2.p.a.3919.1 32
168.131 odd 6 168.2.t.a.19.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.t.a.19.4 32 168.131 odd 6
168.2.t.a.19.8 yes 32 21.5 even 6
168.2.t.a.115.4 yes 32 3.2 odd 2
168.2.t.a.115.8 yes 32 24.11 even 2
504.2.bk.c.19.9 32 7.5 odd 6 inner
504.2.bk.c.19.13 32 56.19 even 6 inner
504.2.bk.c.451.9 32 8.3 odd 2 inner
504.2.bk.c.451.13 32 1.1 even 1 trivial
672.2.bb.a.271.2 32 168.5 even 6
672.2.bb.a.271.7 32 84.47 odd 6
672.2.bb.a.367.2 32 12.11 even 2
672.2.bb.a.367.7 32 24.5 odd 2
1176.2.p.a.979.25 32 21.11 odd 6
1176.2.p.a.979.26 32 21.17 even 6
1176.2.p.a.979.27 32 168.59 odd 6
1176.2.p.a.979.28 32 168.11 even 6
2016.2.bs.c.271.4 32 28.19 even 6
2016.2.bs.c.271.13 32 56.5 odd 6
2016.2.bs.c.1711.4 32 8.5 even 2
2016.2.bs.c.1711.13 32 4.3 odd 2
4704.2.p.a.3919.1 32 168.101 even 6
4704.2.p.a.3919.2 32 84.11 even 6
4704.2.p.a.3919.15 32 84.59 odd 6
4704.2.p.a.3919.16 32 168.53 odd 6