Newspace parameters
Level: | \( N \) | \(=\) | \( 5 \) |
Weight: | \( k \) | \(=\) | \( 28 \) |
Character orbit: | \([\chi]\) | \(=\) | 5.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(23.0927787419\) |
Analytic rank: | \(1\) |
Dimension: | \(4\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) |
Defining polynomial: |
\( x^{4} - 19275662x^{2} - 30468026939x + 4134032404260 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2^{9}\cdot 3^{4}\cdot 5^{2} \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 19275662x^{2} - 30468026939x + 4134032404260 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -14\nu^{3} + 380152\nu^{2} - 82619548\nu - 3344017320395 ) / 181745885 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 64542\nu^{3} - 194733156\nu^{2} - 664410556656\nu + 401954610728990 ) / 181745885 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -99966\nu^{3} + 221933208\nu^{2} + 1396595469348\nu + 145370315571619 ) / 36349177 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{3} + 8\beta_{2} + 1179\beta _1 + 594 ) / 8640 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 671\beta_{3} + 6376\beta_{2} + 5438133\beta _1 + 83273582430 ) / 8640 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 6159373\beta_{3} + 62960456\beta_{2} + 14272294383\beta _1 + 98723577989466 ) / 4320 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−21310.7 | 4.70996e6 | 3.19926e8 | 1.22070e9 | −1.00372e11 | −2.75207e11 | −3.95757e12 | 1.45581e13 | −2.60140e13 | ||||||||||||||||||||||||||||||
1.2 | −7959.76 | 829899. | −7.08599e7 | 1.22070e9 | −6.60580e9 | −2.73788e10 | 1.63237e12 | −6.93687e12 | −9.71651e12 | |||||||||||||||||||||||||||||||
1.3 | −1651.55 | −4.81686e6 | −1.31490e8 | 1.22070e9 | 7.95528e9 | 4.20350e11 | 4.38829e11 | 1.55766e13 | −2.01605e12 | |||||||||||||||||||||||||||||||
1.4 | 19372.0 | −3.19680e6 | 2.41055e8 | 1.22070e9 | −6.19283e10 | −3.32780e11 | 2.06966e12 | 2.59392e12 | 2.36474e13 | |||||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 5.28.a.a | ✓ | 4 |
3.b | odd | 2 | 1 | 45.28.a.b | 4 | ||
5.b | even | 2 | 1 | 25.28.a.b | 4 | ||
5.c | odd | 4 | 2 | 25.28.b.b | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
5.28.a.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
25.28.a.b | 4 | 5.b | even | 2 | 1 | ||
25.28.b.b | 8 | 5.c | odd | 4 | 2 | ||
45.28.a.b | 4 | 3.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 11550T_{2}^{3} - 381050112T_{2}^{2} - 3942345932800T_{2} - 5427025739710464 \)
acting on \(S_{28}^{\mathrm{new}}(\Gamma_0(5))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + 11550 T^{3} + \cdots - 54\!\cdots\!64 \)
$3$
\( T^{4} + 2473800 T^{3} + \cdots + 60\!\cdots\!76 \)
$5$
\( (T - 1220703125)^{4} \)
$7$
\( T^{4} + 215015185000 T^{3} + \cdots - 10\!\cdots\!04 \)
$11$
\( T^{4} + 107427307660512 T^{3} + \cdots + 23\!\cdots\!56 \)
$13$
\( T^{4} + \cdots - 38\!\cdots\!44 \)
$17$
\( T^{4} + \cdots - 19\!\cdots\!84 \)
$19$
\( T^{4} + \cdots - 10\!\cdots\!00 \)
$23$
\( T^{4} + \cdots - 60\!\cdots\!64 \)
$29$
\( T^{4} + \cdots + 17\!\cdots\!00 \)
$31$
\( T^{4} + \cdots - 49\!\cdots\!64 \)
$37$
\( T^{4} + \cdots - 33\!\cdots\!44 \)
$41$
\( T^{4} + \cdots - 86\!\cdots\!24 \)
$43$
\( T^{4} + \cdots + 27\!\cdots\!96 \)
$47$
\( T^{4} + \cdots - 82\!\cdots\!24 \)
$53$
\( T^{4} + \cdots + 18\!\cdots\!76 \)
$59$
\( T^{4} + \cdots + 11\!\cdots\!00 \)
$61$
\( T^{4} + \cdots - 94\!\cdots\!44 \)
$67$
\( T^{4} + \cdots - 20\!\cdots\!84 \)
$71$
\( T^{4} + \cdots - 13\!\cdots\!04 \)
$73$
\( T^{4} + \cdots - 13\!\cdots\!64 \)
$79$
\( T^{4} + \cdots - 19\!\cdots\!00 \)
$83$
\( T^{4} + \cdots - 11\!\cdots\!84 \)
$89$
\( T^{4} + \cdots + 90\!\cdots\!00 \)
$97$
\( T^{4} + \cdots - 56\!\cdots\!24 \)
show more
show less