Properties

Label 496.2.i.g.129.1
Level $496$
Weight $2$
Character 496.129
Analytic conductor $3.961$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [496,2,Mod(129,496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(496, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("496.129"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 496 = 2^{4} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 496.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,3,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.96057994026\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 62)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 129.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 496.129
Dual form 496.2.i.g.273.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 - 2.59808i) q^{3} +(-0.500000 - 0.866025i) q^{5} +(-1.50000 + 2.59808i) q^{7} +(-3.00000 - 5.19615i) q^{9} +(-1.50000 - 2.59808i) q^{11} +(-2.50000 - 4.33013i) q^{13} -3.00000 q^{15} +(-1.50000 + 2.59808i) q^{17} +(3.50000 - 6.06218i) q^{19} +(4.50000 + 7.79423i) q^{21} +4.00000 q^{23} +(2.00000 - 3.46410i) q^{25} -9.00000 q^{27} +2.00000 q^{29} +(-2.00000 + 5.19615i) q^{31} -9.00000 q^{33} +3.00000 q^{35} +(-0.500000 + 0.866025i) q^{37} -15.0000 q^{39} +(4.50000 + 7.79423i) q^{41} +(-0.500000 + 0.866025i) q^{43} +(-3.00000 + 5.19615i) q^{45} +8.00000 q^{47} +(-1.00000 - 1.73205i) q^{49} +(4.50000 + 7.79423i) q^{51} +(1.50000 + 2.59808i) q^{53} +(-1.50000 + 2.59808i) q^{55} +(-10.5000 - 18.1865i) q^{57} +(1.50000 - 2.59808i) q^{59} +6.00000 q^{61} +18.0000 q^{63} +(-2.50000 + 4.33013i) q^{65} +(-1.50000 - 2.59808i) q^{67} +(6.00000 - 10.3923i) q^{69} +(-0.500000 - 0.866025i) q^{71} +(-3.50000 - 6.06218i) q^{73} +(-6.00000 - 10.3923i) q^{75} +9.00000 q^{77} +(0.500000 - 0.866025i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(2.50000 + 4.33013i) q^{83} +3.00000 q^{85} +(3.00000 - 5.19615i) q^{87} +6.00000 q^{89} +15.0000 q^{91} +(10.5000 + 12.9904i) q^{93} -7.00000 q^{95} +14.0000 q^{97} +(-9.00000 + 15.5885i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} - q^{5} - 3 q^{7} - 6 q^{9} - 3 q^{11} - 5 q^{13} - 6 q^{15} - 3 q^{17} + 7 q^{19} + 9 q^{21} + 8 q^{23} + 4 q^{25} - 18 q^{27} + 4 q^{29} - 4 q^{31} - 18 q^{33} + 6 q^{35} - q^{37} - 30 q^{39}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/496\mathbb{Z}\right)^\times\).

\(n\) \(63\) \(65\) \(373\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 2.59808i 0.866025 1.50000i 1.00000i \(-0.5\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i 0.732294 0.680989i \(-0.238450\pi\)
−0.955901 + 0.293691i \(0.905116\pi\)
\(6\) 0 0
\(7\) −1.50000 + 2.59808i −0.566947 + 0.981981i 0.429919 + 0.902867i \(0.358542\pi\)
−0.996866 + 0.0791130i \(0.974791\pi\)
\(8\) 0 0
\(9\) −3.00000 5.19615i −1.00000 1.73205i
\(10\) 0 0
\(11\) −1.50000 2.59808i −0.452267 0.783349i 0.546259 0.837616i \(-0.316051\pi\)
−0.998526 + 0.0542666i \(0.982718\pi\)
\(12\) 0 0
\(13\) −2.50000 4.33013i −0.693375 1.20096i −0.970725 0.240192i \(-0.922790\pi\)
0.277350 0.960769i \(-0.410544\pi\)
\(14\) 0 0
\(15\) −3.00000 −0.774597
\(16\) 0 0
\(17\) −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i \(-0.951855\pi\)
0.624780 + 0.780801i \(0.285189\pi\)
\(18\) 0 0
\(19\) 3.50000 6.06218i 0.802955 1.39076i −0.114708 0.993399i \(-0.536593\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) 0 0
\(21\) 4.50000 + 7.79423i 0.981981 + 1.70084i
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 2.00000 3.46410i 0.400000 0.692820i
\(26\) 0 0
\(27\) −9.00000 −1.73205
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −2.00000 + 5.19615i −0.359211 + 0.933257i
\(32\) 0 0
\(33\) −9.00000 −1.56670
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) −0.500000 + 0.866025i −0.0821995 + 0.142374i −0.904194 0.427121i \(-0.859528\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) −15.0000 −2.40192
\(40\) 0 0
\(41\) 4.50000 + 7.79423i 0.702782 + 1.21725i 0.967486 + 0.252924i \(0.0813924\pi\)
−0.264704 + 0.964330i \(0.585274\pi\)
\(42\) 0 0
\(43\) −0.500000 + 0.866025i −0.0762493 + 0.132068i −0.901629 0.432511i \(-0.857628\pi\)
0.825380 + 0.564578i \(0.190961\pi\)
\(44\) 0 0
\(45\) −3.00000 + 5.19615i −0.447214 + 0.774597i
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) −1.00000 1.73205i −0.142857 0.247436i
\(50\) 0 0
\(51\) 4.50000 + 7.79423i 0.630126 + 1.09141i
\(52\) 0 0
\(53\) 1.50000 + 2.59808i 0.206041 + 0.356873i 0.950464 0.310835i \(-0.100609\pi\)
−0.744423 + 0.667708i \(0.767275\pi\)
\(54\) 0 0
\(55\) −1.50000 + 2.59808i −0.202260 + 0.350325i
\(56\) 0 0
\(57\) −10.5000 18.1865i −1.39076 2.40887i
\(58\) 0 0
\(59\) 1.50000 2.59808i 0.195283 0.338241i −0.751710 0.659494i \(-0.770771\pi\)
0.946993 + 0.321253i \(0.104104\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) 18.0000 2.26779
\(64\) 0 0
\(65\) −2.50000 + 4.33013i −0.310087 + 0.537086i
\(66\) 0 0
\(67\) −1.50000 2.59808i −0.183254 0.317406i 0.759733 0.650236i \(-0.225330\pi\)
−0.942987 + 0.332830i \(0.891996\pi\)
\(68\) 0 0
\(69\) 6.00000 10.3923i 0.722315 1.25109i
\(70\) 0 0
\(71\) −0.500000 0.866025i −0.0593391 0.102778i 0.834830 0.550508i \(-0.185566\pi\)
−0.894169 + 0.447730i \(0.852233\pi\)
\(72\) 0 0
\(73\) −3.50000 6.06218i −0.409644 0.709524i 0.585206 0.810885i \(-0.301014\pi\)
−0.994850 + 0.101361i \(0.967680\pi\)
\(74\) 0 0
\(75\) −6.00000 10.3923i −0.692820 1.20000i
\(76\) 0 0
\(77\) 9.00000 1.02565
\(78\) 0 0
\(79\) 0.500000 0.866025i 0.0562544 0.0974355i −0.836527 0.547926i \(-0.815418\pi\)
0.892781 + 0.450490i \(0.148751\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 2.50000 + 4.33013i 0.274411 + 0.475293i 0.969986 0.243160i \(-0.0781839\pi\)
−0.695576 + 0.718453i \(0.744851\pi\)
\(84\) 0 0
\(85\) 3.00000 0.325396
\(86\) 0 0
\(87\) 3.00000 5.19615i 0.321634 0.557086i
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 15.0000 1.57243
\(92\) 0 0
\(93\) 10.5000 + 12.9904i 1.08880 + 1.34704i
\(94\) 0 0
\(95\) −7.00000 −0.718185
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) −9.00000 + 15.5885i −0.904534 + 1.56670i
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) −6.50000 11.2583i −0.640464 1.10932i −0.985329 0.170664i \(-0.945409\pi\)
0.344865 0.938652i \(-0.387925\pi\)
\(104\) 0 0
\(105\) 4.50000 7.79423i 0.439155 0.760639i
\(106\) 0 0
\(107\) −6.50000 + 11.2583i −0.628379 + 1.08838i 0.359498 + 0.933146i \(0.382948\pi\)
−0.987877 + 0.155238i \(0.950386\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 1.50000 + 2.59808i 0.142374 + 0.246598i
\(112\) 0 0
\(113\) 0.500000 + 0.866025i 0.0470360 + 0.0814688i 0.888585 0.458712i \(-0.151689\pi\)
−0.841549 + 0.540181i \(0.818356\pi\)
\(114\) 0 0
\(115\) −2.00000 3.46410i −0.186501 0.323029i
\(116\) 0 0
\(117\) −15.0000 + 25.9808i −1.38675 + 2.40192i
\(118\) 0 0
\(119\) −4.50000 7.79423i −0.412514 0.714496i
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 0 0
\(123\) 27.0000 2.43451
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 6.50000 11.2583i 0.576782 0.999015i −0.419064 0.907957i \(-0.637642\pi\)
0.995846 0.0910585i \(-0.0290250\pi\)
\(128\) 0 0
\(129\) 1.50000 + 2.59808i 0.132068 + 0.228748i
\(130\) 0 0
\(131\) −10.5000 + 18.1865i −0.917389 + 1.58896i −0.114024 + 0.993478i \(0.536374\pi\)
−0.803365 + 0.595487i \(0.796959\pi\)
\(132\) 0 0
\(133\) 10.5000 + 18.1865i 0.910465 + 1.57697i
\(134\) 0 0
\(135\) 4.50000 + 7.79423i 0.387298 + 0.670820i
\(136\) 0 0
\(137\) −5.50000 9.52628i −0.469897 0.813885i 0.529511 0.848303i \(-0.322376\pi\)
−0.999408 + 0.0344182i \(0.989042\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 12.0000 20.7846i 1.01058 1.75038i
\(142\) 0 0
\(143\) −7.50000 + 12.9904i −0.627182 + 1.08631i
\(144\) 0 0
\(145\) −1.00000 1.73205i −0.0830455 0.143839i
\(146\) 0 0
\(147\) −6.00000 −0.494872
\(148\) 0 0
\(149\) −0.500000 + 0.866025i −0.0409616 + 0.0709476i −0.885779 0.464107i \(-0.846375\pi\)
0.844818 + 0.535054i \(0.179709\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 18.0000 1.45521
\(154\) 0 0
\(155\) 5.50000 0.866025i 0.441771 0.0695608i
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 0 0
\(159\) 9.00000 0.713746
\(160\) 0 0
\(161\) −6.00000 + 10.3923i −0.472866 + 0.819028i
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) 4.50000 + 7.79423i 0.350325 + 0.606780i
\(166\) 0 0
\(167\) −9.50000 + 16.4545i −0.735132 + 1.27329i 0.219533 + 0.975605i \(0.429547\pi\)
−0.954665 + 0.297681i \(0.903787\pi\)
\(168\) 0 0
\(169\) −6.00000 + 10.3923i −0.461538 + 0.799408i
\(170\) 0 0
\(171\) −42.0000 −3.21182
\(172\) 0 0
\(173\) −0.500000 0.866025i −0.0380143 0.0658427i 0.846392 0.532560i \(-0.178770\pi\)
−0.884407 + 0.466717i \(0.845437\pi\)
\(174\) 0 0
\(175\) 6.00000 + 10.3923i 0.453557 + 0.785584i
\(176\) 0 0
\(177\) −4.50000 7.79423i −0.338241 0.585850i
\(178\) 0 0
\(179\) 9.50000 16.4545i 0.710063 1.22987i −0.254770 0.967002i \(-0.582000\pi\)
0.964833 0.262864i \(-0.0846670\pi\)
\(180\) 0 0
\(181\) −2.50000 4.33013i −0.185824 0.321856i 0.758030 0.652219i \(-0.226162\pi\)
−0.943854 + 0.330364i \(0.892829\pi\)
\(182\) 0 0
\(183\) 9.00000 15.5885i 0.665299 1.15233i
\(184\) 0 0
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) 9.00000 0.658145
\(188\) 0 0
\(189\) 13.5000 23.3827i 0.981981 1.70084i
\(190\) 0 0
\(191\) 1.50000 + 2.59808i 0.108536 + 0.187990i 0.915177 0.403051i \(-0.132050\pi\)
−0.806641 + 0.591041i \(0.798717\pi\)
\(192\) 0 0
\(193\) −9.50000 + 16.4545i −0.683825 + 1.18442i 0.289980 + 0.957033i \(0.406351\pi\)
−0.973805 + 0.227387i \(0.926982\pi\)
\(194\) 0 0
\(195\) 7.50000 + 12.9904i 0.537086 + 0.930261i
\(196\) 0 0
\(197\) 7.50000 + 12.9904i 0.534353 + 0.925526i 0.999194 + 0.0401324i \(0.0127780\pi\)
−0.464841 + 0.885394i \(0.653889\pi\)
\(198\) 0 0
\(199\) −10.5000 18.1865i −0.744325 1.28921i −0.950509 0.310696i \(-0.899438\pi\)
0.206184 0.978513i \(-0.433895\pi\)
\(200\) 0 0
\(201\) −9.00000 −0.634811
\(202\) 0 0
\(203\) −3.00000 + 5.19615i −0.210559 + 0.364698i
\(204\) 0 0
\(205\) 4.50000 7.79423i 0.314294 0.544373i
\(206\) 0 0
\(207\) −12.0000 20.7846i −0.834058 1.44463i
\(208\) 0 0
\(209\) −21.0000 −1.45260
\(210\) 0 0
\(211\) −0.500000 + 0.866025i −0.0344214 + 0.0596196i −0.882723 0.469894i \(-0.844292\pi\)
0.848301 + 0.529514i \(0.177626\pi\)
\(212\) 0 0
\(213\) −3.00000 −0.205557
\(214\) 0 0
\(215\) 1.00000 0.0681994
\(216\) 0 0
\(217\) −10.5000 12.9904i −0.712786 0.881845i
\(218\) 0 0
\(219\) −21.0000 −1.41905
\(220\) 0 0
\(221\) 15.0000 1.00901
\(222\) 0 0
\(223\) −9.50000 + 16.4545i −0.636167 + 1.10187i 0.350100 + 0.936713i \(0.386148\pi\)
−0.986267 + 0.165161i \(0.947186\pi\)
\(224\) 0 0
\(225\) −24.0000 −1.60000
\(226\) 0 0
\(227\) 10.5000 + 18.1865i 0.696909 + 1.20708i 0.969533 + 0.244962i \(0.0787754\pi\)
−0.272623 + 0.962121i \(0.587891\pi\)
\(228\) 0 0
\(229\) 3.50000 6.06218i 0.231287 0.400600i −0.726900 0.686743i \(-0.759040\pi\)
0.958187 + 0.286143i \(0.0923732\pi\)
\(230\) 0 0
\(231\) 13.5000 23.3827i 0.888235 1.53847i
\(232\) 0 0
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) −4.00000 6.92820i −0.260931 0.451946i
\(236\) 0 0
\(237\) −1.50000 2.59808i −0.0974355 0.168763i
\(238\) 0 0
\(239\) −0.500000 0.866025i −0.0323423 0.0560185i 0.849401 0.527748i \(-0.176963\pi\)
−0.881743 + 0.471729i \(0.843630\pi\)
\(240\) 0 0
\(241\) 12.5000 21.6506i 0.805196 1.39464i −0.110963 0.993825i \(-0.535394\pi\)
0.916159 0.400815i \(-0.131273\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.00000 + 1.73205i −0.0638877 + 0.110657i
\(246\) 0 0
\(247\) −35.0000 −2.22700
\(248\) 0 0
\(249\) 15.0000 0.950586
\(250\) 0 0
\(251\) 11.5000 19.9186i 0.725874 1.25725i −0.232740 0.972539i \(-0.574769\pi\)
0.958613 0.284711i \(-0.0918976\pi\)
\(252\) 0 0
\(253\) −6.00000 10.3923i −0.377217 0.653359i
\(254\) 0 0
\(255\) 4.50000 7.79423i 0.281801 0.488094i
\(256\) 0 0
\(257\) 6.50000 + 11.2583i 0.405459 + 0.702275i 0.994375 0.105919i \(-0.0337784\pi\)
−0.588916 + 0.808194i \(0.700445\pi\)
\(258\) 0 0
\(259\) −1.50000 2.59808i −0.0932055 0.161437i
\(260\) 0 0
\(261\) −6.00000 10.3923i −0.371391 0.643268i
\(262\) 0 0
\(263\) 16.0000 0.986602 0.493301 0.869859i \(-0.335790\pi\)
0.493301 + 0.869859i \(0.335790\pi\)
\(264\) 0 0
\(265\) 1.50000 2.59808i 0.0921443 0.159599i
\(266\) 0 0
\(267\) 9.00000 15.5885i 0.550791 0.953998i
\(268\) 0 0
\(269\) −10.5000 18.1865i −0.640196 1.10885i −0.985389 0.170321i \(-0.945520\pi\)
0.345192 0.938532i \(-0.387814\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) 22.5000 38.9711i 1.36176 2.35864i
\(274\) 0 0
\(275\) −12.0000 −0.723627
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0 0
\(279\) 33.0000 5.19615i 1.97566 0.311086i
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 0 0
\(285\) −10.5000 + 18.1865i −0.621966 + 1.07728i
\(286\) 0 0
\(287\) −27.0000 −1.59376
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) 21.0000 36.3731i 1.23104 2.13223i
\(292\) 0 0
\(293\) 9.50000 16.4545i 0.554996 0.961281i −0.442908 0.896567i \(-0.646053\pi\)
0.997904 0.0647140i \(-0.0206135\pi\)
\(294\) 0 0
\(295\) −3.00000 −0.174667
\(296\) 0 0
\(297\) 13.5000 + 23.3827i 0.783349 + 1.35680i
\(298\) 0 0
\(299\) −10.0000 17.3205i −0.578315 1.00167i
\(300\) 0 0
\(301\) −1.50000 2.59808i −0.0864586 0.149751i
\(302\) 0 0
\(303\) −15.0000 + 25.9808i −0.861727 + 1.49256i
\(304\) 0 0
\(305\) −3.00000 5.19615i −0.171780 0.297531i
\(306\) 0 0
\(307\) −2.50000 + 4.33013i −0.142683 + 0.247133i −0.928506 0.371318i \(-0.878906\pi\)
0.785823 + 0.618451i \(0.212239\pi\)
\(308\) 0 0
\(309\) −39.0000 −2.21863
\(310\) 0 0
\(311\) −32.0000 −1.81455 −0.907277 0.420534i \(-0.861843\pi\)
−0.907277 + 0.420534i \(0.861843\pi\)
\(312\) 0 0
\(313\) −3.50000 + 6.06218i −0.197832 + 0.342655i −0.947825 0.318791i \(-0.896723\pi\)
0.749993 + 0.661445i \(0.230057\pi\)
\(314\) 0 0
\(315\) −9.00000 15.5885i −0.507093 0.878310i
\(316\) 0 0
\(317\) −14.5000 + 25.1147i −0.814401 + 1.41058i 0.0953560 + 0.995443i \(0.469601\pi\)
−0.909757 + 0.415141i \(0.863732\pi\)
\(318\) 0 0
\(319\) −3.00000 5.19615i −0.167968 0.290929i
\(320\) 0 0
\(321\) 19.5000 + 33.7750i 1.08838 + 1.88514i
\(322\) 0 0
\(323\) 10.5000 + 18.1865i 0.584236 + 1.01193i
\(324\) 0 0
\(325\) −20.0000 −1.10940
\(326\) 0 0
\(327\) −3.00000 + 5.19615i −0.165900 + 0.287348i
\(328\) 0 0
\(329\) −12.0000 + 20.7846i −0.661581 + 1.14589i
\(330\) 0 0
\(331\) 8.50000 + 14.7224i 0.467202 + 0.809218i 0.999298 0.0374662i \(-0.0119287\pi\)
−0.532096 + 0.846684i \(0.678595\pi\)
\(332\) 0 0
\(333\) 6.00000 0.328798
\(334\) 0 0
\(335\) −1.50000 + 2.59808i −0.0819538 + 0.141948i
\(336\) 0 0
\(337\) 30.0000 1.63420 0.817102 0.576493i \(-0.195579\pi\)
0.817102 + 0.576493i \(0.195579\pi\)
\(338\) 0 0
\(339\) 3.00000 0.162938
\(340\) 0 0
\(341\) 16.5000 2.59808i 0.893525 0.140694i
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 0 0
\(345\) −12.0000 −0.646058
\(346\) 0 0
\(347\) −4.50000 + 7.79423i −0.241573 + 0.418416i −0.961162 0.275983i \(-0.910997\pi\)
0.719590 + 0.694399i \(0.244330\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 22.5000 + 38.9711i 1.20096 + 2.08013i
\(352\) 0 0
\(353\) −15.5000 + 26.8468i −0.824982 + 1.42891i 0.0769515 + 0.997035i \(0.475481\pi\)
−0.901933 + 0.431875i \(0.857852\pi\)
\(354\) 0 0
\(355\) −0.500000 + 0.866025i −0.0265372 + 0.0459639i
\(356\) 0 0
\(357\) −27.0000 −1.42899
\(358\) 0 0
\(359\) 15.5000 + 26.8468i 0.818059 + 1.41692i 0.907111 + 0.420892i \(0.138283\pi\)
−0.0890519 + 0.996027i \(0.528384\pi\)
\(360\) 0 0
\(361\) −15.0000 25.9808i −0.789474 1.36741i
\(362\) 0 0
\(363\) −3.00000 5.19615i −0.157459 0.272727i
\(364\) 0 0
\(365\) −3.50000 + 6.06218i −0.183198 + 0.317309i
\(366\) 0 0
\(367\) 3.50000 + 6.06218i 0.182699 + 0.316443i 0.942799 0.333363i \(-0.108183\pi\)
−0.760100 + 0.649806i \(0.774850\pi\)
\(368\) 0 0
\(369\) 27.0000 46.7654i 1.40556 2.43451i
\(370\) 0 0
\(371\) −9.00000 −0.467257
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 0 0
\(375\) −13.5000 + 23.3827i −0.697137 + 1.20748i
\(376\) 0 0
\(377\) −5.00000 8.66025i −0.257513 0.446026i
\(378\) 0 0
\(379\) −0.500000 + 0.866025i −0.0256833 + 0.0444847i −0.878581 0.477593i \(-0.841509\pi\)
0.852898 + 0.522077i \(0.174843\pi\)
\(380\) 0 0
\(381\) −19.5000 33.7750i −0.999015 1.73035i
\(382\) 0 0
\(383\) 7.50000 + 12.9904i 0.383232 + 0.663777i 0.991522 0.129937i \(-0.0414776\pi\)
−0.608290 + 0.793715i \(0.708144\pi\)
\(384\) 0 0
\(385\) −4.50000 7.79423i −0.229341 0.397231i
\(386\) 0 0
\(387\) 6.00000 0.304997
\(388\) 0 0
\(389\) 11.5000 19.9186i 0.583073 1.00991i −0.412039 0.911166i \(-0.635183\pi\)
0.995113 0.0987463i \(-0.0314832\pi\)
\(390\) 0 0
\(391\) −6.00000 + 10.3923i −0.303433 + 0.525561i
\(392\) 0 0
\(393\) 31.5000 + 54.5596i 1.58896 + 2.75217i
\(394\) 0 0
\(395\) −1.00000 −0.0503155
\(396\) 0 0
\(397\) −10.5000 + 18.1865i −0.526980 + 0.912756i 0.472526 + 0.881317i \(0.343342\pi\)
−0.999506 + 0.0314391i \(0.989991\pi\)
\(398\) 0 0
\(399\) 63.0000 3.15394
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 27.5000 4.33013i 1.36987 0.215699i
\(404\) 0 0
\(405\) 9.00000 0.447214
\(406\) 0 0
\(407\) 3.00000 0.148704
\(408\) 0 0
\(409\) −15.5000 + 26.8468i −0.766426 + 1.32749i 0.173064 + 0.984911i \(0.444633\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) −33.0000 −1.62777
\(412\) 0 0
\(413\) 4.50000 + 7.79423i 0.221431 + 0.383529i
\(414\) 0 0
\(415\) 2.50000 4.33013i 0.122720 0.212558i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 28.0000 1.36789 0.683945 0.729534i \(-0.260263\pi\)
0.683945 + 0.729534i \(0.260263\pi\)
\(420\) 0 0
\(421\) 7.50000 + 12.9904i 0.365528 + 0.633112i 0.988861 0.148844i \(-0.0475552\pi\)
−0.623333 + 0.781956i \(0.714222\pi\)
\(422\) 0 0
\(423\) −24.0000 41.5692i −1.16692 2.02116i
\(424\) 0 0
\(425\) 6.00000 + 10.3923i 0.291043 + 0.504101i
\(426\) 0 0
\(427\) −9.00000 + 15.5885i −0.435541 + 0.754378i
\(428\) 0 0
\(429\) 22.5000 + 38.9711i 1.08631 + 1.88154i
\(430\) 0 0
\(431\) 2.50000 4.33013i 0.120421 0.208575i −0.799513 0.600649i \(-0.794909\pi\)
0.919934 + 0.392074i \(0.128242\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 0 0
\(435\) −6.00000 −0.287678
\(436\) 0 0
\(437\) 14.0000 24.2487i 0.669711 1.15997i
\(438\) 0 0
\(439\) −6.50000 11.2583i −0.310228 0.537331i 0.668184 0.743996i \(-0.267072\pi\)
−0.978412 + 0.206666i \(0.933739\pi\)
\(440\) 0 0
\(441\) −6.00000 + 10.3923i −0.285714 + 0.494872i
\(442\) 0 0
\(443\) −5.50000 9.52628i −0.261313 0.452607i 0.705278 0.708931i \(-0.250822\pi\)
−0.966591 + 0.256323i \(0.917489\pi\)
\(444\) 0 0
\(445\) −3.00000 5.19615i −0.142214 0.246321i
\(446\) 0 0
\(447\) 1.50000 + 2.59808i 0.0709476 + 0.122885i
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 13.5000 23.3827i 0.635690 1.10105i
\(452\) 0 0
\(453\) 24.0000 41.5692i 1.12762 1.95309i
\(454\) 0 0
\(455\) −7.50000 12.9904i −0.351605 0.608998i
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 0 0
\(459\) 13.5000 23.3827i 0.630126 1.09141i
\(460\) 0 0
\(461\) −42.0000 −1.95614 −0.978068 0.208288i \(-0.933211\pi\)
−0.978068 + 0.208288i \(0.933211\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) 6.00000 15.5885i 0.278243 0.722897i
\(466\) 0 0
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) 9.00000 0.415581
\(470\) 0 0
\(471\) −15.0000 + 25.9808i −0.691164 + 1.19713i
\(472\) 0 0
\(473\) 3.00000 0.137940
\(474\) 0 0
\(475\) −14.0000 24.2487i −0.642364 1.11261i
\(476\) 0 0
\(477\) 9.00000 15.5885i 0.412082 0.713746i
\(478\) 0 0
\(479\) −5.50000 + 9.52628i −0.251301 + 0.435267i −0.963884 0.266321i \(-0.914192\pi\)
0.712583 + 0.701588i \(0.247525\pi\)
\(480\) 0 0
\(481\) 5.00000 0.227980
\(482\) 0 0
\(483\) 18.0000 + 31.1769i 0.819028 + 1.41860i
\(484\) 0 0
\(485\) −7.00000 12.1244i −0.317854 0.550539i
\(486\) 0 0
\(487\) 5.50000 + 9.52628i 0.249229 + 0.431677i 0.963312 0.268384i \(-0.0864896\pi\)
−0.714083 + 0.700061i \(0.753156\pi\)
\(488\) 0 0
\(489\) 6.00000 10.3923i 0.271329 0.469956i
\(490\) 0 0
\(491\) −7.50000 12.9904i −0.338470 0.586248i 0.645675 0.763612i \(-0.276576\pi\)
−0.984145 + 0.177365i \(0.943243\pi\)
\(492\) 0 0
\(493\) −3.00000 + 5.19615i −0.135113 + 0.234023i
\(494\) 0 0
\(495\) 18.0000 0.809040
\(496\) 0 0
\(497\) 3.00000 0.134568
\(498\) 0 0
\(499\) 7.50000 12.9904i 0.335746 0.581529i −0.647882 0.761741i \(-0.724345\pi\)
0.983628 + 0.180212i \(0.0576783\pi\)
\(500\) 0 0
\(501\) 28.5000 + 49.3634i 1.27329 + 2.20540i
\(502\) 0 0
\(503\) 4.50000 7.79423i 0.200645 0.347527i −0.748091 0.663596i \(-0.769030\pi\)
0.948736 + 0.316068i \(0.102363\pi\)
\(504\) 0 0
\(505\) 5.00000 + 8.66025i 0.222497 + 0.385376i
\(506\) 0 0
\(507\) 18.0000 + 31.1769i 0.799408 + 1.38462i
\(508\) 0 0
\(509\) −0.500000 0.866025i −0.0221621 0.0383859i 0.854732 0.519070i \(-0.173722\pi\)
−0.876894 + 0.480684i \(0.840388\pi\)
\(510\) 0 0
\(511\) 21.0000 0.928985
\(512\) 0 0
\(513\) −31.5000 + 54.5596i −1.39076 + 2.40887i
\(514\) 0 0
\(515\) −6.50000 + 11.2583i −0.286424 + 0.496101i
\(516\) 0 0
\(517\) −12.0000 20.7846i −0.527759 0.914106i
\(518\) 0 0
\(519\) −3.00000 −0.131685
\(520\) 0 0
\(521\) −15.5000 + 26.8468i −0.679067 + 1.17618i 0.296195 + 0.955128i \(0.404282\pi\)
−0.975262 + 0.221052i \(0.929051\pi\)
\(522\) 0 0
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 0 0
\(525\) 36.0000 1.57117
\(526\) 0 0
\(527\) −10.5000 12.9904i −0.457387 0.565870i
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −18.0000 −0.781133
\(532\) 0 0
\(533\) 22.5000 38.9711i 0.974583 1.68803i
\(534\) 0 0
\(535\) 13.0000 0.562039
\(536\) 0 0
\(537\) −28.5000 49.3634i −1.22987 2.13019i
\(538\) 0 0
\(539\) −3.00000 + 5.19615i −0.129219 + 0.223814i
\(540\) 0 0
\(541\) −14.5000 + 25.1147i −0.623404 + 1.07977i 0.365444 + 0.930834i \(0.380917\pi\)
−0.988847 + 0.148933i \(0.952416\pi\)
\(542\) 0 0
\(543\) −15.0000 −0.643712
\(544\) 0 0
\(545\) 1.00000 + 1.73205i 0.0428353 + 0.0741929i
\(546\) 0 0
\(547\) 6.50000 + 11.2583i 0.277920 + 0.481371i 0.970868 0.239616i \(-0.0770217\pi\)
−0.692948 + 0.720988i \(0.743688\pi\)
\(548\) 0 0
\(549\) −18.0000 31.1769i −0.768221 1.33060i
\(550\) 0 0
\(551\) 7.00000 12.1244i 0.298210 0.516515i
\(552\) 0 0
\(553\) 1.50000 + 2.59808i 0.0637865 + 0.110481i
\(554\) 0 0
\(555\) 1.50000 2.59808i 0.0636715 0.110282i
\(556\) 0 0
\(557\) −2.00000 −0.0847427 −0.0423714 0.999102i \(-0.513491\pi\)
−0.0423714 + 0.999102i \(0.513491\pi\)
\(558\) 0 0
\(559\) 5.00000 0.211477
\(560\) 0 0
\(561\) 13.5000 23.3827i 0.569970 0.987218i
\(562\) 0 0
\(563\) 10.5000 + 18.1865i 0.442522 + 0.766471i 0.997876 0.0651433i \(-0.0207504\pi\)
−0.555354 + 0.831614i \(0.687417\pi\)
\(564\) 0 0
\(565\) 0.500000 0.866025i 0.0210352 0.0364340i
\(566\) 0 0
\(567\) −13.5000 23.3827i −0.566947 0.981981i
\(568\) 0 0
\(569\) 12.5000 + 21.6506i 0.524027 + 0.907642i 0.999609 + 0.0279702i \(0.00890434\pi\)
−0.475581 + 0.879672i \(0.657762\pi\)
\(570\) 0 0
\(571\) 12.5000 + 21.6506i 0.523109 + 0.906051i 0.999638 + 0.0268925i \(0.00856117\pi\)
−0.476530 + 0.879158i \(0.658105\pi\)
\(572\) 0 0
\(573\) 9.00000 0.375980
\(574\) 0 0
\(575\) 8.00000 13.8564i 0.333623 0.577852i
\(576\) 0 0
\(577\) −1.50000 + 2.59808i −0.0624458 + 0.108159i −0.895558 0.444945i \(-0.853223\pi\)
0.833112 + 0.553104i \(0.186557\pi\)
\(578\) 0 0
\(579\) 28.5000 + 49.3634i 1.18442 + 2.05147i
\(580\) 0 0
\(581\) −15.0000 −0.622305
\(582\) 0 0
\(583\) 4.50000 7.79423i 0.186371 0.322804i
\(584\) 0 0
\(585\) 30.0000 1.24035
\(586\) 0 0
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 0 0
\(589\) 24.5000 + 30.3109i 1.00950 + 1.24894i
\(590\) 0 0
\(591\) 45.0000 1.85105
\(592\) 0 0
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) −4.50000 + 7.79423i −0.184482 + 0.319532i
\(596\) 0 0
\(597\) −63.0000 −2.57842
\(598\) 0 0
\(599\) −8.50000 14.7224i −0.347301 0.601542i 0.638468 0.769648i \(-0.279568\pi\)
−0.985769 + 0.168106i \(0.946235\pi\)
\(600\) 0 0
\(601\) 16.5000 28.5788i 0.673049 1.16576i −0.303986 0.952676i \(-0.598318\pi\)
0.977035 0.213079i \(-0.0683491\pi\)
\(602\) 0 0
\(603\) −9.00000 + 15.5885i −0.366508 + 0.634811i
\(604\) 0 0
\(605\) −2.00000 −0.0813116
\(606\) 0 0
\(607\) −20.5000 35.5070i −0.832069 1.44119i −0.896394 0.443257i \(-0.853823\pi\)
0.0643251 0.997929i \(-0.479511\pi\)
\(608\) 0 0
\(609\) 9.00000 + 15.5885i 0.364698 + 0.631676i
\(610\) 0 0
\(611\) −20.0000 34.6410i −0.809113 1.40143i
\(612\) 0 0
\(613\) −2.50000 + 4.33013i −0.100974 + 0.174892i −0.912086 0.409998i \(-0.865529\pi\)
0.811112 + 0.584891i \(0.198863\pi\)
\(614\) 0 0
\(615\) −13.5000 23.3827i −0.544373 0.942881i
\(616\) 0 0
\(617\) −13.5000 + 23.3827i −0.543490 + 0.941351i 0.455211 + 0.890384i \(0.349564\pi\)
−0.998700 + 0.0509678i \(0.983769\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) −36.0000 −1.44463
\(622\) 0 0
\(623\) −9.00000 + 15.5885i −0.360577 + 0.624538i
\(624\) 0 0
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) 0 0
\(627\) −31.5000 + 54.5596i −1.25799 + 2.17890i
\(628\) 0 0
\(629\) −1.50000 2.59808i −0.0598089 0.103592i
\(630\) 0 0
\(631\) 13.5000 + 23.3827i 0.537427 + 0.930850i 0.999042 + 0.0437697i \(0.0139368\pi\)
−0.461615 + 0.887080i \(0.652730\pi\)
\(632\) 0 0
\(633\) 1.50000 + 2.59808i 0.0596196 + 0.103264i
\(634\) 0 0
\(635\) −13.0000 −0.515889
\(636\) 0 0
\(637\) −5.00000 + 8.66025i −0.198107 + 0.343132i
\(638\) 0 0
\(639\) −3.00000 + 5.19615i −0.118678 + 0.205557i
\(640\) 0 0
\(641\) −5.50000 9.52628i −0.217237 0.376265i 0.736725 0.676192i \(-0.236371\pi\)
−0.953962 + 0.299927i \(0.903038\pi\)
\(642\) 0 0
\(643\) −28.0000 −1.10421 −0.552106 0.833774i \(-0.686176\pi\)
−0.552106 + 0.833774i \(0.686176\pi\)
\(644\) 0 0
\(645\) 1.50000 2.59808i 0.0590624 0.102299i
\(646\) 0 0
\(647\) −4.00000 −0.157256 −0.0786281 0.996904i \(-0.525054\pi\)
−0.0786281 + 0.996904i \(0.525054\pi\)
\(648\) 0 0
\(649\) −9.00000 −0.353281
\(650\) 0 0
\(651\) −49.5000 + 7.79423i −1.94006 + 0.305480i
\(652\) 0 0
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 0 0
\(655\) 21.0000 0.820538
\(656\) 0 0
\(657\) −21.0000 + 36.3731i −0.819288 + 1.41905i
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −24.5000 42.4352i −0.952940 1.65054i −0.739014 0.673690i \(-0.764708\pi\)
−0.213925 0.976850i \(-0.568625\pi\)
\(662\) 0 0
\(663\) 22.5000 38.9711i 0.873828 1.51351i
\(664\) 0 0
\(665\) 10.5000 18.1865i 0.407173 0.705244i
\(666\) 0 0
\(667\) 8.00000 0.309761
\(668\) 0 0
\(669\) 28.5000 + 49.3634i 1.10187 + 1.90850i
\(670\) 0 0
\(671\) −9.00000 15.5885i −0.347441 0.601786i
\(672\) 0 0
\(673\) −13.5000 23.3827i −0.520387 0.901336i −0.999719 0.0237028i \(-0.992454\pi\)
0.479332 0.877633i \(-0.340879\pi\)
\(674\) 0 0
\(675\) −18.0000 + 31.1769i −0.692820 + 1.20000i
\(676\) 0 0
\(677\) 13.5000 + 23.3827i 0.518847 + 0.898670i 0.999760 + 0.0219013i \(0.00697196\pi\)
−0.480913 + 0.876768i \(0.659695\pi\)
\(678\) 0 0
\(679\) −21.0000 + 36.3731i −0.805906 + 1.39587i
\(680\) 0 0
\(681\) 63.0000 2.41417
\(682\) 0 0
\(683\) 16.0000 0.612223 0.306111 0.951996i \(-0.400972\pi\)
0.306111 + 0.951996i \(0.400972\pi\)
\(684\) 0 0
\(685\) −5.50000 + 9.52628i −0.210144 + 0.363980i
\(686\) 0 0
\(687\) −10.5000 18.1865i −0.400600 0.693860i
\(688\) 0 0
\(689\) 7.50000 12.9904i 0.285727 0.494894i
\(690\) 0 0
\(691\) −13.5000 23.3827i −0.513564 0.889519i −0.999876 0.0157341i \(-0.994991\pi\)
0.486312 0.873785i \(-0.338342\pi\)
\(692\) 0 0
\(693\) −27.0000 46.7654i −1.02565 1.77647i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −27.0000 −1.02270
\(698\) 0 0
\(699\) −27.0000 + 46.7654i −1.02123 + 1.76883i
\(700\) 0 0
\(701\) 7.50000 12.9904i 0.283271 0.490640i −0.688917 0.724840i \(-0.741914\pi\)
0.972188 + 0.234200i \(0.0752470\pi\)
\(702\) 0 0
\(703\) 3.50000 + 6.06218i 0.132005 + 0.228639i
\(704\) 0 0
\(705\) −24.0000 −0.903892
\(706\) 0 0
\(707\) 15.0000 25.9808i 0.564133 0.977107i
\(708\) 0 0
\(709\) 38.0000 1.42712 0.713560 0.700594i \(-0.247082\pi\)
0.713560 + 0.700594i \(0.247082\pi\)
\(710\) 0 0
\(711\) −6.00000 −0.225018
\(712\) 0 0
\(713\) −8.00000 + 20.7846i −0.299602 + 0.778390i
\(714\) 0 0
\(715\) 15.0000 0.560968
\(716\) 0 0
\(717\) −3.00000 −0.112037
\(718\) 0 0
\(719\) −3.50000 + 6.06218i −0.130528 + 0.226081i −0.923880 0.382682i \(-0.875001\pi\)
0.793352 + 0.608763i \(0.208334\pi\)
\(720\) 0 0
\(721\) 39.0000 1.45244
\(722\) 0 0
\(723\) −37.5000 64.9519i −1.39464 2.41559i
\(724\) 0 0
\(725\) 4.00000 6.92820i 0.148556 0.257307i
\(726\) 0 0
\(727\) 18.5000 32.0429i 0.686127 1.18841i −0.286954 0.957944i \(-0.592643\pi\)
0.973081 0.230463i \(-0.0740239\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −1.50000 2.59808i −0.0554795 0.0960933i
\(732\) 0 0
\(733\) −0.500000 0.866025i −0.0184679 0.0319874i 0.856644 0.515908i \(-0.172546\pi\)
−0.875112 + 0.483921i \(0.839212\pi\)
\(734\) 0 0
\(735\) 3.00000 + 5.19615i 0.110657 + 0.191663i
\(736\) 0 0
\(737\) −4.50000 + 7.79423i −0.165760 + 0.287104i
\(738\) 0 0
\(739\) 12.5000 + 21.6506i 0.459820 + 0.796431i 0.998951 0.0457903i \(-0.0145806\pi\)
−0.539131 + 0.842222i \(0.681247\pi\)
\(740\) 0 0
\(741\) −52.5000 + 90.9327i −1.92864 + 3.34050i
\(742\) 0 0
\(743\) 40.0000 1.46746 0.733729 0.679442i \(-0.237778\pi\)
0.733729 + 0.679442i \(0.237778\pi\)
\(744\) 0 0
\(745\) 1.00000 0.0366372
\(746\) 0 0
\(747\) 15.0000 25.9808i 0.548821 0.950586i
\(748\) 0 0
\(749\) −19.5000 33.7750i −0.712514 1.23411i
\(750\) 0 0
\(751\) 14.5000 25.1147i 0.529113 0.916450i −0.470311 0.882501i \(-0.655858\pi\)
0.999424 0.0339490i \(-0.0108084\pi\)
\(752\) 0 0
\(753\) −34.5000 59.7558i −1.25725 2.17762i
\(754\) 0 0
\(755\) −8.00000 13.8564i −0.291150 0.504286i
\(756\) 0 0
\(757\) 21.5000 + 37.2391i 0.781431 + 1.35348i 0.931108 + 0.364743i \(0.118843\pi\)
−0.149677 + 0.988735i \(0.547824\pi\)
\(758\) 0 0
\(759\) −36.0000 −1.30672
\(760\) 0 0
\(761\) −3.50000 + 6.06218i −0.126875 + 0.219754i −0.922464 0.386082i \(-0.873828\pi\)
0.795589 + 0.605836i \(0.207161\pi\)
\(762\) 0 0
\(763\) 3.00000 5.19615i 0.108607 0.188113i
\(764\) 0 0
\(765\) −9.00000 15.5885i −0.325396 0.563602i
\(766\) 0 0
\(767\) −15.0000 −0.541619
\(768\) 0 0
\(769\) 16.5000 28.5788i 0.595005 1.03058i −0.398541 0.917151i \(-0.630483\pi\)
0.993546 0.113429i \(-0.0361834\pi\)
\(770\) 0 0
\(771\) 39.0000 1.40455
\(772\) 0 0
\(773\) 46.0000 1.65451 0.827253 0.561830i \(-0.189903\pi\)
0.827253 + 0.561830i \(0.189903\pi\)
\(774\) 0 0
\(775\) 14.0000 + 17.3205i 0.502895 + 0.622171i
\(776\) 0 0
\(777\) −9.00000 −0.322873
\(778\) 0 0
\(779\) 63.0000 2.25721
\(780\) 0 0
\(781\) −1.50000 + 2.59808i −0.0536742 + 0.0929665i
\(782\) 0 0
\(783\) −18.0000 −0.643268
\(784\) 0 0
\(785\) 5.00000 + 8.66025i 0.178458 + 0.309098i
\(786\) 0 0
\(787\) −26.5000 + 45.8993i −0.944623 + 1.63614i −0.188119 + 0.982146i \(0.560239\pi\)
−0.756504 + 0.653989i \(0.773094\pi\)
\(788\) 0 0
\(789\) 24.0000 41.5692i 0.854423 1.47990i
\(790\) 0 0
\(791\) −3.00000 −0.106668
\(792\) 0 0
\(793\) −15.0000 25.9808i −0.532666 0.922604i
\(794\) 0 0
\(795\) −4.50000 7.79423i −0.159599 0.276433i
\(796\) 0 0
\(797\) −16.5000 28.5788i −0.584460 1.01231i −0.994943 0.100446i \(-0.967973\pi\)
0.410483 0.911868i \(-0.365360\pi\)
\(798\) 0 0
\(799\) −12.0000 + 20.7846i −0.424529 + 0.735307i
\(800\) 0 0
\(801\) −18.0000 31.1769i −0.635999 1.10158i
\(802\) 0 0
\(803\) −10.5000 + 18.1865i −0.370537 + 0.641789i
\(804\) 0 0
\(805\) 12.0000 0.422944
\(806\) 0 0
\(807\) −63.0000 −2.21771
\(808\) 0 0
\(809\) 4.50000 7.79423i 0.158212 0.274030i −0.776012 0.630718i \(-0.782761\pi\)
0.934224 + 0.356687i \(0.116094\pi\)
\(810\) 0 0
\(811\) 2.50000 + 4.33013i 0.0877869 + 0.152051i 0.906575 0.422044i \(-0.138687\pi\)
−0.818788 + 0.574095i \(0.805354\pi\)
\(812\) 0 0
\(813\) 12.0000 20.7846i 0.420858 0.728948i
\(814\) 0 0
\(815\) −2.00000 3.46410i −0.0700569 0.121342i
\(816\) 0 0
\(817\) 3.50000 + 6.06218i 0.122449 + 0.212089i
\(818\) 0 0
\(819\) −45.0000 77.9423i −1.57243 2.72352i
\(820\) 0 0
\(821\) 38.0000 1.32621 0.663105 0.748527i \(-0.269238\pi\)
0.663105 + 0.748527i \(0.269238\pi\)
\(822\) 0 0
\(823\) 16.5000 28.5788i 0.575154 0.996196i −0.420871 0.907120i \(-0.638276\pi\)
0.996025 0.0890752i \(-0.0283911\pi\)
\(824\) 0 0
\(825\) −18.0000 + 31.1769i −0.626680 + 1.08544i
\(826\) 0 0
\(827\) −21.5000 37.2391i −0.747628 1.29493i −0.948957 0.315406i \(-0.897859\pi\)
0.201328 0.979524i \(-0.435474\pi\)
\(828\) 0 0
\(829\) 46.0000 1.59765 0.798823 0.601566i \(-0.205456\pi\)
0.798823 + 0.601566i \(0.205456\pi\)
\(830\) 0 0
\(831\) −3.00000 + 5.19615i −0.104069 + 0.180253i
\(832\) 0 0
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) 19.0000 0.657522
\(836\) 0 0
\(837\) 18.0000 46.7654i 0.622171 1.61645i
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 45.0000 77.9423i 1.54988 2.68447i
\(844\) 0 0
\(845\) 12.0000 0.412813
\(846\) 0 0
\(847\) 3.00000 + 5.19615i 0.103081 + 0.178542i
\(848\) 0 0
\(849\) −6.00000 + 10.3923i −0.205919 + 0.356663i
\(850\) 0 0
\(851\) −2.00000 + 3.46410i −0.0685591 + 0.118748i
\(852\) 0 0
\(853\) 14.0000 0.479351 0.239675 0.970853i \(-0.422959\pi\)
0.239675 + 0.970853i \(0.422959\pi\)
\(854\) 0 0
\(855\) 21.0000 + 36.3731i 0.718185 + 1.24393i
\(856\) 0 0
\(857\) 10.5000 + 18.1865i 0.358673 + 0.621240i 0.987739 0.156112i \(-0.0498959\pi\)
−0.629066 + 0.777352i \(0.716563\pi\)
\(858\) 0 0
\(859\) 0.500000 + 0.866025i 0.0170598 + 0.0295484i 0.874429 0.485153i \(-0.161236\pi\)
−0.857369 + 0.514701i \(0.827903\pi\)
\(860\) 0 0
\(861\) −40.5000 + 70.1481i −1.38024 + 2.39064i
\(862\) 0 0
\(863\) 1.50000 + 2.59808i 0.0510606 + 0.0884395i 0.890426 0.455128i \(-0.150407\pi\)
−0.839365 + 0.543568i \(0.817073\pi\)
\(864\) 0 0
\(865\) −0.500000 + 0.866025i −0.0170005 + 0.0294457i
\(866\) 0 0
\(867\) 24.0000 0.815083
\(868\) 0 0
\(869\) −3.00000 −0.101768
\(870\) 0 0
\(871\) −7.50000 + 12.9904i −0.254128 + 0.440162i
\(872\) 0 0
\(873\) −42.0000 72.7461i −1.42148 2.46208i
\(874\) 0 0
\(875\) 13.5000 23.3827i 0.456383 0.790479i
\(876\) 0 0
\(877\) 5.50000 + 9.52628i 0.185722 + 0.321680i 0.943820 0.330461i \(-0.107204\pi\)
−0.758098 + 0.652141i \(0.773871\pi\)
\(878\) 0 0
\(879\) −28.5000 49.3634i −0.961281 1.66499i
\(880\) 0 0
\(881\) −9.50000 16.4545i −0.320063 0.554366i 0.660438 0.750881i \(-0.270371\pi\)
−0.980501 + 0.196515i \(0.937037\pi\)
\(882\) 0 0
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) 0 0
\(885\) −4.50000 + 7.79423i −0.151266 + 0.262000i
\(886\) 0 0
\(887\) 10.5000 18.1865i 0.352555 0.610644i −0.634141 0.773217i \(-0.718646\pi\)
0.986696 + 0.162573i \(0.0519794\pi\)
\(888\) 0 0
\(889\) 19.5000 + 33.7750i 0.654009 + 1.13278i
\(890\) 0 0
\(891\) 27.0000 0.904534
\(892\) 0 0
\(893\) 28.0000 48.4974i 0.936984 1.62290i
\(894\) 0 0
\(895\) −19.0000 −0.635100
\(896\) 0 0
\(897\) −60.0000 −2.00334
\(898\) 0 0
\(899\) −4.00000 + 10.3923i −0.133407 + 0.346603i
\(900\) 0 0
\(901\) −9.00000 −0.299833
\(902\) 0 0
\(903\) −9.00000 −0.299501
\(904\) 0 0
\(905\) −2.50000 + 4.33013i −0.0831028 + 0.143938i
\(906\) 0 0
\(907\) −12.0000 −0.398453 −0.199227 0.979953i \(-0.563843\pi\)
−0.199227 + 0.979953i \(0.563843\pi\)
\(908\) 0 0
\(909\) 30.0000 + 51.9615i 0.995037 + 1.72345i
\(910\) 0 0
\(911\) −7.50000 + 12.9904i −0.248486 + 0.430391i −0.963106 0.269122i \(-0.913266\pi\)
0.714620 + 0.699513i \(0.246600\pi\)
\(912\) 0 0
\(913\) 7.50000 12.9904i 0.248214 0.429919i
\(914\) 0 0
\(915\) −18.0000 −0.595062
\(916\) 0 0
\(917\) −31.5000 54.5596i −1.04022 1.80172i
\(918\) 0 0
\(919\) 29.5000 + 51.0955i 0.973115 + 1.68548i 0.686020 + 0.727583i \(0.259356\pi\)
0.287096 + 0.957902i \(0.407310\pi\)
\(920\) 0 0
\(921\) 7.50000 + 12.9904i 0.247133 + 0.428048i
\(922\) 0 0
\(923\) −2.50000 + 4.33013i −0.0822885 + 0.142528i
\(924\) 0 0
\(925\) 2.00000 + 3.46410i 0.0657596 + 0.113899i
\(926\) 0 0
\(927\) −39.0000 + 67.5500i −1.28093 + 2.21863i
\(928\) 0 0
\(929\) 34.0000 1.11550 0.557752 0.830008i \(-0.311664\pi\)
0.557752 + 0.830008i \(0.311664\pi\)
\(930\) 0 0
\(931\) −14.0000 −0.458831
\(932\) 0 0
\(933\) −48.0000 + 83.1384i −1.57145 + 2.72183i
\(934\) 0 0
\(935\) −4.50000 7.79423i −0.147166 0.254899i
\(936\) 0 0
\(937\) −11.5000 + 19.9186i −0.375689 + 0.650712i −0.990430 0.138017i \(-0.955927\pi\)
0.614741 + 0.788729i \(0.289260\pi\)
\(938\) 0 0
\(939\) 10.5000 + 18.1865i 0.342655 + 0.593495i
\(940\) 0 0
\(941\) −10.5000 18.1865i −0.342290 0.592864i 0.642567 0.766229i \(-0.277869\pi\)
−0.984858 + 0.173365i \(0.944536\pi\)
\(942\) 0 0
\(943\) 18.0000 + 31.1769i 0.586161 + 1.01526i
\(944\) 0 0
\(945\) −27.0000 −0.878310
\(946\) 0 0
\(947\) −6.50000 + 11.2583i −0.211222 + 0.365847i −0.952097 0.305796i \(-0.901078\pi\)
0.740875 + 0.671642i \(0.234411\pi\)
\(948\) 0 0
\(949\) −17.5000 + 30.3109i −0.568074 + 0.983933i
\(950\) 0 0
\(951\) 43.5000 + 75.3442i 1.41058 + 2.44320i
\(952\) 0 0
\(953\) −26.0000 −0.842223 −0.421111 0.907009i \(-0.638360\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) 0 0
\(955\) 1.50000 2.59808i 0.0485389 0.0840718i
\(956\) 0 0
\(957\) −18.0000 −0.581857
\(958\) 0 0
\(959\) 33.0000 1.06563
\(960\) 0 0
\(961\) −23.0000 20.7846i −0.741935 0.670471i
\(962\) 0 0
\(963\) 78.0000 2.51351
\(964\) 0 0
\(965\) 19.0000 0.611632
\(966\) 0 0
\(967\) 6.50000 11.2583i 0.209026 0.362043i −0.742382 0.669977i \(-0.766304\pi\)
0.951408 + 0.307933i \(0.0996374\pi\)
\(968\) 0 0
\(969\) 63.0000 2.02385
\(970\) 0 0
\(971\) 0.500000 + 0.866025i 0.0160458 + 0.0277921i 0.873937 0.486040i \(-0.161559\pi\)
−0.857891 + 0.513832i \(0.828226\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −30.0000 + 51.9615i −0.960769 + 1.66410i
\(976\) 0 0
\(977\) 54.0000 1.72761 0.863807 0.503824i \(-0.168074\pi\)
0.863807 + 0.503824i \(0.168074\pi\)
\(978\) 0 0
\(979\) −9.00000 15.5885i −0.287641 0.498209i
\(980\) 0 0
\(981\) 6.00000 + 10.3923i 0.191565 + 0.331801i
\(982\) 0 0
\(983\) −24.5000 42.4352i −0.781429 1.35347i −0.931110 0.364740i \(-0.881158\pi\)
0.149681 0.988734i \(-0.452175\pi\)
\(984\) 0 0
\(985\) 7.50000 12.9904i 0.238970 0.413908i
\(986\) 0 0
\(987\) 36.0000 + 62.3538i 1.14589 + 1.98474i
\(988\) 0 0
\(989\) −2.00000 + 3.46410i −0.0635963 + 0.110152i
\(990\) 0 0
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) 0 0
\(993\) 51.0000 1.61844
\(994\) 0 0
\(995\) −10.5000 + 18.1865i −0.332872 + 0.576552i
\(996\) 0 0
\(997\) 17.5000 + 30.3109i 0.554231 + 0.959955i 0.997963 + 0.0637961i \(0.0203207\pi\)
−0.443732 + 0.896159i \(0.646346\pi\)
\(998\) 0 0
\(999\) 4.50000 7.79423i 0.142374 0.246598i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 496.2.i.g.129.1 2
4.3 odd 2 62.2.c.b.5.1 2
12.11 even 2 558.2.e.b.253.1 2
20.3 even 4 1550.2.p.a.749.1 4
20.7 even 4 1550.2.p.a.749.2 4
20.19 odd 2 1550.2.e.d.501.1 2
31.25 even 3 inner 496.2.i.g.273.1 2
124.67 odd 6 1922.2.a.e.1.1 1
124.87 odd 6 62.2.c.b.25.1 yes 2
124.119 even 6 1922.2.a.c.1.1 1
372.335 even 6 558.2.e.b.397.1 2
620.87 even 12 1550.2.p.a.149.2 4
620.459 odd 6 1550.2.e.d.1451.1 2
620.583 even 12 1550.2.p.a.149.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
62.2.c.b.5.1 2 4.3 odd 2
62.2.c.b.25.1 yes 2 124.87 odd 6
496.2.i.g.129.1 2 1.1 even 1 trivial
496.2.i.g.273.1 2 31.25 even 3 inner
558.2.e.b.253.1 2 12.11 even 2
558.2.e.b.397.1 2 372.335 even 6
1550.2.e.d.501.1 2 20.19 odd 2
1550.2.e.d.1451.1 2 620.459 odd 6
1550.2.p.a.149.1 4 620.583 even 12
1550.2.p.a.149.2 4 620.87 even 12
1550.2.p.a.749.1 4 20.3 even 4
1550.2.p.a.749.2 4 20.7 even 4
1922.2.a.c.1.1 1 124.119 even 6
1922.2.a.e.1.1 1 124.67 odd 6