Properties

Label 1550.2.p.a.749.1
Level $1550$
Weight $2$
Character 1550.749
Analytic conductor $12.377$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1550,2,Mod(149,1550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1550, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1550.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1550 = 2 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1550.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,-6,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.3768123133\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 62)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 749.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1550.749
Dual form 1550.2.p.a.149.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +(-2.59808 - 1.50000i) q^{3} -1.00000 q^{4} +(-1.50000 + 2.59808i) q^{6} +(-2.59808 - 1.50000i) q^{7} +1.00000i q^{8} +(3.00000 + 5.19615i) q^{9} +(1.50000 + 2.59808i) q^{11} +(2.59808 + 1.50000i) q^{12} +(4.33013 - 2.50000i) q^{13} +(-1.50000 + 2.59808i) q^{14} +1.00000 q^{16} +(2.59808 + 1.50000i) q^{17} +(5.19615 - 3.00000i) q^{18} +(3.50000 - 6.06218i) q^{19} +(4.50000 + 7.79423i) q^{21} +(2.59808 - 1.50000i) q^{22} -4.00000i q^{23} +(1.50000 - 2.59808i) q^{24} +(-2.50000 - 4.33013i) q^{26} -9.00000i q^{27} +(2.59808 + 1.50000i) q^{28} -2.00000 q^{29} +(2.00000 - 5.19615i) q^{31} -1.00000i q^{32} -9.00000i q^{33} +(1.50000 - 2.59808i) q^{34} +(-3.00000 - 5.19615i) q^{36} +(0.866025 + 0.500000i) q^{37} +(-6.06218 - 3.50000i) q^{38} -15.0000 q^{39} +(4.50000 + 7.79423i) q^{41} +(7.79423 - 4.50000i) q^{42} +(0.866025 + 0.500000i) q^{43} +(-1.50000 - 2.59808i) q^{44} -4.00000 q^{46} +8.00000i q^{47} +(-2.59808 - 1.50000i) q^{48} +(1.00000 + 1.73205i) q^{49} +(-4.50000 - 7.79423i) q^{51} +(-4.33013 + 2.50000i) q^{52} +(-2.59808 + 1.50000i) q^{53} -9.00000 q^{54} +(1.50000 - 2.59808i) q^{56} +(-18.1865 + 10.5000i) q^{57} +2.00000i q^{58} +(1.50000 - 2.59808i) q^{59} +6.00000 q^{61} +(-5.19615 - 2.00000i) q^{62} -18.0000i q^{63} -1.00000 q^{64} -9.00000 q^{66} +(2.59808 - 1.50000i) q^{67} +(-2.59808 - 1.50000i) q^{68} +(-6.00000 + 10.3923i) q^{69} +(0.500000 + 0.866025i) q^{71} +(-5.19615 + 3.00000i) q^{72} +(6.06218 - 3.50000i) q^{73} +(0.500000 - 0.866025i) q^{74} +(-3.50000 + 6.06218i) q^{76} -9.00000i q^{77} +15.0000i q^{78} +(0.500000 - 0.866025i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(7.79423 - 4.50000i) q^{82} +(4.33013 - 2.50000i) q^{83} +(-4.50000 - 7.79423i) q^{84} +(0.500000 - 0.866025i) q^{86} +(5.19615 + 3.00000i) q^{87} +(-2.59808 + 1.50000i) q^{88} -6.00000 q^{89} -15.0000 q^{91} +4.00000i q^{92} +(-12.9904 + 10.5000i) q^{93} +8.00000 q^{94} +(-1.50000 + 2.59808i) q^{96} -14.0000i q^{97} +(1.73205 - 1.00000i) q^{98} +(-9.00000 + 15.5885i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 6 q^{6} + 12 q^{9} + 6 q^{11} - 6 q^{14} + 4 q^{16} + 14 q^{19} + 18 q^{21} + 6 q^{24} - 10 q^{26} - 8 q^{29} + 8 q^{31} + 6 q^{34} - 12 q^{36} - 60 q^{39} + 18 q^{41} - 6 q^{44} - 16 q^{46}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1550\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(1427\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −2.59808 1.50000i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.50000 + 2.59808i −0.612372 + 1.06066i
\(7\) −2.59808 1.50000i −0.981981 0.566947i −0.0791130 0.996866i \(-0.525209\pi\)
−0.902867 + 0.429919i \(0.858542\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 3.00000 + 5.19615i 1.00000 + 1.73205i
\(10\) 0 0
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 2.59808 + 1.50000i 0.750000 + 0.433013i
\(13\) 4.33013 2.50000i 1.20096 0.693375i 0.240192 0.970725i \(-0.422790\pi\)
0.960769 + 0.277350i \(0.0894562\pi\)
\(14\) −1.50000 + 2.59808i −0.400892 + 0.694365i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.59808 + 1.50000i 0.630126 + 0.363803i 0.780801 0.624780i \(-0.214811\pi\)
−0.150675 + 0.988583i \(0.548145\pi\)
\(18\) 5.19615 3.00000i 1.22474 0.707107i
\(19\) 3.50000 6.06218i 0.802955 1.39076i −0.114708 0.993399i \(-0.536593\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) 0 0
\(21\) 4.50000 + 7.79423i 0.981981 + 1.70084i
\(22\) 2.59808 1.50000i 0.553912 0.319801i
\(23\) 4.00000i 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 1.50000 2.59808i 0.306186 0.530330i
\(25\) 0 0
\(26\) −2.50000 4.33013i −0.490290 0.849208i
\(27\) 9.00000i 1.73205i
\(28\) 2.59808 + 1.50000i 0.490990 + 0.283473i
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 2.00000 5.19615i 0.359211 0.933257i
\(32\) 1.00000i 0.176777i
\(33\) 9.00000i 1.56670i
\(34\) 1.50000 2.59808i 0.257248 0.445566i
\(35\) 0 0
\(36\) −3.00000 5.19615i −0.500000 0.866025i
\(37\) 0.866025 + 0.500000i 0.142374 + 0.0821995i 0.569495 0.821995i \(-0.307139\pi\)
−0.427121 + 0.904194i \(0.640472\pi\)
\(38\) −6.06218 3.50000i −0.983415 0.567775i
\(39\) −15.0000 −2.40192
\(40\) 0 0
\(41\) 4.50000 + 7.79423i 0.702782 + 1.21725i 0.967486 + 0.252924i \(0.0813924\pi\)
−0.264704 + 0.964330i \(0.585274\pi\)
\(42\) 7.79423 4.50000i 1.20268 0.694365i
\(43\) 0.866025 + 0.500000i 0.132068 + 0.0762493i 0.564578 0.825380i \(-0.309039\pi\)
−0.432511 + 0.901629i \(0.642372\pi\)
\(44\) −1.50000 2.59808i −0.226134 0.391675i
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) 8.00000i 1.16692i 0.812142 + 0.583460i \(0.198301\pi\)
−0.812142 + 0.583460i \(0.801699\pi\)
\(48\) −2.59808 1.50000i −0.375000 0.216506i
\(49\) 1.00000 + 1.73205i 0.142857 + 0.247436i
\(50\) 0 0
\(51\) −4.50000 7.79423i −0.630126 1.09141i
\(52\) −4.33013 + 2.50000i −0.600481 + 0.346688i
\(53\) −2.59808 + 1.50000i −0.356873 + 0.206041i −0.667708 0.744423i \(-0.732725\pi\)
0.310835 + 0.950464i \(0.399391\pi\)
\(54\) −9.00000 −1.22474
\(55\) 0 0
\(56\) 1.50000 2.59808i 0.200446 0.347183i
\(57\) −18.1865 + 10.5000i −2.40887 + 1.39076i
\(58\) 2.00000i 0.262613i
\(59\) 1.50000 2.59808i 0.195283 0.338241i −0.751710 0.659494i \(-0.770771\pi\)
0.946993 + 0.321253i \(0.104104\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) −5.19615 2.00000i −0.659912 0.254000i
\(63\) 18.0000i 2.26779i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −9.00000 −1.10782
\(67\) 2.59808 1.50000i 0.317406 0.183254i −0.332830 0.942987i \(-0.608004\pi\)
0.650236 + 0.759733i \(0.274670\pi\)
\(68\) −2.59808 1.50000i −0.315063 0.181902i
\(69\) −6.00000 + 10.3923i −0.722315 + 1.25109i
\(70\) 0 0
\(71\) 0.500000 + 0.866025i 0.0593391 + 0.102778i 0.894169 0.447730i \(-0.147767\pi\)
−0.834830 + 0.550508i \(0.814434\pi\)
\(72\) −5.19615 + 3.00000i −0.612372 + 0.353553i
\(73\) 6.06218 3.50000i 0.709524 0.409644i −0.101361 0.994850i \(-0.532320\pi\)
0.810885 + 0.585206i \(0.198986\pi\)
\(74\) 0.500000 0.866025i 0.0581238 0.100673i
\(75\) 0 0
\(76\) −3.50000 + 6.06218i −0.401478 + 0.695379i
\(77\) 9.00000i 1.02565i
\(78\) 15.0000i 1.69842i
\(79\) 0.500000 0.866025i 0.0562544 0.0974355i −0.836527 0.547926i \(-0.815418\pi\)
0.892781 + 0.450490i \(0.148751\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 7.79423 4.50000i 0.860729 0.496942i
\(83\) 4.33013 2.50000i 0.475293 0.274411i −0.243160 0.969986i \(-0.578184\pi\)
0.718453 + 0.695576i \(0.244851\pi\)
\(84\) −4.50000 7.79423i −0.490990 0.850420i
\(85\) 0 0
\(86\) 0.500000 0.866025i 0.0539164 0.0933859i
\(87\) 5.19615 + 3.00000i 0.557086 + 0.321634i
\(88\) −2.59808 + 1.50000i −0.276956 + 0.159901i
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −15.0000 −1.57243
\(92\) 4.00000i 0.417029i
\(93\) −12.9904 + 10.5000i −1.34704 + 1.08880i
\(94\) 8.00000 0.825137
\(95\) 0 0
\(96\) −1.50000 + 2.59808i −0.153093 + 0.265165i
\(97\) 14.0000i 1.42148i −0.703452 0.710742i \(-0.748359\pi\)
0.703452 0.710742i \(-0.251641\pi\)
\(98\) 1.73205 1.00000i 0.174964 0.101015i
\(99\) −9.00000 + 15.5885i −0.904534 + 1.56670i
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) −7.79423 + 4.50000i −0.771744 + 0.445566i
\(103\) −11.2583 + 6.50000i −1.10932 + 0.640464i −0.938652 0.344865i \(-0.887925\pi\)
−0.170664 + 0.985329i \(0.554591\pi\)
\(104\) 2.50000 + 4.33013i 0.245145 + 0.424604i
\(105\) 0 0
\(106\) 1.50000 + 2.59808i 0.145693 + 0.252347i
\(107\) −11.2583 6.50000i −1.08838 0.628379i −0.155238 0.987877i \(-0.549614\pi\)
−0.933146 + 0.359498i \(0.882948\pi\)
\(108\) 9.00000i 0.866025i
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) −1.50000 2.59808i −0.142374 0.246598i
\(112\) −2.59808 1.50000i −0.245495 0.141737i
\(113\) −0.866025 + 0.500000i −0.0814688 + 0.0470360i −0.540181 0.841549i \(-0.681644\pi\)
0.458712 + 0.888585i \(0.348311\pi\)
\(114\) 10.5000 + 18.1865i 0.983415 + 1.70332i
\(115\) 0 0
\(116\) 2.00000 0.185695
\(117\) 25.9808 + 15.0000i 2.40192 + 1.38675i
\(118\) −2.59808 1.50000i −0.239172 0.138086i
\(119\) −4.50000 7.79423i −0.412514 0.714496i
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 6.00000i 0.543214i
\(123\) 27.0000i 2.43451i
\(124\) −2.00000 + 5.19615i −0.179605 + 0.466628i
\(125\) 0 0
\(126\) −18.0000 −1.60357
\(127\) 11.2583 + 6.50000i 0.999015 + 0.576782i 0.907957 0.419064i \(-0.137642\pi\)
0.0910585 + 0.995846i \(0.470975\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −1.50000 2.59808i −0.132068 0.228748i
\(130\) 0 0
\(131\) 10.5000 18.1865i 0.917389 1.58896i 0.114024 0.993478i \(-0.463626\pi\)
0.803365 0.595487i \(-0.203041\pi\)
\(132\) 9.00000i 0.783349i
\(133\) −18.1865 + 10.5000i −1.57697 + 0.910465i
\(134\) −1.50000 2.59808i −0.129580 0.224440i
\(135\) 0 0
\(136\) −1.50000 + 2.59808i −0.128624 + 0.222783i
\(137\) −9.52628 + 5.50000i −0.813885 + 0.469897i −0.848303 0.529511i \(-0.822376\pi\)
0.0344182 + 0.999408i \(0.489042\pi\)
\(138\) 10.3923 + 6.00000i 0.884652 + 0.510754i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 12.0000 20.7846i 1.01058 1.75038i
\(142\) 0.866025 0.500000i 0.0726752 0.0419591i
\(143\) 12.9904 + 7.50000i 1.08631 + 0.627182i
\(144\) 3.00000 + 5.19615i 0.250000 + 0.433013i
\(145\) 0 0
\(146\) −3.50000 6.06218i −0.289662 0.501709i
\(147\) 6.00000i 0.494872i
\(148\) −0.866025 0.500000i −0.0711868 0.0410997i
\(149\) 0.500000 0.866025i 0.0409616 0.0709476i −0.844818 0.535054i \(-0.820291\pi\)
0.885779 + 0.464107i \(0.153625\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 6.06218 + 3.50000i 0.491708 + 0.283887i
\(153\) 18.0000i 1.45521i
\(154\) −9.00000 −0.725241
\(155\) 0 0
\(156\) 15.0000 1.20096
\(157\) 10.0000i 0.798087i 0.916932 + 0.399043i \(0.130658\pi\)
−0.916932 + 0.399043i \(0.869342\pi\)
\(158\) −0.866025 0.500000i −0.0688973 0.0397779i
\(159\) 9.00000 0.713746
\(160\) 0 0
\(161\) −6.00000 + 10.3923i −0.472866 + 0.819028i
\(162\) 7.79423 + 4.50000i 0.612372 + 0.353553i
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) −4.50000 7.79423i −0.351391 0.608627i
\(165\) 0 0
\(166\) −2.50000 4.33013i −0.194038 0.336083i
\(167\) −16.4545 9.50000i −1.27329 0.735132i −0.297681 0.954665i \(-0.596213\pi\)
−0.975605 + 0.219533i \(0.929547\pi\)
\(168\) −7.79423 + 4.50000i −0.601338 + 0.347183i
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) 0 0
\(171\) 42.0000 3.21182
\(172\) −0.866025 0.500000i −0.0660338 0.0381246i
\(173\) 0.866025 0.500000i 0.0658427 0.0380143i −0.466717 0.884407i \(-0.654563\pi\)
0.532560 + 0.846392i \(0.321230\pi\)
\(174\) 3.00000 5.19615i 0.227429 0.393919i
\(175\) 0 0
\(176\) 1.50000 + 2.59808i 0.113067 + 0.195837i
\(177\) −7.79423 + 4.50000i −0.585850 + 0.338241i
\(178\) 6.00000i 0.449719i
\(179\) 9.50000 16.4545i 0.710063 1.22987i −0.254770 0.967002i \(-0.582000\pi\)
0.964833 0.262864i \(-0.0846670\pi\)
\(180\) 0 0
\(181\) −2.50000 4.33013i −0.185824 0.321856i 0.758030 0.652219i \(-0.226162\pi\)
−0.943854 + 0.330364i \(0.892829\pi\)
\(182\) 15.0000i 1.11187i
\(183\) −15.5885 9.00000i −1.15233 0.665299i
\(184\) 4.00000 0.294884
\(185\) 0 0
\(186\) 10.5000 + 12.9904i 0.769897 + 0.952501i
\(187\) 9.00000i 0.658145i
\(188\) 8.00000i 0.583460i
\(189\) −13.5000 + 23.3827i −0.981981 + 1.70084i
\(190\) 0 0
\(191\) −1.50000 2.59808i −0.108536 0.187990i 0.806641 0.591041i \(-0.201283\pi\)
−0.915177 + 0.403051i \(0.867950\pi\)
\(192\) 2.59808 + 1.50000i 0.187500 + 0.108253i
\(193\) −16.4545 9.50000i −1.18442 0.683825i −0.227387 0.973805i \(-0.573018\pi\)
−0.957033 + 0.289980i \(0.906351\pi\)
\(194\) −14.0000 −1.00514
\(195\) 0 0
\(196\) −1.00000 1.73205i −0.0714286 0.123718i
\(197\) 12.9904 7.50000i 0.925526 0.534353i 0.0401324 0.999194i \(-0.487222\pi\)
0.885394 + 0.464841i \(0.153889\pi\)
\(198\) 15.5885 + 9.00000i 1.10782 + 0.639602i
\(199\) −10.5000 18.1865i −0.744325 1.28921i −0.950509 0.310696i \(-0.899438\pi\)
0.206184 0.978513i \(-0.433895\pi\)
\(200\) 0 0
\(201\) −9.00000 −0.634811
\(202\) 10.0000i 0.703598i
\(203\) 5.19615 + 3.00000i 0.364698 + 0.210559i
\(204\) 4.50000 + 7.79423i 0.315063 + 0.545705i
\(205\) 0 0
\(206\) 6.50000 + 11.2583i 0.452876 + 0.784405i
\(207\) 20.7846 12.0000i 1.44463 0.834058i
\(208\) 4.33013 2.50000i 0.300240 0.173344i
\(209\) 21.0000 1.45260
\(210\) 0 0
\(211\) 0.500000 0.866025i 0.0344214 0.0596196i −0.848301 0.529514i \(-0.822374\pi\)
0.882723 + 0.469894i \(0.155708\pi\)
\(212\) 2.59808 1.50000i 0.178437 0.103020i
\(213\) 3.00000i 0.205557i
\(214\) −6.50000 + 11.2583i −0.444331 + 0.769604i
\(215\) 0 0
\(216\) 9.00000 0.612372
\(217\) −12.9904 + 10.5000i −0.881845 + 0.712786i
\(218\) 2.00000i 0.135457i
\(219\) −21.0000 −1.41905
\(220\) 0 0
\(221\) 15.0000 1.00901
\(222\) −2.59808 + 1.50000i −0.174371 + 0.100673i
\(223\) 16.4545 + 9.50000i 1.10187 + 0.636167i 0.936713 0.350100i \(-0.113852\pi\)
0.165161 + 0.986267i \(0.447186\pi\)
\(224\) −1.50000 + 2.59808i −0.100223 + 0.173591i
\(225\) 0 0
\(226\) 0.500000 + 0.866025i 0.0332595 + 0.0576072i
\(227\) −18.1865 + 10.5000i −1.20708 + 0.696909i −0.962121 0.272623i \(-0.912109\pi\)
−0.244962 + 0.969533i \(0.578775\pi\)
\(228\) 18.1865 10.5000i 1.20443 0.695379i
\(229\) −3.50000 + 6.06218i −0.231287 + 0.400600i −0.958187 0.286143i \(-0.907627\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) −13.5000 + 23.3827i −0.888235 + 1.53847i
\(232\) 2.00000i 0.131306i
\(233\) 18.0000i 1.17922i −0.807688 0.589610i \(-0.799282\pi\)
0.807688 0.589610i \(-0.200718\pi\)
\(234\) 15.0000 25.9808i 0.980581 1.69842i
\(235\) 0 0
\(236\) −1.50000 + 2.59808i −0.0976417 + 0.169120i
\(237\) −2.59808 + 1.50000i −0.168763 + 0.0974355i
\(238\) −7.79423 + 4.50000i −0.505225 + 0.291692i
\(239\) −0.500000 0.866025i −0.0323423 0.0560185i 0.849401 0.527748i \(-0.176963\pi\)
−0.881743 + 0.471729i \(0.843630\pi\)
\(240\) 0 0
\(241\) 12.5000 21.6506i 0.805196 1.39464i −0.110963 0.993825i \(-0.535394\pi\)
0.916159 0.400815i \(-0.131273\pi\)
\(242\) −1.73205 1.00000i −0.111340 0.0642824i
\(243\) 0 0
\(244\) −6.00000 −0.384111
\(245\) 0 0
\(246\) −27.0000 −1.72146
\(247\) 35.0000i 2.22700i
\(248\) 5.19615 + 2.00000i 0.329956 + 0.127000i
\(249\) −15.0000 −0.950586
\(250\) 0 0
\(251\) −11.5000 + 19.9186i −0.725874 + 1.25725i 0.232740 + 0.972539i \(0.425231\pi\)
−0.958613 + 0.284711i \(0.908102\pi\)
\(252\) 18.0000i 1.13389i
\(253\) 10.3923 6.00000i 0.653359 0.377217i
\(254\) 6.50000 11.2583i 0.407846 0.706410i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 11.2583 6.50000i 0.702275 0.405459i −0.105919 0.994375i \(-0.533778\pi\)
0.808194 + 0.588916i \(0.200445\pi\)
\(258\) −2.59808 + 1.50000i −0.161749 + 0.0933859i
\(259\) −1.50000 2.59808i −0.0932055 0.161437i
\(260\) 0 0
\(261\) −6.00000 10.3923i −0.371391 0.643268i
\(262\) −18.1865 10.5000i −1.12357 0.648692i
\(263\) 16.0000i 0.986602i −0.869859 0.493301i \(-0.835790\pi\)
0.869859 0.493301i \(-0.164210\pi\)
\(264\) 9.00000 0.553912
\(265\) 0 0
\(266\) 10.5000 + 18.1865i 0.643796 + 1.11509i
\(267\) 15.5885 + 9.00000i 0.953998 + 0.550791i
\(268\) −2.59808 + 1.50000i −0.158703 + 0.0916271i
\(269\) 10.5000 + 18.1865i 0.640196 + 1.10885i 0.985389 + 0.170321i \(0.0544803\pi\)
−0.345192 + 0.938532i \(0.612186\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 2.59808 + 1.50000i 0.157532 + 0.0909509i
\(273\) 38.9711 + 22.5000i 2.35864 + 1.36176i
\(274\) 5.50000 + 9.52628i 0.332267 + 0.575504i
\(275\) 0 0
\(276\) 6.00000 10.3923i 0.361158 0.625543i
\(277\) 2.00000i 0.120168i 0.998193 + 0.0600842i \(0.0191369\pi\)
−0.998193 + 0.0600842i \(0.980863\pi\)
\(278\) 0 0
\(279\) 33.0000 5.19615i 1.97566 0.311086i
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) −20.7846 12.0000i −1.23771 0.714590i
\(283\) 4.00000i 0.237775i 0.992908 + 0.118888i \(0.0379328\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(284\) −0.500000 0.866025i −0.0296695 0.0513892i
\(285\) 0 0
\(286\) 7.50000 12.9904i 0.443484 0.768137i
\(287\) 27.0000i 1.59376i
\(288\) 5.19615 3.00000i 0.306186 0.176777i
\(289\) −4.00000 6.92820i −0.235294 0.407541i
\(290\) 0 0
\(291\) −21.0000 + 36.3731i −1.23104 + 2.13223i
\(292\) −6.06218 + 3.50000i −0.354762 + 0.204822i
\(293\) 16.4545 + 9.50000i 0.961281 + 0.554996i 0.896567 0.442908i \(-0.146053\pi\)
0.0647140 + 0.997904i \(0.479386\pi\)
\(294\) −6.00000 −0.349927
\(295\) 0 0
\(296\) −0.500000 + 0.866025i −0.0290619 + 0.0503367i
\(297\) 23.3827 13.5000i 1.35680 0.783349i
\(298\) −0.866025 0.500000i −0.0501675 0.0289642i
\(299\) −10.0000 17.3205i −0.578315 1.00167i
\(300\) 0 0
\(301\) −1.50000 2.59808i −0.0864586 0.149751i
\(302\) 16.0000i 0.920697i
\(303\) 25.9808 + 15.0000i 1.49256 + 0.861727i
\(304\) 3.50000 6.06218i 0.200739 0.347690i
\(305\) 0 0
\(306\) 18.0000 1.02899
\(307\) −4.33013 2.50000i −0.247133 0.142683i 0.371318 0.928506i \(-0.378906\pi\)
−0.618451 + 0.785823i \(0.712239\pi\)
\(308\) 9.00000i 0.512823i
\(309\) 39.0000 2.21863
\(310\) 0 0
\(311\) 32.0000 1.81455 0.907277 0.420534i \(-0.138157\pi\)
0.907277 + 0.420534i \(0.138157\pi\)
\(312\) 15.0000i 0.849208i
\(313\) −6.06218 3.50000i −0.342655 0.197832i 0.318791 0.947825i \(-0.396723\pi\)
−0.661445 + 0.749993i \(0.730057\pi\)
\(314\) 10.0000 0.564333
\(315\) 0 0
\(316\) −0.500000 + 0.866025i −0.0281272 + 0.0487177i
\(317\) 25.1147 + 14.5000i 1.41058 + 0.814401i 0.995443 0.0953560i \(-0.0303989\pi\)
0.415141 + 0.909757i \(0.363732\pi\)
\(318\) 9.00000i 0.504695i
\(319\) −3.00000 5.19615i −0.167968 0.290929i
\(320\) 0 0
\(321\) 19.5000 + 33.7750i 1.08838 + 1.88514i
\(322\) 10.3923 + 6.00000i 0.579141 + 0.334367i
\(323\) 18.1865 10.5000i 1.01193 0.584236i
\(324\) 4.50000 7.79423i 0.250000 0.433013i
\(325\) 0 0
\(326\) −4.00000 −0.221540
\(327\) −5.19615 3.00000i −0.287348 0.165900i
\(328\) −7.79423 + 4.50000i −0.430364 + 0.248471i
\(329\) 12.0000 20.7846i 0.661581 1.14589i
\(330\) 0 0
\(331\) −8.50000 14.7224i −0.467202 0.809218i 0.532096 0.846684i \(-0.321405\pi\)
−0.999298 + 0.0374662i \(0.988071\pi\)
\(332\) −4.33013 + 2.50000i −0.237647 + 0.137205i
\(333\) 6.00000i 0.328798i
\(334\) −9.50000 + 16.4545i −0.519817 + 0.900349i
\(335\) 0 0
\(336\) 4.50000 + 7.79423i 0.245495 + 0.425210i
\(337\) 30.0000i 1.63420i −0.576493 0.817102i \(-0.695579\pi\)
0.576493 0.817102i \(-0.304421\pi\)
\(338\) −10.3923 6.00000i −0.565267 0.326357i
\(339\) 3.00000 0.162938
\(340\) 0 0
\(341\) 16.5000 2.59808i 0.893525 0.140694i
\(342\) 42.0000i 2.27110i
\(343\) 15.0000i 0.809924i
\(344\) −0.500000 + 0.866025i −0.0269582 + 0.0466930i
\(345\) 0 0
\(346\) −0.500000 0.866025i −0.0268802 0.0465578i
\(347\) −7.79423 4.50000i −0.418416 0.241573i 0.275983 0.961162i \(-0.410997\pi\)
−0.694399 + 0.719590i \(0.744330\pi\)
\(348\) −5.19615 3.00000i −0.278543 0.160817i
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) −22.5000 38.9711i −1.20096 2.08013i
\(352\) 2.59808 1.50000i 0.138478 0.0799503i
\(353\) −26.8468 15.5000i −1.42891 0.824982i −0.431875 0.901933i \(-0.642148\pi\)
−0.997035 + 0.0769515i \(0.975481\pi\)
\(354\) 4.50000 + 7.79423i 0.239172 + 0.414259i
\(355\) 0 0
\(356\) 6.00000 0.317999
\(357\) 27.0000i 1.42899i
\(358\) −16.4545 9.50000i −0.869646 0.502091i
\(359\) 15.5000 + 26.8468i 0.818059 + 1.41692i 0.907111 + 0.420892i \(0.138283\pi\)
−0.0890519 + 0.996027i \(0.528384\pi\)
\(360\) 0 0
\(361\) −15.0000 25.9808i −0.789474 1.36741i
\(362\) −4.33013 + 2.50000i −0.227586 + 0.131397i
\(363\) −5.19615 + 3.00000i −0.272727 + 0.157459i
\(364\) 15.0000 0.786214
\(365\) 0 0
\(366\) −9.00000 + 15.5885i −0.470438 + 0.814822i
\(367\) −6.06218 + 3.50000i −0.316443 + 0.182699i −0.649806 0.760100i \(-0.725150\pi\)
0.333363 + 0.942799i \(0.391817\pi\)
\(368\) 4.00000i 0.208514i
\(369\) −27.0000 + 46.7654i −1.40556 + 2.43451i
\(370\) 0 0
\(371\) 9.00000 0.467257
\(372\) 12.9904 10.5000i 0.673520 0.544400i
\(373\) 10.0000i 0.517780i 0.965907 + 0.258890i \(0.0833568\pi\)
−0.965907 + 0.258890i \(0.916643\pi\)
\(374\) 9.00000 0.465379
\(375\) 0 0
\(376\) −8.00000 −0.412568
\(377\) −8.66025 + 5.00000i −0.446026 + 0.257513i
\(378\) 23.3827 + 13.5000i 1.20268 + 0.694365i
\(379\) −0.500000 + 0.866025i −0.0256833 + 0.0444847i −0.878581 0.477593i \(-0.841509\pi\)
0.852898 + 0.522077i \(0.174843\pi\)
\(380\) 0 0
\(381\) −19.5000 33.7750i −0.999015 1.73035i
\(382\) −2.59808 + 1.50000i −0.132929 + 0.0767467i
\(383\) 12.9904 7.50000i 0.663777 0.383232i −0.129937 0.991522i \(-0.541478\pi\)
0.793715 + 0.608290i \(0.208144\pi\)
\(384\) 1.50000 2.59808i 0.0765466 0.132583i
\(385\) 0 0
\(386\) −9.50000 + 16.4545i −0.483537 + 0.837511i
\(387\) 6.00000i 0.304997i
\(388\) 14.0000i 0.710742i
\(389\) −11.5000 + 19.9186i −0.583073 + 1.00991i 0.412039 + 0.911166i \(0.364817\pi\)
−0.995113 + 0.0987463i \(0.968517\pi\)
\(390\) 0 0
\(391\) 6.00000 10.3923i 0.303433 0.525561i
\(392\) −1.73205 + 1.00000i −0.0874818 + 0.0505076i
\(393\) −54.5596 + 31.5000i −2.75217 + 1.58896i
\(394\) −7.50000 12.9904i −0.377845 0.654446i
\(395\) 0 0
\(396\) 9.00000 15.5885i 0.452267 0.783349i
\(397\) 18.1865 + 10.5000i 0.912756 + 0.526980i 0.881317 0.472526i \(-0.156658\pi\)
0.0314391 + 0.999506i \(0.489991\pi\)
\(398\) −18.1865 + 10.5000i −0.911609 + 0.526317i
\(399\) 63.0000 3.15394
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 9.00000i 0.448879i
\(403\) −4.33013 27.5000i −0.215699 1.36987i
\(404\) 10.0000 0.497519
\(405\) 0 0
\(406\) 3.00000 5.19615i 0.148888 0.257881i
\(407\) 3.00000i 0.148704i
\(408\) 7.79423 4.50000i 0.385872 0.222783i
\(409\) 15.5000 26.8468i 0.766426 1.32749i −0.173064 0.984911i \(-0.555367\pi\)
0.939490 0.342578i \(-0.111300\pi\)
\(410\) 0 0
\(411\) 33.0000 1.62777
\(412\) 11.2583 6.50000i 0.554658 0.320232i
\(413\) −7.79423 + 4.50000i −0.383529 + 0.221431i
\(414\) −12.0000 20.7846i −0.589768 1.02151i
\(415\) 0 0
\(416\) −2.50000 4.33013i −0.122573 0.212302i
\(417\) 0 0
\(418\) 21.0000i 1.02714i
\(419\) 28.0000 1.36789 0.683945 0.729534i \(-0.260263\pi\)
0.683945 + 0.729534i \(0.260263\pi\)
\(420\) 0 0
\(421\) 7.50000 + 12.9904i 0.365528 + 0.633112i 0.988861 0.148844i \(-0.0475552\pi\)
−0.623333 + 0.781956i \(0.714222\pi\)
\(422\) −0.866025 0.500000i −0.0421575 0.0243396i
\(423\) −41.5692 + 24.0000i −2.02116 + 1.16692i
\(424\) −1.50000 2.59808i −0.0728464 0.126174i
\(425\) 0 0
\(426\) −3.00000 −0.145350
\(427\) −15.5885 9.00000i −0.754378 0.435541i
\(428\) 11.2583 + 6.50000i 0.544192 + 0.314189i
\(429\) −22.5000 38.9711i −1.08631 1.88154i
\(430\) 0 0
\(431\) −2.50000 + 4.33013i −0.120421 + 0.208575i −0.919934 0.392074i \(-0.871758\pi\)
0.799513 + 0.600649i \(0.205091\pi\)
\(432\) 9.00000i 0.433013i
\(433\) 14.0000i 0.672797i 0.941720 + 0.336399i \(0.109209\pi\)
−0.941720 + 0.336399i \(0.890791\pi\)
\(434\) 10.5000 + 12.9904i 0.504016 + 0.623558i
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) −24.2487 14.0000i −1.15997 0.669711i
\(438\) 21.0000i 1.00342i
\(439\) −6.50000 11.2583i −0.310228 0.537331i 0.668184 0.743996i \(-0.267072\pi\)
−0.978412 + 0.206666i \(0.933739\pi\)
\(440\) 0 0
\(441\) −6.00000 + 10.3923i −0.285714 + 0.494872i
\(442\) 15.0000i 0.713477i
\(443\) −9.52628 + 5.50000i −0.452607 + 0.261313i −0.708931 0.705278i \(-0.750822\pi\)
0.256323 + 0.966591i \(0.417489\pi\)
\(444\) 1.50000 + 2.59808i 0.0711868 + 0.123299i
\(445\) 0 0
\(446\) 9.50000 16.4545i 0.449838 0.779142i
\(447\) −2.59808 + 1.50000i −0.122885 + 0.0709476i
\(448\) 2.59808 + 1.50000i 0.122748 + 0.0708683i
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) −13.5000 + 23.3827i −0.635690 + 1.10105i
\(452\) 0.866025 0.500000i 0.0407344 0.0235180i
\(453\) 41.5692 + 24.0000i 1.95309 + 1.12762i
\(454\) 10.5000 + 18.1865i 0.492789 + 0.853536i
\(455\) 0 0
\(456\) −10.5000 18.1865i −0.491708 0.851662i
\(457\) 10.0000i 0.467780i −0.972263 0.233890i \(-0.924854\pi\)
0.972263 0.233890i \(-0.0751456\pi\)
\(458\) 6.06218 + 3.50000i 0.283267 + 0.163544i
\(459\) 13.5000 23.3827i 0.630126 1.09141i
\(460\) 0 0
\(461\) −42.0000 −1.95614 −0.978068 0.208288i \(-0.933211\pi\)
−0.978068 + 0.208288i \(0.933211\pi\)
\(462\) 23.3827 + 13.5000i 1.08786 + 0.628077i
\(463\) 16.0000i 0.743583i 0.928316 + 0.371792i \(0.121256\pi\)
−0.928316 + 0.371792i \(0.878744\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 0 0
\(466\) −18.0000 −0.833834
\(467\) 8.00000i 0.370196i 0.982720 + 0.185098i \(0.0592602\pi\)
−0.982720 + 0.185098i \(0.940740\pi\)
\(468\) −25.9808 15.0000i −1.20096 0.693375i
\(469\) −9.00000 −0.415581
\(470\) 0 0
\(471\) 15.0000 25.9808i 0.691164 1.19713i
\(472\) 2.59808 + 1.50000i 0.119586 + 0.0690431i
\(473\) 3.00000i 0.137940i
\(474\) 1.50000 + 2.59808i 0.0688973 + 0.119334i
\(475\) 0 0
\(476\) 4.50000 + 7.79423i 0.206257 + 0.357248i
\(477\) −15.5885 9.00000i −0.713746 0.412082i
\(478\) −0.866025 + 0.500000i −0.0396111 + 0.0228695i
\(479\) −5.50000 + 9.52628i −0.251301 + 0.435267i −0.963884 0.266321i \(-0.914192\pi\)
0.712583 + 0.701588i \(0.247525\pi\)
\(480\) 0 0
\(481\) 5.00000 0.227980
\(482\) −21.6506 12.5000i −0.986159 0.569359i
\(483\) 31.1769 18.0000i 1.41860 0.819028i
\(484\) −1.00000 + 1.73205i −0.0454545 + 0.0787296i
\(485\) 0 0
\(486\) 0 0
\(487\) −9.52628 + 5.50000i −0.431677 + 0.249229i −0.700061 0.714083i \(-0.746844\pi\)
0.268384 + 0.963312i \(0.413510\pi\)
\(488\) 6.00000i 0.271607i
\(489\) −6.00000 + 10.3923i −0.271329 + 0.469956i
\(490\) 0 0
\(491\) 7.50000 + 12.9904i 0.338470 + 0.586248i 0.984145 0.177365i \(-0.0567572\pi\)
−0.645675 + 0.763612i \(0.723424\pi\)
\(492\) 27.0000i 1.21725i
\(493\) −5.19615 3.00000i −0.234023 0.135113i
\(494\) −35.0000 −1.57472
\(495\) 0 0
\(496\) 2.00000 5.19615i 0.0898027 0.233314i
\(497\) 3.00000i 0.134568i
\(498\) 15.0000i 0.672166i
\(499\) 7.50000 12.9904i 0.335746 0.581529i −0.647882 0.761741i \(-0.724345\pi\)
0.983628 + 0.180212i \(0.0576783\pi\)
\(500\) 0 0
\(501\) 28.5000 + 49.3634i 1.27329 + 2.20540i
\(502\) 19.9186 + 11.5000i 0.889010 + 0.513270i
\(503\) −7.79423 4.50000i −0.347527 0.200645i 0.316068 0.948736i \(-0.397637\pi\)
−0.663596 + 0.748091i \(0.730970\pi\)
\(504\) 18.0000 0.801784
\(505\) 0 0
\(506\) −6.00000 10.3923i −0.266733 0.461994i
\(507\) −31.1769 + 18.0000i −1.38462 + 0.799408i
\(508\) −11.2583 6.50000i −0.499508 0.288391i
\(509\) 0.500000 + 0.866025i 0.0221621 + 0.0383859i 0.876894 0.480684i \(-0.159612\pi\)
−0.854732 + 0.519070i \(0.826278\pi\)
\(510\) 0 0
\(511\) −21.0000 −0.928985
\(512\) 1.00000i 0.0441942i
\(513\) −54.5596 31.5000i −2.40887 1.39076i
\(514\) −6.50000 11.2583i −0.286703 0.496584i
\(515\) 0 0
\(516\) 1.50000 + 2.59808i 0.0660338 + 0.114374i
\(517\) −20.7846 + 12.0000i −0.914106 + 0.527759i
\(518\) −2.59808 + 1.50000i −0.114153 + 0.0659062i
\(519\) −3.00000 −0.131685
\(520\) 0 0
\(521\) −15.5000 + 26.8468i −0.679067 + 1.17618i 0.296195 + 0.955128i \(0.404282\pi\)
−0.975262 + 0.221052i \(0.929051\pi\)
\(522\) −10.3923 + 6.00000i −0.454859 + 0.262613i
\(523\) 20.0000i 0.874539i 0.899331 + 0.437269i \(0.144054\pi\)
−0.899331 + 0.437269i \(0.855946\pi\)
\(524\) −10.5000 + 18.1865i −0.458695 + 0.794482i
\(525\) 0 0
\(526\) −16.0000 −0.697633
\(527\) 12.9904 10.5000i 0.565870 0.457387i
\(528\) 9.00000i 0.391675i
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 18.0000 0.781133
\(532\) 18.1865 10.5000i 0.788486 0.455233i
\(533\) 38.9711 + 22.5000i 1.68803 + 0.974583i
\(534\) 9.00000 15.5885i 0.389468 0.674579i
\(535\) 0 0
\(536\) 1.50000 + 2.59808i 0.0647901 + 0.112220i
\(537\) −49.3634 + 28.5000i −2.13019 + 1.22987i
\(538\) 18.1865 10.5000i 0.784077 0.452687i
\(539\) −3.00000 + 5.19615i −0.129219 + 0.223814i
\(540\) 0 0
\(541\) −14.5000 + 25.1147i −0.623404 + 1.07977i 0.365444 + 0.930834i \(0.380917\pi\)
−0.988847 + 0.148933i \(0.952416\pi\)
\(542\) 8.00000i 0.343629i
\(543\) 15.0000i 0.643712i
\(544\) 1.50000 2.59808i 0.0643120 0.111392i
\(545\) 0 0
\(546\) 22.5000 38.9711i 0.962911 1.66781i
\(547\) −11.2583 + 6.50000i −0.481371 + 0.277920i −0.720988 0.692948i \(-0.756312\pi\)
0.239616 + 0.970868i \(0.422978\pi\)
\(548\) 9.52628 5.50000i 0.406942 0.234948i
\(549\) 18.0000 + 31.1769i 0.768221 + 1.33060i
\(550\) 0 0
\(551\) −7.00000 + 12.1244i −0.298210 + 0.516515i
\(552\) −10.3923 6.00000i −0.442326 0.255377i
\(553\) −2.59808 + 1.50000i −0.110481 + 0.0637865i
\(554\) 2.00000 0.0849719
\(555\) 0 0
\(556\) 0 0
\(557\) 2.00000i 0.0847427i 0.999102 + 0.0423714i \(0.0134913\pi\)
−0.999102 + 0.0423714i \(0.986509\pi\)
\(558\) −5.19615 33.0000i −0.219971 1.39700i
\(559\) 5.00000 0.211477
\(560\) 0 0
\(561\) 13.5000 23.3827i 0.569970 0.987218i
\(562\) 30.0000i 1.26547i
\(563\) 18.1865 10.5000i 0.766471 0.442522i −0.0651433 0.997876i \(-0.520750\pi\)
0.831614 + 0.555354i \(0.187417\pi\)
\(564\) −12.0000 + 20.7846i −0.505291 + 0.875190i
\(565\) 0 0
\(566\) 4.00000 0.168133
\(567\) 23.3827 13.5000i 0.981981 0.566947i
\(568\) −0.866025 + 0.500000i −0.0363376 + 0.0209795i
\(569\) −12.5000 21.6506i −0.524027 0.907642i −0.999609 0.0279702i \(-0.991096\pi\)
0.475581 0.879672i \(-0.342238\pi\)
\(570\) 0 0
\(571\) −12.5000 21.6506i −0.523109 0.906051i −0.999638 0.0268925i \(-0.991439\pi\)
0.476530 0.879158i \(-0.341895\pi\)
\(572\) −12.9904 7.50000i −0.543155 0.313591i
\(573\) 9.00000i 0.375980i
\(574\) −27.0000 −1.12696
\(575\) 0 0
\(576\) −3.00000 5.19615i −0.125000 0.216506i
\(577\) 2.59808 + 1.50000i 0.108159 + 0.0624458i 0.553104 0.833112i \(-0.313443\pi\)
−0.444945 + 0.895558i \(0.646777\pi\)
\(578\) −6.92820 + 4.00000i −0.288175 + 0.166378i
\(579\) 28.5000 + 49.3634i 1.18442 + 2.05147i
\(580\) 0 0
\(581\) −15.0000 −0.622305
\(582\) 36.3731 + 21.0000i 1.50771 + 0.870478i
\(583\) −7.79423 4.50000i −0.322804 0.186371i
\(584\) 3.50000 + 6.06218i 0.144831 + 0.250855i
\(585\) 0 0
\(586\) 9.50000 16.4545i 0.392441 0.679728i
\(587\) 28.0000i 1.15568i 0.816149 + 0.577842i \(0.196105\pi\)
−0.816149 + 0.577842i \(0.803895\pi\)
\(588\) 6.00000i 0.247436i
\(589\) −24.5000 30.3109i −1.00950 1.24894i
\(590\) 0 0
\(591\) −45.0000 −1.85105
\(592\) 0.866025 + 0.500000i 0.0355934 + 0.0205499i
\(593\) 6.00000i 0.246390i 0.992382 + 0.123195i \(0.0393141\pi\)
−0.992382 + 0.123195i \(0.960686\pi\)
\(594\) −13.5000 23.3827i −0.553912 0.959403i
\(595\) 0 0
\(596\) −0.500000 + 0.866025i −0.0204808 + 0.0354738i
\(597\) 63.0000i 2.57842i
\(598\) −17.3205 + 10.0000i −0.708288 + 0.408930i
\(599\) −8.50000 14.7224i −0.347301 0.601542i 0.638468 0.769648i \(-0.279568\pi\)
−0.985769 + 0.168106i \(0.946235\pi\)
\(600\) 0 0
\(601\) 16.5000 28.5788i 0.673049 1.16576i −0.303986 0.952676i \(-0.598318\pi\)
0.977035 0.213079i \(-0.0683491\pi\)
\(602\) −2.59808 + 1.50000i −0.105890 + 0.0611354i
\(603\) 15.5885 + 9.00000i 0.634811 + 0.366508i
\(604\) 16.0000 0.651031
\(605\) 0 0
\(606\) 15.0000 25.9808i 0.609333 1.05540i
\(607\) 35.5070 20.5000i 1.44119 0.832069i 0.443257 0.896394i \(-0.353823\pi\)
0.997929 + 0.0643251i \(0.0204895\pi\)
\(608\) −6.06218 3.50000i −0.245854 0.141944i
\(609\) −9.00000 15.5885i −0.364698 0.631676i
\(610\) 0 0
\(611\) 20.0000 + 34.6410i 0.809113 + 1.40143i
\(612\) 18.0000i 0.727607i
\(613\) −4.33013 2.50000i −0.174892 0.100974i 0.409998 0.912086i \(-0.365529\pi\)
−0.584891 + 0.811112i \(0.698863\pi\)
\(614\) −2.50000 + 4.33013i −0.100892 + 0.174750i
\(615\) 0 0
\(616\) 9.00000 0.362620
\(617\) 23.3827 + 13.5000i 0.941351 + 0.543490i 0.890384 0.455211i \(-0.150436\pi\)
0.0509678 + 0.998700i \(0.483769\pi\)
\(618\) 39.0000i 1.56881i
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) −36.0000 −1.44463
\(622\) 32.0000i 1.28308i
\(623\) 15.5885 + 9.00000i 0.624538 + 0.360577i
\(624\) −15.0000 −0.600481
\(625\) 0 0
\(626\) −3.50000 + 6.06218i −0.139888 + 0.242293i
\(627\) −54.5596 31.5000i −2.17890 1.25799i
\(628\) 10.0000i 0.399043i
\(629\) 1.50000 + 2.59808i 0.0598089 + 0.103592i
\(630\) 0 0
\(631\) −13.5000 23.3827i −0.537427 0.930850i −0.999042 0.0437697i \(-0.986063\pi\)
0.461615 0.887080i \(-0.347270\pi\)
\(632\) 0.866025 + 0.500000i 0.0344486 + 0.0198889i
\(633\) −2.59808 + 1.50000i −0.103264 + 0.0596196i
\(634\) 14.5000 25.1147i 0.575869 0.997434i
\(635\) 0 0
\(636\) −9.00000 −0.356873
\(637\) 8.66025 + 5.00000i 0.343132 + 0.198107i
\(638\) −5.19615 + 3.00000i −0.205718 + 0.118771i
\(639\) −3.00000 + 5.19615i −0.118678 + 0.205557i
\(640\) 0 0
\(641\) −5.50000 9.52628i −0.217237 0.376265i 0.736725 0.676192i \(-0.236371\pi\)
−0.953962 + 0.299927i \(0.903038\pi\)
\(642\) 33.7750 19.5000i 1.33299 0.769604i
\(643\) 28.0000i 1.10421i 0.833774 + 0.552106i \(0.186176\pi\)
−0.833774 + 0.552106i \(0.813824\pi\)
\(644\) 6.00000 10.3923i 0.236433 0.409514i
\(645\) 0 0
\(646\) −10.5000 18.1865i −0.413117 0.715540i
\(647\) 4.00000i 0.157256i −0.996904 0.0786281i \(-0.974946\pi\)
0.996904 0.0786281i \(-0.0250540\pi\)
\(648\) −7.79423 4.50000i −0.306186 0.176777i
\(649\) 9.00000 0.353281
\(650\) 0 0
\(651\) 49.5000 7.79423i 1.94006 0.305480i
\(652\) 4.00000i 0.156652i
\(653\) 18.0000i 0.704394i −0.935926 0.352197i \(-0.885435\pi\)
0.935926 0.352197i \(-0.114565\pi\)
\(654\) −3.00000 + 5.19615i −0.117309 + 0.203186i
\(655\) 0 0
\(656\) 4.50000 + 7.79423i 0.175695 + 0.304314i
\(657\) 36.3731 + 21.0000i 1.41905 + 0.819288i
\(658\) −20.7846 12.0000i −0.810268 0.467809i
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −24.5000 42.4352i −0.952940 1.65054i −0.739014 0.673690i \(-0.764708\pi\)
−0.213925 0.976850i \(-0.568625\pi\)
\(662\) −14.7224 + 8.50000i −0.572204 + 0.330362i
\(663\) −38.9711 22.5000i −1.51351 0.873828i
\(664\) 2.50000 + 4.33013i 0.0970188 + 0.168042i
\(665\) 0 0
\(666\) 6.00000 0.232495
\(667\) 8.00000i 0.309761i
\(668\) 16.4545 + 9.50000i 0.636643 + 0.367566i
\(669\) −28.5000 49.3634i −1.10187 1.90850i
\(670\) 0 0
\(671\) 9.00000 + 15.5885i 0.347441 + 0.601786i
\(672\) 7.79423 4.50000i 0.300669 0.173591i
\(673\) 23.3827 13.5000i 0.901336 0.520387i 0.0237028 0.999719i \(-0.492454\pi\)
0.877633 + 0.479332i \(0.159121\pi\)
\(674\) −30.0000 −1.15556
\(675\) 0 0
\(676\) −6.00000 + 10.3923i −0.230769 + 0.399704i
\(677\) 23.3827 13.5000i 0.898670 0.518847i 0.0219013 0.999760i \(-0.493028\pi\)
0.876768 + 0.480913i \(0.159695\pi\)
\(678\) 3.00000i 0.115214i
\(679\) −21.0000 + 36.3731i −0.805906 + 1.39587i
\(680\) 0 0
\(681\) 63.0000 2.41417
\(682\) −2.59808 16.5000i −0.0994855 0.631818i
\(683\) 16.0000i 0.612223i −0.951996 0.306111i \(-0.900972\pi\)
0.951996 0.306111i \(-0.0990280\pi\)
\(684\) −42.0000 −1.60591
\(685\) 0 0
\(686\) 15.0000 0.572703
\(687\) 18.1865 10.5000i 0.693860 0.400600i
\(688\) 0.866025 + 0.500000i 0.0330169 + 0.0190623i
\(689\) −7.50000 + 12.9904i −0.285727 + 0.494894i
\(690\) 0 0
\(691\) 13.5000 + 23.3827i 0.513564 + 0.889519i 0.999876 + 0.0157341i \(0.00500851\pi\)
−0.486312 + 0.873785i \(0.661658\pi\)
\(692\) −0.866025 + 0.500000i −0.0329213 + 0.0190071i
\(693\) 46.7654 27.0000i 1.77647 1.02565i
\(694\) −4.50000 + 7.79423i −0.170818 + 0.295865i
\(695\) 0 0
\(696\) −3.00000 + 5.19615i −0.113715 + 0.196960i
\(697\) 27.0000i 1.02270i
\(698\) 14.0000i 0.529908i
\(699\) −27.0000 + 46.7654i −1.02123 + 1.76883i
\(700\) 0 0
\(701\) 7.50000 12.9904i 0.283271 0.490640i −0.688917 0.724840i \(-0.741914\pi\)
0.972188 + 0.234200i \(0.0752470\pi\)
\(702\) −38.9711 + 22.5000i −1.47087 + 0.849208i
\(703\) 6.06218 3.50000i 0.228639 0.132005i
\(704\) −1.50000 2.59808i −0.0565334 0.0979187i
\(705\) 0 0
\(706\) −15.5000 + 26.8468i −0.583350 + 1.01039i
\(707\) 25.9808 + 15.0000i 0.977107 + 0.564133i
\(708\) 7.79423 4.50000i 0.292925 0.169120i
\(709\) −38.0000 −1.42712 −0.713560 0.700594i \(-0.752918\pi\)
−0.713560 + 0.700594i \(0.752918\pi\)
\(710\) 0 0
\(711\) 6.00000 0.225018
\(712\) 6.00000i 0.224860i
\(713\) −20.7846 8.00000i −0.778390 0.299602i
\(714\) 27.0000 1.01045
\(715\) 0 0
\(716\) −9.50000 + 16.4545i −0.355032 + 0.614933i
\(717\) 3.00000i 0.112037i
\(718\) 26.8468 15.5000i 1.00191 0.578455i
\(719\) −3.50000 + 6.06218i −0.130528 + 0.226081i −0.923880 0.382682i \(-0.875001\pi\)
0.793352 + 0.608763i \(0.208334\pi\)
\(720\) 0 0
\(721\) 39.0000 1.45244
\(722\) −25.9808 + 15.0000i −0.966904 + 0.558242i
\(723\) −64.9519 + 37.5000i −2.41559 + 1.39464i
\(724\) 2.50000 + 4.33013i 0.0929118 + 0.160928i
\(725\) 0 0
\(726\) 3.00000 + 5.19615i 0.111340 + 0.192847i
\(727\) 32.0429 + 18.5000i 1.18841 + 0.686127i 0.957944 0.286954i \(-0.0926427\pi\)
0.230463 + 0.973081i \(0.425976\pi\)
\(728\) 15.0000i 0.555937i
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 1.50000 + 2.59808i 0.0554795 + 0.0960933i
\(732\) 15.5885 + 9.00000i 0.576166 + 0.332650i
\(733\) 0.866025 0.500000i 0.0319874 0.0184679i −0.483921 0.875112i \(-0.660788\pi\)
0.515908 + 0.856644i \(0.327454\pi\)
\(734\) 3.50000 + 6.06218i 0.129187 + 0.223759i
\(735\) 0 0
\(736\) −4.00000 −0.147442
\(737\) 7.79423 + 4.50000i 0.287104 + 0.165760i
\(738\) 46.7654 + 27.0000i 1.72146 + 0.993884i
\(739\) 12.5000 + 21.6506i 0.459820 + 0.796431i 0.998951 0.0457903i \(-0.0145806\pi\)
−0.539131 + 0.842222i \(0.681247\pi\)
\(740\) 0 0
\(741\) −52.5000 + 90.9327i −1.92864 + 3.34050i
\(742\) 9.00000i 0.330400i
\(743\) 40.0000i 1.46746i −0.679442 0.733729i \(-0.737778\pi\)
0.679442 0.733729i \(-0.262222\pi\)
\(744\) −10.5000 12.9904i −0.384949 0.476250i
\(745\) 0 0
\(746\) 10.0000 0.366126
\(747\) 25.9808 + 15.0000i 0.950586 + 0.548821i
\(748\) 9.00000i 0.329073i
\(749\) 19.5000 + 33.7750i 0.712514 + 1.23411i
\(750\) 0 0
\(751\) −14.5000 + 25.1147i −0.529113 + 0.916450i 0.470311 + 0.882501i \(0.344142\pi\)
−0.999424 + 0.0339490i \(0.989192\pi\)
\(752\) 8.00000i 0.291730i
\(753\) 59.7558 34.5000i 2.17762 1.25725i
\(754\) 5.00000 + 8.66025i 0.182089 + 0.315388i
\(755\) 0 0
\(756\) 13.5000 23.3827i 0.490990 0.850420i
\(757\) 37.2391 21.5000i 1.35348 0.781431i 0.364743 0.931108i \(-0.381157\pi\)
0.988735 + 0.149677i \(0.0478235\pi\)
\(758\) 0.866025 + 0.500000i 0.0314555 + 0.0181608i
\(759\) −36.0000 −1.30672
\(760\) 0 0
\(761\) −3.50000 + 6.06218i −0.126875 + 0.219754i −0.922464 0.386082i \(-0.873828\pi\)
0.795589 + 0.605836i \(0.207161\pi\)
\(762\) −33.7750 + 19.5000i −1.22354 + 0.706410i
\(763\) −5.19615 3.00000i −0.188113 0.108607i
\(764\) 1.50000 + 2.59808i 0.0542681 + 0.0939951i
\(765\) 0 0
\(766\) −7.50000 12.9904i −0.270986 0.469362i
\(767\) 15.0000i 0.541619i
\(768\) −2.59808 1.50000i −0.0937500 0.0541266i
\(769\) −16.5000 + 28.5788i −0.595005 + 1.03058i 0.398541 + 0.917151i \(0.369517\pi\)
−0.993546 + 0.113429i \(0.963817\pi\)
\(770\) 0 0
\(771\) −39.0000 −1.40455
\(772\) 16.4545 + 9.50000i 0.592210 + 0.341912i
\(773\) 46.0000i 1.65451i 0.561830 + 0.827253i \(0.310097\pi\)
−0.561830 + 0.827253i \(0.689903\pi\)
\(774\) 6.00000 0.215666
\(775\) 0 0
\(776\) 14.0000 0.502571
\(777\) 9.00000i 0.322873i
\(778\) 19.9186 + 11.5000i 0.714116 + 0.412295i
\(779\) 63.0000 2.25721
\(780\) 0 0
\(781\) −1.50000 + 2.59808i −0.0536742 + 0.0929665i
\(782\) −10.3923 6.00000i −0.371628 0.214560i
\(783\) 18.0000i 0.643268i
\(784\) 1.00000 + 1.73205i 0.0357143 + 0.0618590i
\(785\) 0 0
\(786\) 31.5000 + 54.5596i 1.12357 + 1.94608i
\(787\) −45.8993 26.5000i −1.63614 0.944623i −0.982146 0.188119i \(-0.939761\pi\)
−0.653989 0.756504i \(-0.726906\pi\)
\(788\) −12.9904 + 7.50000i −0.462763 + 0.267176i
\(789\) −24.0000 + 41.5692i −0.854423 + 1.47990i
\(790\) 0 0
\(791\) 3.00000 0.106668
\(792\) −15.5885 9.00000i −0.553912 0.319801i
\(793\) 25.9808 15.0000i 0.922604 0.532666i
\(794\) 10.5000 18.1865i 0.372631 0.645416i
\(795\) 0 0
\(796\) 10.5000 + 18.1865i 0.372163 + 0.644605i
\(797\) −28.5788 + 16.5000i −1.01231 + 0.584460i −0.911868 0.410483i \(-0.865360\pi\)
−0.100446 + 0.994943i \(0.532027\pi\)
\(798\) 63.0000i 2.23018i
\(799\) −12.0000 + 20.7846i −0.424529 + 0.735307i
\(800\) 0 0
\(801\) −18.0000 31.1769i −0.635999 1.10158i
\(802\) 18.0000i 0.635602i
\(803\) 18.1865 + 10.5000i 0.641789 + 0.370537i
\(804\) 9.00000 0.317406
\(805\) 0 0
\(806\) −27.5000 + 4.33013i −0.968646 + 0.152522i
\(807\) 63.0000i 2.21771i
\(808\) 10.0000i 0.351799i
\(809\) −4.50000 + 7.79423i −0.158212 + 0.274030i −0.934224 0.356687i \(-0.883906\pi\)
0.776012 + 0.630718i \(0.217239\pi\)
\(810\) 0 0
\(811\) −2.50000 4.33013i −0.0877869 0.152051i 0.818788 0.574095i \(-0.194646\pi\)
−0.906575 + 0.422044i \(0.861313\pi\)
\(812\) −5.19615 3.00000i −0.182349 0.105279i
\(813\) 20.7846 + 12.0000i 0.728948 + 0.420858i
\(814\) 3.00000 0.105150
\(815\) 0 0
\(816\) −4.50000 7.79423i −0.157532 0.272853i
\(817\) 6.06218 3.50000i 0.212089 0.122449i
\(818\) −26.8468 15.5000i −0.938676 0.541945i
\(819\) −45.0000 77.9423i −1.57243 2.72352i
\(820\) 0 0
\(821\) 38.0000 1.32621 0.663105 0.748527i \(-0.269238\pi\)
0.663105 + 0.748527i \(0.269238\pi\)
\(822\) 33.0000i 1.15101i
\(823\) −28.5788 16.5000i −0.996196 0.575154i −0.0890752 0.996025i \(-0.528391\pi\)
−0.907120 + 0.420871i \(0.861724\pi\)
\(824\) −6.50000 11.2583i −0.226438 0.392203i
\(825\) 0 0
\(826\) 4.50000 + 7.79423i 0.156575 + 0.271196i
\(827\) 37.2391 21.5000i 1.29493 0.747628i 0.315406 0.948957i \(-0.397859\pi\)
0.979524 + 0.201328i \(0.0645259\pi\)
\(828\) −20.7846 + 12.0000i −0.722315 + 0.417029i
\(829\) −46.0000 −1.59765 −0.798823 0.601566i \(-0.794544\pi\)
−0.798823 + 0.601566i \(0.794544\pi\)
\(830\) 0 0
\(831\) 3.00000 5.19615i 0.104069 0.180253i
\(832\) −4.33013 + 2.50000i −0.150120 + 0.0866719i
\(833\) 6.00000i 0.207888i
\(834\) 0 0
\(835\) 0 0
\(836\) −21.0000 −0.726300
\(837\) −46.7654 18.0000i −1.61645 0.622171i
\(838\) 28.0000i 0.967244i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 12.9904 7.50000i 0.447678 0.258467i
\(843\) −77.9423 45.0000i −2.68447 1.54988i
\(844\) −0.500000 + 0.866025i −0.0172107 + 0.0298098i
\(845\) 0 0
\(846\) 24.0000 + 41.5692i 0.825137 + 1.42918i
\(847\) −5.19615 + 3.00000i −0.178542 + 0.103081i
\(848\) −2.59808 + 1.50000i −0.0892183 + 0.0515102i
\(849\) 6.00000 10.3923i 0.205919 0.356663i
\(850\) 0 0
\(851\) 2.00000 3.46410i 0.0685591 0.118748i
\(852\) 3.00000i 0.102778i
\(853\) 14.0000i 0.479351i 0.970853 + 0.239675i \(0.0770410\pi\)
−0.970853 + 0.239675i \(0.922959\pi\)
\(854\) −9.00000 + 15.5885i −0.307974 + 0.533426i
\(855\) 0 0
\(856\) 6.50000 11.2583i 0.222165 0.384802i
\(857\) 18.1865 10.5000i 0.621240 0.358673i −0.156112 0.987739i \(-0.549896\pi\)
0.777352 + 0.629066i \(0.216563\pi\)
\(858\) −38.9711 + 22.5000i −1.33045 + 0.768137i
\(859\) 0.500000 + 0.866025i 0.0170598 + 0.0295484i 0.874429 0.485153i \(-0.161236\pi\)
−0.857369 + 0.514701i \(0.827903\pi\)
\(860\) 0 0
\(861\) −40.5000 + 70.1481i −1.38024 + 2.39064i
\(862\) 4.33013 + 2.50000i 0.147485 + 0.0851503i
\(863\) 2.59808 1.50000i 0.0884395 0.0510606i −0.455128 0.890426i \(-0.650407\pi\)
0.543568 + 0.839365i \(0.317073\pi\)
\(864\) −9.00000 −0.306186
\(865\) 0 0
\(866\) 14.0000 0.475739
\(867\) 24.0000i 0.815083i
\(868\) 12.9904 10.5000i 0.440922 0.356393i
\(869\) 3.00000 0.101768
\(870\) 0 0
\(871\) 7.50000 12.9904i 0.254128 0.440162i
\(872\) 2.00000i 0.0677285i
\(873\) 72.7461 42.0000i 2.46208 1.42148i
\(874\) −14.0000 + 24.2487i −0.473557 + 0.820225i
\(875\) 0 0
\(876\) 21.0000 0.709524
\(877\) 9.52628 5.50000i 0.321680 0.185722i −0.330461 0.943820i \(-0.607204\pi\)
0.652141 + 0.758098i \(0.273871\pi\)
\(878\) −11.2583 + 6.50000i −0.379950 + 0.219364i
\(879\) −28.5000 49.3634i −0.961281 1.66499i
\(880\) 0 0
\(881\) −9.50000 16.4545i −0.320063 0.554366i 0.660438 0.750881i \(-0.270371\pi\)
−0.980501 + 0.196515i \(0.937037\pi\)
\(882\) 10.3923 + 6.00000i 0.349927 + 0.202031i
\(883\) 44.0000i 1.48072i 0.672212 + 0.740359i \(0.265344\pi\)
−0.672212 + 0.740359i \(0.734656\pi\)
\(884\) −15.0000 −0.504505
\(885\) 0 0
\(886\) 5.50000 + 9.52628i 0.184776 + 0.320042i
\(887\) 18.1865 + 10.5000i 0.610644 + 0.352555i 0.773217 0.634141i \(-0.218646\pi\)
−0.162573 + 0.986696i \(0.551979\pi\)
\(888\) 2.59808 1.50000i 0.0871857 0.0503367i
\(889\) −19.5000 33.7750i −0.654009 1.13278i
\(890\) 0 0
\(891\) −27.0000 −0.904534
\(892\) −16.4545 9.50000i −0.550937 0.318084i
\(893\) 48.4974 + 28.0000i 1.62290 + 0.936984i
\(894\) 1.50000 + 2.59808i 0.0501675 + 0.0868927i
\(895\) 0 0
\(896\) 1.50000 2.59808i 0.0501115 0.0867956i
\(897\) 60.0000i 2.00334i
\(898\) 30.0000i 1.00111i
\(899\) −4.00000 + 10.3923i −0.133407 + 0.346603i
\(900\) 0 0
\(901\) −9.00000 −0.299833
\(902\) 23.3827 + 13.5000i 0.778558 + 0.449501i
\(903\) 9.00000i 0.299501i
\(904\) −0.500000 0.866025i −0.0166298 0.0288036i
\(905\) 0 0
\(906\) 24.0000 41.5692i 0.797347 1.38104i
\(907\) 12.0000i 0.398453i −0.979953 0.199227i \(-0.936157\pi\)
0.979953 0.199227i \(-0.0638430\pi\)
\(908\) 18.1865 10.5000i 0.603541 0.348455i
\(909\) −30.0000 51.9615i −0.995037 1.72345i
\(910\) 0 0
\(911\) 7.50000 12.9904i 0.248486 0.430391i −0.714620 0.699513i \(-0.753400\pi\)
0.963106 + 0.269122i \(0.0867336\pi\)
\(912\) −18.1865 + 10.5000i −0.602216 + 0.347690i
\(913\) 12.9904 + 7.50000i 0.429919 + 0.248214i
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) 3.50000 6.06218i 0.115643 0.200300i
\(917\) −54.5596 + 31.5000i −1.80172 + 1.04022i
\(918\) −23.3827 13.5000i −0.771744 0.445566i
\(919\) 29.5000 + 51.0955i 0.973115 + 1.68548i 0.686020 + 0.727583i \(0.259356\pi\)
0.287096 + 0.957902i \(0.407310\pi\)
\(920\) 0 0
\(921\) 7.50000 + 12.9904i 0.247133 + 0.428048i
\(922\) 42.0000i 1.38320i
\(923\) 4.33013 + 2.50000i 0.142528 + 0.0822885i
\(924\) 13.5000 23.3827i 0.444117 0.769234i
\(925\) 0 0
\(926\) 16.0000 0.525793
\(927\) −67.5500 39.0000i −2.21863 1.28093i
\(928\) 2.00000i 0.0656532i
\(929\) −34.0000 −1.11550 −0.557752 0.830008i \(-0.688336\pi\)
−0.557752 + 0.830008i \(0.688336\pi\)
\(930\) 0 0
\(931\) 14.0000 0.458831
\(932\) 18.0000i 0.589610i
\(933\) −83.1384 48.0000i −2.72183 1.57145i
\(934\) 8.00000 0.261768
\(935\) 0 0
\(936\) −15.0000 + 25.9808i −0.490290 + 0.849208i
\(937\) 19.9186 + 11.5000i 0.650712 + 0.375689i 0.788729 0.614741i \(-0.210740\pi\)
−0.138017 + 0.990430i \(0.544073\pi\)
\(938\) 9.00000i 0.293860i
\(939\) 10.5000 + 18.1865i 0.342655 + 0.593495i
\(940\) 0 0
\(941\) −10.5000 18.1865i −0.342290 0.592864i 0.642567 0.766229i \(-0.277869\pi\)
−0.984858 + 0.173365i \(0.944536\pi\)
\(942\) −25.9808 15.0000i −0.846499 0.488726i
\(943\) 31.1769 18.0000i 1.01526 0.586161i
\(944\) 1.50000 2.59808i 0.0488208 0.0845602i
\(945\) 0 0
\(946\) 3.00000 0.0975384
\(947\) −11.2583 6.50000i −0.365847 0.211222i 0.305796 0.952097i \(-0.401078\pi\)
−0.671642 + 0.740875i \(0.734411\pi\)
\(948\) 2.59808 1.50000i 0.0843816 0.0487177i
\(949\) 17.5000 30.3109i 0.568074 0.983933i
\(950\) 0 0
\(951\) −43.5000 75.3442i −1.41058 2.44320i
\(952\) 7.79423 4.50000i 0.252612 0.145846i
\(953\) 26.0000i 0.842223i −0.907009 0.421111i \(-0.861640\pi\)
0.907009 0.421111i \(-0.138360\pi\)
\(954\) −9.00000 + 15.5885i −0.291386 + 0.504695i
\(955\) 0 0
\(956\) 0.500000 + 0.866025i 0.0161712 + 0.0280093i
\(957\) 18.0000i 0.581857i
\(958\) 9.52628 + 5.50000i 0.307780 + 0.177697i
\(959\) 33.0000 1.06563
\(960\) 0 0
\(961\) −23.0000 20.7846i −0.741935 0.670471i
\(962\) 5.00000i 0.161206i
\(963\) 78.0000i 2.51351i
\(964\) −12.5000 + 21.6506i −0.402598 + 0.697320i
\(965\) 0 0
\(966\) −18.0000 31.1769i −0.579141 1.00310i
\(967\) 11.2583 + 6.50000i 0.362043 + 0.209026i 0.669977 0.742382i \(-0.266304\pi\)
−0.307933 + 0.951408i \(0.599637\pi\)
\(968\) 1.73205 + 1.00000i 0.0556702 + 0.0321412i
\(969\) −63.0000 −2.02385
\(970\) 0 0
\(971\) −0.500000 0.866025i −0.0160458 0.0277921i 0.857891 0.513832i \(-0.171774\pi\)
−0.873937 + 0.486040i \(0.838441\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 5.50000 + 9.52628i 0.176231 + 0.305242i
\(975\) 0 0
\(976\) 6.00000 0.192055
\(977\) 54.0000i 1.72761i −0.503824 0.863807i \(-0.668074\pi\)
0.503824 0.863807i \(-0.331926\pi\)
\(978\) 10.3923 + 6.00000i 0.332309 + 0.191859i
\(979\) −9.00000 15.5885i −0.287641 0.498209i
\(980\) 0 0
\(981\) 6.00000 + 10.3923i 0.191565 + 0.331801i
\(982\) 12.9904 7.50000i 0.414540 0.239335i
\(983\) −42.4352 + 24.5000i −1.35347 + 0.781429i −0.988734 0.149681i \(-0.952175\pi\)
−0.364740 + 0.931110i \(0.618842\pi\)
\(984\) 27.0000 0.860729
\(985\) 0 0
\(986\) −3.00000 + 5.19615i −0.0955395 + 0.165479i
\(987\) −62.3538 + 36.0000i −1.98474 + 1.14589i
\(988\) 35.0000i 1.11350i
\(989\) 2.00000 3.46410i 0.0635963 0.110152i
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) −5.19615 2.00000i −0.164978 0.0635001i
\(993\) 51.0000i 1.61844i
\(994\) −3.00000 −0.0951542
\(995\) 0 0
\(996\) 15.0000 0.475293
\(997\) 30.3109 17.5000i 0.959955 0.554231i 0.0637961 0.997963i \(-0.479679\pi\)
0.896159 + 0.443732i \(0.146346\pi\)
\(998\) −12.9904 7.50000i −0.411203 0.237408i
\(999\) 4.50000 7.79423i 0.142374 0.246598i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1550.2.p.a.749.1 4
5.2 odd 4 62.2.c.b.5.1 2
5.3 odd 4 1550.2.e.d.501.1 2
5.4 even 2 inner 1550.2.p.a.749.2 4
15.2 even 4 558.2.e.b.253.1 2
20.7 even 4 496.2.i.g.129.1 2
31.25 even 3 inner 1550.2.p.a.149.1 4
155.57 even 12 1922.2.a.c.1.1 1
155.67 odd 12 1922.2.a.e.1.1 1
155.87 odd 12 62.2.c.b.25.1 yes 2
155.118 odd 12 1550.2.e.d.1451.1 2
155.149 even 6 inner 1550.2.p.a.149.2 4
465.242 even 12 558.2.e.b.397.1 2
620.87 even 12 496.2.i.g.273.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
62.2.c.b.5.1 2 5.2 odd 4
62.2.c.b.25.1 yes 2 155.87 odd 12
496.2.i.g.129.1 2 20.7 even 4
496.2.i.g.273.1 2 620.87 even 12
558.2.e.b.253.1 2 15.2 even 4
558.2.e.b.397.1 2 465.242 even 12
1550.2.e.d.501.1 2 5.3 odd 4
1550.2.e.d.1451.1 2 155.118 odd 12
1550.2.p.a.149.1 4 31.25 even 3 inner
1550.2.p.a.149.2 4 155.149 even 6 inner
1550.2.p.a.749.1 4 1.1 even 1 trivial
1550.2.p.a.749.2 4 5.4 even 2 inner
1922.2.a.c.1.1 1 155.57 even 12
1922.2.a.e.1.1 1 155.67 odd 12