Properties

Label 495.3.h.f.109.1
Level $495$
Weight $3$
Character 495.109
Self dual yes
Analytic conductor $13.488$
Analytic rank $0$
Dimension $4$
CM discriminant -55
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(109,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.109"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,16,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{10}, \sqrt{22})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 16x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 109.1
Root \(-3.92635\) of defining polynomial
Character \(\chi\) \(=\) 495.109

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.92635 q^{2} +11.4162 q^{4} +5.00000 q^{5} +6.21855 q^{7} -29.1186 q^{8} -19.6317 q^{10} +11.0000 q^{11} +25.1922 q^{13} -24.4162 q^{14} +68.6648 q^{16} +12.7551 q^{17} +57.0810 q^{20} -43.1898 q^{22} +25.0000 q^{25} -98.9134 q^{26} +70.9922 q^{28} -59.3296 q^{31} -153.128 q^{32} -50.0810 q^{34} +31.0928 q^{35} -145.593 q^{40} -50.7024 q^{43} +125.578 q^{44} -10.3296 q^{49} -98.1587 q^{50} +287.599 q^{52} +55.0000 q^{55} -181.075 q^{56} +59.3296 q^{59} +232.949 q^{62} +326.573 q^{64} +125.961 q^{65} +145.615 q^{68} -122.081 q^{70} -118.659 q^{71} -106.351 q^{73} +68.4041 q^{77} +343.324 q^{80} +107.623 q^{83} +63.7756 q^{85} +199.075 q^{86} -320.304 q^{88} -2.00000 q^{89} +156.659 q^{91} +40.5575 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{4} + 20 q^{5} + 44 q^{11} - 68 q^{14} + 156 q^{16} + 80 q^{20} + 100 q^{25} - 188 q^{26} - 52 q^{34} + 176 q^{44} + 196 q^{49} + 220 q^{55} - 220 q^{56} + 624 q^{64} - 340 q^{70} + 780 q^{80}+ \cdots + 152 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.92635 −1.96317 −0.981587 0.191017i \(-0.938821\pi\)
−0.981587 + 0.191017i \(0.938821\pi\)
\(3\) 0 0
\(4\) 11.4162 2.85405
\(5\) 5.00000 1.00000
\(6\) 0 0
\(7\) 6.21855 0.888365 0.444182 0.895936i \(-0.353494\pi\)
0.444182 + 0.895936i \(0.353494\pi\)
\(8\) −29.1186 −3.63982
\(9\) 0 0
\(10\) −19.6317 −1.96317
\(11\) 11.0000 1.00000
\(12\) 0 0
\(13\) 25.1922 1.93786 0.968932 0.247329i \(-0.0795529\pi\)
0.968932 + 0.247329i \(0.0795529\pi\)
\(14\) −24.4162 −1.74401
\(15\) 0 0
\(16\) 68.6648 4.29155
\(17\) 12.7551 0.750301 0.375150 0.926964i \(-0.377591\pi\)
0.375150 + 0.926964i \(0.377591\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 57.0810 2.85405
\(21\) 0 0
\(22\) −43.1898 −1.96317
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 25.0000 1.00000
\(26\) −98.9134 −3.80436
\(27\) 0 0
\(28\) 70.9922 2.53544
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −59.3296 −1.91386 −0.956929 0.290323i \(-0.906237\pi\)
−0.956929 + 0.290323i \(0.906237\pi\)
\(32\) −153.128 −4.78524
\(33\) 0 0
\(34\) −50.0810 −1.47297
\(35\) 31.0928 0.888365
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −145.593 −3.63982
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) −50.7024 −1.17913 −0.589563 0.807722i \(-0.700700\pi\)
−0.589563 + 0.807722i \(0.700700\pi\)
\(44\) 125.578 2.85405
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −10.3296 −0.210808
\(50\) −98.1587 −1.96317
\(51\) 0 0
\(52\) 287.599 5.53076
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 55.0000 1.00000
\(56\) −181.075 −3.23349
\(57\) 0 0
\(58\) 0 0
\(59\) 59.3296 1.00559 0.502793 0.864407i \(-0.332306\pi\)
0.502793 + 0.864407i \(0.332306\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 232.949 3.75723
\(63\) 0 0
\(64\) 326.573 5.10270
\(65\) 125.961 1.93786
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 145.615 2.14140
\(69\) 0 0
\(70\) −122.081 −1.74401
\(71\) −118.659 −1.67126 −0.835628 0.549296i \(-0.814896\pi\)
−0.835628 + 0.549296i \(0.814896\pi\)
\(72\) 0 0
\(73\) −106.351 −1.45687 −0.728434 0.685116i \(-0.759752\pi\)
−0.728434 + 0.685116i \(0.759752\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 68.4041 0.888365
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 343.324 4.29155
\(81\) 0 0
\(82\) 0 0
\(83\) 107.623 1.29667 0.648334 0.761356i \(-0.275466\pi\)
0.648334 + 0.761356i \(0.275466\pi\)
\(84\) 0 0
\(85\) 63.7756 0.750301
\(86\) 199.075 2.31483
\(87\) 0 0
\(88\) −320.304 −3.63982
\(89\) −2.00000 −0.0224719 −0.0112360 0.999937i \(-0.503577\pi\)
−0.0112360 + 0.999937i \(0.503577\pi\)
\(90\) 0 0
\(91\) 156.659 1.72153
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 40.5575 0.413852
\(99\) 0 0
\(100\) 285.405 2.85405
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) −733.561 −7.05347
\(105\) 0 0
\(106\) 0 0
\(107\) −7.49057 −0.0700053 −0.0350027 0.999387i \(-0.511144\pi\)
−0.0350027 + 0.999387i \(0.511144\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) −215.949 −1.96317
\(111\) 0 0
\(112\) 426.996 3.81246
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −232.949 −1.97414
\(119\) 79.3184 0.666541
\(120\) 0 0
\(121\) 121.000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) −677.318 −5.46224
\(125\) 125.000 1.00000
\(126\) 0 0
\(127\) 156.100 1.22913 0.614566 0.788865i \(-0.289331\pi\)
0.614566 + 0.788865i \(0.289331\pi\)
\(128\) −669.727 −5.23224
\(129\) 0 0
\(130\) −494.567 −3.80436
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −371.411 −2.73096
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 354.961 2.53544
\(141\) 0 0
\(142\) 465.897 3.28097
\(143\) 277.114 1.93786
\(144\) 0 0
\(145\) 0 0
\(146\) 417.573 2.86009
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −268.578 −1.74401
\(155\) −296.648 −1.91386
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −765.638 −4.78524
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −422.567 −2.54558
\(167\) −23.2842 −0.139426 −0.0697132 0.997567i \(-0.522208\pi\)
−0.0697132 + 0.997567i \(0.522208\pi\)
\(168\) 0 0
\(169\) 465.648 2.75531
\(170\) −250.405 −1.47297
\(171\) 0 0
\(172\) −578.829 −3.36529
\(173\) −345.837 −1.99905 −0.999527 0.0307372i \(-0.990214\pi\)
−0.999527 + 0.0307372i \(0.990214\pi\)
\(174\) 0 0
\(175\) 155.464 0.888365
\(176\) 755.313 4.29155
\(177\) 0 0
\(178\) 7.85269 0.0441163
\(179\) −38.0000 −0.212291 −0.106145 0.994351i \(-0.533851\pi\)
−0.106145 + 0.994351i \(0.533851\pi\)
\(180\) 0 0
\(181\) 118.659 0.655576 0.327788 0.944751i \(-0.393697\pi\)
0.327788 + 0.944751i \(0.393697\pi\)
\(182\) −615.098 −3.37966
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 140.306 0.750301
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −338.000 −1.76963 −0.884817 0.465939i \(-0.845717\pi\)
−0.884817 + 0.465939i \(0.845717\pi\)
\(192\) 0 0
\(193\) −294.180 −1.52425 −0.762125 0.647430i \(-0.775844\pi\)
−0.762125 + 0.647430i \(0.775844\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −117.925 −0.601656
\(197\) 332.127 1.68593 0.842963 0.537972i \(-0.180809\pi\)
0.842963 + 0.537972i \(0.180809\pi\)
\(198\) 0 0
\(199\) −178.000 −0.894472 −0.447236 0.894416i \(-0.647592\pi\)
−0.447236 + 0.894416i \(0.647592\pi\)
\(200\) −727.964 −3.63982
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 1729.82 8.31644
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 29.4106 0.137433
\(215\) −253.512 −1.17913
\(216\) 0 0
\(217\) −368.944 −1.70020
\(218\) 0 0
\(219\) 0 0
\(220\) 627.891 2.85405
\(221\) 321.330 1.45398
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) −952.232 −4.25103
\(225\) 0 0
\(226\) 0 0
\(227\) −154.828 −0.682061 −0.341030 0.940052i \(-0.610776\pi\)
−0.341030 + 0.940052i \(0.610776\pi\)
\(228\) 0 0
\(229\) 422.000 1.84279 0.921397 0.388622i \(-0.127049\pi\)
0.921397 + 0.388622i \(0.127049\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −135.854 −0.583065 −0.291533 0.956561i \(-0.594165\pi\)
−0.291533 + 0.956561i \(0.594165\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 677.318 2.86999
\(237\) 0 0
\(238\) −311.431 −1.30854
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −475.088 −1.96317
\(243\) 0 0
\(244\) 0 0
\(245\) −51.6479 −0.210808
\(246\) 0 0
\(247\) 0 0
\(248\) 1727.59 6.96610
\(249\) 0 0
\(250\) −490.793 −1.96317
\(251\) 415.307 1.65461 0.827305 0.561753i \(-0.189873\pi\)
0.827305 + 0.561753i \(0.189873\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −612.902 −2.41300
\(255\) 0 0
\(256\) 1323.29 5.16910
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1438.00 5.53076
\(261\) 0 0
\(262\) 0 0
\(263\) −254.148 −0.966343 −0.483172 0.875526i \(-0.660515\pi\)
−0.483172 + 0.875526i \(0.660515\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 415.307 1.54389 0.771946 0.635688i \(-0.219283\pi\)
0.771946 + 0.635688i \(0.219283\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 875.827 3.21995
\(273\) 0 0
\(274\) 0 0
\(275\) 275.000 1.00000
\(276\) 0 0
\(277\) 553.275 1.99738 0.998691 0.0511493i \(-0.0162884\pi\)
0.998691 + 0.0511493i \(0.0162884\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −905.377 −3.23349
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) −273.934 −0.967966 −0.483983 0.875077i \(-0.660810\pi\)
−0.483983 + 0.875077i \(0.660810\pi\)
\(284\) −1354.64 −4.76985
\(285\) 0 0
\(286\) −1088.05 −3.80436
\(287\) 0 0
\(288\) 0 0
\(289\) −126.307 −0.437049
\(290\) 0 0
\(291\) 0 0
\(292\) −1214.13 −4.15798
\(293\) −423.639 −1.44587 −0.722934 0.690917i \(-0.757207\pi\)
−0.722934 + 0.690917i \(0.757207\pi\)
\(294\) 0 0
\(295\) 296.648 1.00559
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −315.296 −1.04749
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 66.3196 0.216025 0.108012 0.994150i \(-0.465551\pi\)
0.108012 + 0.994150i \(0.465551\pi\)
\(308\) 780.915 2.53544
\(309\) 0 0
\(310\) 1164.74 3.75723
\(311\) −474.637 −1.52616 −0.763082 0.646302i \(-0.776315\pi\)
−0.763082 + 0.646302i \(0.776315\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1632.86 5.10270
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 629.805 1.93786
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −237.318 −0.716974 −0.358487 0.933535i \(-0.616707\pi\)
−0.358487 + 0.933535i \(0.616707\pi\)
\(332\) 1228.65 3.70075
\(333\) 0 0
\(334\) 91.4218 0.273718
\(335\) 0 0
\(336\) 0 0
\(337\) −103.171 −0.306147 −0.153073 0.988215i \(-0.548917\pi\)
−0.153073 + 0.988215i \(0.548917\pi\)
\(338\) −1828.30 −5.40916
\(339\) 0 0
\(340\) 728.074 2.14140
\(341\) −652.625 −1.91386
\(342\) 0 0
\(343\) −368.944 −1.07564
\(344\) 1476.38 4.29181
\(345\) 0 0
\(346\) 1357.87 3.92449
\(347\) −686.090 −1.97721 −0.988603 0.150546i \(-0.951897\pi\)
−0.988603 + 0.150546i \(0.951897\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −610.405 −1.74401
\(351\) 0 0
\(352\) −1684.40 −4.78524
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) −593.296 −1.67126
\(356\) −22.8324 −0.0641359
\(357\) 0 0
\(358\) 149.201 0.416763
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 361.000 1.00000
\(362\) −465.897 −1.28701
\(363\) 0 0
\(364\) 1788.45 4.91333
\(365\) −531.757 −1.45687
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −318.242 −0.853195 −0.426598 0.904442i \(-0.640288\pi\)
−0.426598 + 0.904442i \(0.640288\pi\)
\(374\) −550.891 −1.47297
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −538.000 −1.41953 −0.709763 0.704441i \(-0.751198\pi\)
−0.709763 + 0.704441i \(0.751198\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1327.11 3.47410
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 342.020 0.888365
\(386\) 1155.05 2.99237
\(387\) 0 0
\(388\) 0 0
\(389\) 771.285 1.98274 0.991368 0.131105i \(-0.0418526\pi\)
0.991368 + 0.131105i \(0.0418526\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 300.783 0.767303
\(393\) 0 0
\(394\) −1304.05 −3.30976
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 698.890 1.75600
\(399\) 0 0
\(400\) 1716.62 4.29155
\(401\) −782.000 −1.95012 −0.975062 0.221931i \(-0.928764\pi\)
−0.975062 + 0.221931i \(0.928764\pi\)
\(402\) 0 0
\(403\) −1494.64 −3.70879
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 368.944 0.893327
\(414\) 0 0
\(415\) 538.117 1.29667
\(416\) −3857.62 −9.27313
\(417\) 0 0
\(418\) 0 0
\(419\) 442.000 1.05489 0.527446 0.849588i \(-0.323150\pi\)
0.527446 + 0.849588i \(0.323150\pi\)
\(420\) 0 0
\(421\) 830.614 1.97296 0.986478 0.163895i \(-0.0524060\pi\)
0.986478 + 0.163895i \(0.0524060\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 318.878 0.750301
\(426\) 0 0
\(427\) 0 0
\(428\) −85.5138 −0.199799
\(429\) 0 0
\(430\) 995.377 2.31483
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 1448.60 3.33779
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) −1601.52 −3.63982
\(441\) 0 0
\(442\) −1261.65 −2.85441
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) −10.0000 −0.0224719
\(446\) 0 0
\(447\) 0 0
\(448\) 2030.81 4.53306
\(449\) −722.000 −1.60802 −0.804009 0.594617i \(-0.797304\pi\)
−0.804009 + 0.594617i \(0.797304\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 607.908 1.33900
\(455\) 783.296 1.72153
\(456\) 0 0
\(457\) 872.647 1.90951 0.954756 0.297390i \(-0.0961161\pi\)
0.954756 + 0.297390i \(0.0961161\pi\)
\(458\) −1656.92 −3.61773
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 533.411 1.14466
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −1727.59 −3.66015
\(473\) −557.727 −1.17913
\(474\) 0 0
\(475\) 0 0
\(476\) 905.514 1.90234
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 1381.36 2.85405
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 202.788 0.413852
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −4073.85 −8.21342
\(497\) −737.888 −1.48469
\(498\) 0 0
\(499\) −982.000 −1.96794 −0.983968 0.178345i \(-0.942926\pi\)
−0.983968 + 0.178345i \(0.942926\pi\)
\(500\) 1427.02 2.85405
\(501\) 0 0
\(502\) −1630.64 −3.24829
\(503\) 915.859 1.82079 0.910397 0.413737i \(-0.135777\pi\)
0.910397 + 0.413737i \(0.135777\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 1782.07 3.50801
\(509\) −1008.60 −1.98154 −0.990769 0.135560i \(-0.956717\pi\)
−0.990769 + 0.135560i \(0.956717\pi\)
\(510\) 0 0
\(511\) −661.352 −1.29423
\(512\) −2516.79 −4.91560
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −3667.81 −7.05347
\(521\) −542.000 −1.04031 −0.520154 0.854073i \(-0.674125\pi\)
−0.520154 + 0.854073i \(0.674125\pi\)
\(522\) 0 0
\(523\) 896.073 1.71333 0.856666 0.515871i \(-0.172532\pi\)
0.856666 + 0.515871i \(0.172532\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 997.874 1.89710
\(527\) −756.756 −1.43597
\(528\) 0 0
\(529\) 529.000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −37.4529 −0.0700053
\(536\) 0 0
\(537\) 0 0
\(538\) −1630.64 −3.03093
\(539\) −113.625 −0.210808
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −1953.16 −3.59037
\(545\) 0 0
\(546\) 0 0
\(547\) −996.206 −1.82122 −0.910608 0.413270i \(-0.864387\pi\)
−0.910608 + 0.413270i \(0.864387\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −1079.75 −1.96317
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −2172.35 −3.92121
\(555\) 0 0
\(556\) 0 0
\(557\) 1086.62 1.95085 0.975424 0.220338i \(-0.0707159\pi\)
0.975424 + 0.220338i \(0.0707159\pi\)
\(558\) 0 0
\(559\) −1277.31 −2.28499
\(560\) 2134.98 3.81246
\(561\) 0 0
\(562\) 0 0
\(563\) 1125.84 1.99972 0.999859 0.0167879i \(-0.00534401\pi\)
0.999859 + 0.0167879i \(0.00534401\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1075.56 1.90029
\(567\) 0 0
\(568\) 3455.19 6.08307
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 3163.59 5.53076
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 495.926 0.858003
\(579\) 0 0
\(580\) 0 0
\(581\) 669.262 1.15191
\(582\) 0 0
\(583\) 0 0
\(584\) 3096.80 5.30274
\(585\) 0 0
\(586\) 1663.35 2.83849
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −1164.74 −1.97414
\(591\) 0 0
\(592\) 0 0
\(593\) 913.951 1.54123 0.770616 0.637299i \(-0.219949\pi\)
0.770616 + 0.637299i \(0.219949\pi\)
\(594\) 0 0
\(595\) 396.592 0.666541
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 802.000 1.33890 0.669449 0.742858i \(-0.266530\pi\)
0.669449 + 0.742858i \(0.266530\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 1237.96 2.05641
\(603\) 0 0
\(604\) 0 0
\(605\) 605.000 1.00000
\(606\) 0 0
\(607\) 1174.32 1.93463 0.967313 0.253586i \(-0.0816102\pi\)
0.967313 + 0.253586i \(0.0816102\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1220.71 −1.99137 −0.995685 0.0927990i \(-0.970419\pi\)
−0.995685 + 0.0927990i \(0.970419\pi\)
\(614\) −260.394 −0.424094
\(615\) 0 0
\(616\) −1991.83 −3.23349
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 830.614 1.34186 0.670932 0.741519i \(-0.265894\pi\)
0.670932 + 0.741519i \(0.265894\pi\)
\(620\) −3386.59 −5.46224
\(621\) 0 0
\(622\) 1863.59 2.99612
\(623\) −12.4371 −0.0199633
\(624\) 0 0
\(625\) 625.000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1042.00 −1.65135 −0.825674 0.564148i \(-0.809205\pi\)
−0.825674 + 0.564148i \(0.809205\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 780.499 1.22913
\(636\) 0 0
\(637\) −260.225 −0.408517
\(638\) 0 0
\(639\) 0 0
\(640\) −3348.64 −5.23224
\(641\) −302.000 −0.471139 −0.235569 0.971858i \(-0.575696\pi\)
−0.235569 + 0.971858i \(0.575696\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 652.625 1.00559
\(650\) −2472.83 −3.80436
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) −442.000 −0.668684 −0.334342 0.942452i \(-0.608514\pi\)
−0.334342 + 0.942452i \(0.608514\pi\)
\(662\) 931.794 1.40754
\(663\) 0 0
\(664\) −3133.84 −4.71964
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −265.817 −0.397930
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 13.8507 0.0205805 0.0102902 0.999947i \(-0.496724\pi\)
0.0102902 + 0.999947i \(0.496724\pi\)
\(674\) 405.087 0.601019
\(675\) 0 0
\(676\) 5315.93 7.86380
\(677\) 1055.03 1.55840 0.779198 0.626777i \(-0.215626\pi\)
0.779198 + 0.626777i \(0.215626\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1857.05 −2.73096
\(681\) 0 0
\(682\) 2562.43 3.75723
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1448.60 2.11167
\(687\) 0 0
\(688\) −3481.47 −5.06028
\(689\) 0 0
\(690\) 0 0
\(691\) −598.000 −0.865412 −0.432706 0.901535i \(-0.642441\pi\)
−0.432706 + 0.901535i \(0.642441\pi\)
\(692\) −3948.14 −5.70540
\(693\) 0 0
\(694\) 2693.83 3.88160
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 1774.81 2.53544
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 3592.30 5.10270
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −237.318 −0.334723 −0.167361 0.985896i \(-0.553525\pi\)
−0.167361 + 0.985896i \(0.553525\pi\)
\(710\) 2329.49 3.28097
\(711\) 0 0
\(712\) 58.2371 0.0817937
\(713\) 0 0
\(714\) 0 0
\(715\) 1385.57 1.93786
\(716\) −433.816 −0.605888
\(717\) 0 0
\(718\) 0 0
\(719\) 718.000 0.998609 0.499305 0.866427i \(-0.333589\pi\)
0.499305 + 0.866427i \(0.333589\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1417.41 −1.96317
\(723\) 0 0
\(724\) 1354.64 1.87105
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) −4561.69 −6.26606
\(729\) 0 0
\(730\) 2087.86 2.86009
\(731\) −646.715 −0.884700
\(732\) 0 0
\(733\) −1368.05 −1.86637 −0.933183 0.359400i \(-0.882981\pi\)
−0.933183 + 0.359400i \(0.882981\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −146.666 −0.197397 −0.0986987 0.995117i \(-0.531468\pi\)
−0.0986987 + 0.995117i \(0.531468\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1249.53 1.67497
\(747\) 0 0
\(748\) 1601.76 2.14140
\(749\) −46.5805 −0.0621903
\(750\) 0 0
\(751\) −478.000 −0.636485 −0.318242 0.948009i \(-0.603093\pi\)
−0.318242 + 0.948009i \(0.603093\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 2112.37 2.78677
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −3858.68 −5.05062
\(765\) 0 0
\(766\) 0 0
\(767\) 1494.64 1.94869
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) −1342.89 −1.74401
\(771\) 0 0
\(772\) −3358.42 −4.35028
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) −1483.24 −1.91386
\(776\) 0 0
\(777\) 0 0
\(778\) −3028.33 −3.89246
\(779\) 0 0
\(780\) 0 0
\(781\) −1305.25 −1.67126
\(782\) 0 0
\(783\) 0 0
\(784\) −709.279 −0.904693
\(785\) 0 0
\(786\) 0 0
\(787\) 582.954 0.740729 0.370365 0.928886i \(-0.379233\pi\)
0.370365 + 0.928886i \(0.379233\pi\)
\(788\) 3791.63 4.81172
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −2032.08 −2.55287
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −3828.19 −4.78524
\(801\) 0 0
\(802\) 3070.40 3.82843
\(803\) −1169.87 −1.45687
\(804\) 0 0
\(805\) 0 0
\(806\) 5868.49 7.28101
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −1448.60 −1.75376
\(827\) 1653.92 1.99991 0.999954 0.00959135i \(-0.00305307\pi\)
0.999954 + 0.00959135i \(0.00305307\pi\)
\(828\) 0 0
\(829\) 1186.59 1.43135 0.715677 0.698432i \(-0.246118\pi\)
0.715677 + 0.698432i \(0.246118\pi\)
\(830\) −2112.83 −2.54558
\(831\) 0 0
\(832\) 8227.09 9.88833
\(833\) −131.755 −0.158169
\(834\) 0 0
\(835\) −116.421 −0.139426
\(836\) 0 0
\(837\) 0 0
\(838\) −1735.45 −2.07094
\(839\) −830.614 −0.990005 −0.495003 0.868892i \(-0.664833\pi\)
−0.495003 + 0.868892i \(0.664833\pi\)
\(840\) 0 0
\(841\) 841.000 1.00000
\(842\) −3261.28 −3.87325
\(843\) 0 0
\(844\) 0 0
\(845\) 2328.24 2.75531
\(846\) 0 0
\(847\) 752.445 0.888365
\(848\) 0 0
\(849\) 0 0
\(850\) −1252.02 −1.47297
\(851\) 0 0
\(852\) 0 0
\(853\) −210.760 −0.247081 −0.123540 0.992340i \(-0.539425\pi\)
−0.123540 + 0.992340i \(0.539425\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 218.115 0.254807
\(857\) 191.680 0.223664 0.111832 0.993727i \(-0.464328\pi\)
0.111832 + 0.993727i \(0.464328\pi\)
\(858\) 0 0
\(859\) −1661.23 −1.93391 −0.966955 0.254948i \(-0.917942\pi\)
−0.966955 + 0.254948i \(0.917942\pi\)
\(860\) −2894.15 −3.36529
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) −1729.18 −1.99905
\(866\) 0 0
\(867\) 0 0
\(868\) −4211.94 −4.85247
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 777.319 0.888365
\(876\) 0 0
\(877\) −1061.29 −1.21013 −0.605067 0.796174i \(-0.706854\pi\)
−0.605067 + 0.796174i \(0.706854\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 3776.56 4.29155
\(881\) −118.659 −0.134687 −0.0673435 0.997730i \(-0.521452\pi\)
−0.0673435 + 0.997730i \(0.521452\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 3668.36 4.14973
\(885\) 0 0
\(886\) 0 0
\(887\) −1688.51 −1.90362 −0.951812 0.306682i \(-0.900781\pi\)
−0.951812 + 0.306682i \(0.900781\pi\)
\(888\) 0 0
\(889\) 970.715 1.09192
\(890\) 39.2635 0.0441163
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −190.000 −0.212291
\(896\) −4164.73 −4.64814
\(897\) 0 0
\(898\) 2834.82 3.15682
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 593.296 0.655576
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) −1767.55 −1.94664
\(909\) 0 0
\(910\) −3075.49 −3.37966
\(911\) −1742.00 −1.91218 −0.956092 0.293066i \(-0.905324\pi\)
−0.956092 + 0.293066i \(0.905324\pi\)
\(912\) 0 0
\(913\) 1183.86 1.29667
\(914\) −3426.32 −3.74870
\(915\) 0 0
\(916\) 4817.64 5.25943
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −2989.29 −3.23867
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −830.614 −0.894095 −0.447047 0.894510i \(-0.647525\pi\)
−0.447047 + 0.894510i \(0.647525\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1550.94 −1.66410
\(933\) 0 0
\(934\) 0 0
\(935\) 701.531 0.750301
\(936\) 0 0
\(937\) 883.459 0.942859 0.471430 0.881904i \(-0.343738\pi\)
0.471430 + 0.881904i \(0.343738\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 4073.85 4.31552
\(945\) 0 0
\(946\) 2189.83 2.31483
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) −2679.23 −2.82321
\(950\) 0 0
\(951\) 0 0
\(952\) −2309.64 −2.42609
\(953\) 1782.29 1.87019 0.935093 0.354402i \(-0.115316\pi\)
0.935093 + 0.354402i \(0.115316\pi\)
\(954\) 0 0
\(955\) −1690.00 −1.76963
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 2559.00 2.66285
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1470.90 −1.52425
\(966\) 0 0
\(967\) −1696.96 −1.75487 −0.877435 0.479696i \(-0.840747\pi\)
−0.877435 + 0.479696i \(0.840747\pi\)
\(968\) −3523.35 −3.63982
\(969\) 0 0
\(970\) 0 0
\(971\) −1622.00 −1.67044 −0.835221 0.549914i \(-0.814661\pi\)
−0.835221 + 0.549914i \(0.814661\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) −22.0000 −0.0224719
\(980\) −589.623 −0.601656
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 1660.64 1.68593
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −415.307 −0.419079 −0.209539 0.977800i \(-0.567196\pi\)
−0.209539 + 0.977800i \(0.567196\pi\)
\(992\) 9084.99 9.15826
\(993\) 0 0
\(994\) 2897.21 2.91469
\(995\) −890.000 −0.894472
\(996\) 0 0
\(997\) 51.6914 0.0518469 0.0259235 0.999664i \(-0.491747\pi\)
0.0259235 + 0.999664i \(0.491747\pi\)
\(998\) 3855.67 3.86340
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.h.f.109.1 yes 4
3.2 odd 2 495.3.h.e.109.4 yes 4
5.4 even 2 inner 495.3.h.f.109.4 yes 4
11.10 odd 2 inner 495.3.h.f.109.4 yes 4
15.14 odd 2 495.3.h.e.109.1 4
33.32 even 2 495.3.h.e.109.1 4
55.54 odd 2 CM 495.3.h.f.109.1 yes 4
165.164 even 2 495.3.h.e.109.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
495.3.h.e.109.1 4 15.14 odd 2
495.3.h.e.109.1 4 33.32 even 2
495.3.h.e.109.4 yes 4 3.2 odd 2
495.3.h.e.109.4 yes 4 165.164 even 2
495.3.h.f.109.1 yes 4 1.1 even 1 trivial
495.3.h.f.109.1 yes 4 55.54 odd 2 CM
495.3.h.f.109.4 yes 4 5.4 even 2 inner
495.3.h.f.109.4 yes 4 11.10 odd 2 inner