Properties

Label 495.3.h.e
Level $495$
Weight $3$
Character orbit 495.h
Self dual yes
Analytic conductor $13.488$
Analytic rank $0$
Dimension $4$
CM discriminant -55
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(109,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.109"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,16,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{10}, \sqrt{22})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 16x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 4) q^{4} - 5 q^{5} + ( - \beta_{3} + 2 \beta_1) q^{7} + (\beta_{3} + 7 \beta_1) q^{8} - 5 \beta_1 q^{10} - 11 q^{11} + (\beta_{3} + 6 \beta_1) q^{13} + (\beta_{2} + 17) q^{14}+ \cdots + ( - 8 \beta_{3} - 7 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{4} - 20 q^{5} - 44 q^{11} + 68 q^{14} + 156 q^{16} - 80 q^{20} + 100 q^{25} + 188 q^{26} - 52 q^{34} - 176 q^{44} + 196 q^{49} + 220 q^{55} + 220 q^{56} + 624 q^{64} - 340 q^{70} - 780 q^{80}+ \cdots + 152 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 16x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 15\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 15\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
−3.92635
−0.764069
0.764069
3.92635
−3.92635 0 11.4162 −5.00000 0 −6.21855 −29.1186 0 19.6317
109.2 −0.764069 0 −3.41620 −5.00000 0 −12.5431 5.66649 0 3.82035
109.3 0.764069 0 −3.41620 −5.00000 0 12.5431 −5.66649 0 −3.82035
109.4 3.92635 0 11.4162 −5.00000 0 6.21855 29.1186 0 −19.6317
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
55.d odd 2 1 CM by \(\Q(\sqrt{-55}) \)
5.b even 2 1 inner
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 495.3.h.e 4
3.b odd 2 1 495.3.h.f yes 4
5.b even 2 1 inner 495.3.h.e 4
11.b odd 2 1 inner 495.3.h.e 4
15.d odd 2 1 495.3.h.f yes 4
33.d even 2 1 495.3.h.f yes 4
55.d odd 2 1 CM 495.3.h.e 4
165.d even 2 1 495.3.h.f yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
495.3.h.e 4 1.a even 1 1 trivial
495.3.h.e 4 5.b even 2 1 inner
495.3.h.e 4 11.b odd 2 1 inner
495.3.h.e 4 55.d odd 2 1 CM
495.3.h.f yes 4 3.b odd 2 1
495.3.h.f yes 4 15.d odd 2 1
495.3.h.f yes 4 33.d even 2 1
495.3.h.f yes 4 165.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(495, [\chi])\):

\( T_{2}^{4} - 16T_{2}^{2} + 9 \) Copy content Toggle raw display
\( T_{7}^{4} - 196T_{7}^{2} + 6084 \) Copy content Toggle raw display
\( T_{89} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 16T^{2} + 9 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T + 5)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 196T^{2} + 6084 \) Copy content Toggle raw display
$11$ \( (T + 11)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 676 T^{2} + 26244 \) Copy content Toggle raw display
$17$ \( T^{4} - 1156 T^{2} + 161604 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 3520)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} - 7396 T^{2} + 12404484 \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - 3520)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} - 14080)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 21316 T^{2} + 113167044 \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} - 27556 T^{2} + 185014404 \) Copy content Toggle raw display
$89$ \( (T - 2)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less