Properties

Label 495.3.g.a.89.8
Level $495$
Weight $3$
Character 495.89
Analytic conductor $13.488$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(89,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.89"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 89.8
Character \(\chi\) \(=\) 495.89
Dual form 495.3.g.a.89.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.54676 q^{2} +2.48600 q^{4} +(4.87674 - 1.10334i) q^{5} -0.521381i q^{7} +3.85580 q^{8} +(-12.4199 + 2.80995i) q^{10} +3.31662i q^{11} +19.8675i q^{13} +1.32783i q^{14} -19.7638 q^{16} +29.1566 q^{17} -11.6374 q^{19} +(12.1236 - 2.74291i) q^{20} -8.44666i q^{22} -10.0456 q^{23} +(22.5653 - 10.7614i) q^{25} -50.5978i q^{26} -1.29615i q^{28} -17.0117i q^{29} -44.1549 q^{31} +34.9105 q^{32} -74.2550 q^{34} +(-0.575262 - 2.54264i) q^{35} +68.5012i q^{37} +29.6378 q^{38} +(18.8037 - 4.25426i) q^{40} +44.3605i q^{41} -66.6852i q^{43} +8.24513i q^{44} +25.5838 q^{46} +43.6257 q^{47} +48.7282 q^{49} +(-57.4684 + 27.4068i) q^{50} +49.3906i q^{52} -33.4856 q^{53} +(3.65937 + 16.1743i) q^{55} -2.01034i q^{56} +43.3246i q^{58} +43.1043i q^{59} +62.2008 q^{61} +112.452 q^{62} -9.85363 q^{64} +(21.9207 + 96.8888i) q^{65} +115.863i q^{67} +72.4834 q^{68} +(1.46506 + 6.47551i) q^{70} +11.7801i q^{71} +31.0848i q^{73} -174.456i q^{74} -28.9307 q^{76} +1.72923 q^{77} +117.132 q^{79} +(-96.3830 + 21.8062i) q^{80} -112.976i q^{82} +48.5317 q^{83} +(142.189 - 32.1697i) q^{85} +169.831i q^{86} +12.7882i q^{88} +127.200i q^{89} +10.3585 q^{91} -24.9734 q^{92} -111.104 q^{94} +(-56.7528 + 12.8401i) q^{95} +106.836i q^{97} -124.099 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 72 q^{4} + 8 q^{10} + 184 q^{16} - 80 q^{19} + 32 q^{25} - 16 q^{31} - 160 q^{34} - 136 q^{40} + 560 q^{46} - 104 q^{49} - 96 q^{61} + 264 q^{64} - 872 q^{70} - 176 q^{76} - 672 q^{79} + 16 q^{85}+ \cdots + 400 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.54676 −1.27338 −0.636691 0.771119i \(-0.719697\pi\)
−0.636691 + 0.771119i \(0.719697\pi\)
\(3\) 0 0
\(4\) 2.48600 0.621500
\(5\) 4.87674 1.10334i 0.975349 0.220668i
\(6\) 0 0
\(7\) 0.521381i 0.0744831i −0.999306 0.0372415i \(-0.988143\pi\)
0.999306 0.0372415i \(-0.0118571\pi\)
\(8\) 3.85580 0.481975
\(9\) 0 0
\(10\) −12.4199 + 2.80995i −1.24199 + 0.280995i
\(11\) 3.31662i 0.301511i
\(12\) 0 0
\(13\) 19.8675i 1.52827i 0.645056 + 0.764135i \(0.276834\pi\)
−0.645056 + 0.764135i \(0.723166\pi\)
\(14\) 1.32783i 0.0948453i
\(15\) 0 0
\(16\) −19.7638 −1.23524
\(17\) 29.1566 1.71510 0.857548 0.514404i \(-0.171987\pi\)
0.857548 + 0.514404i \(0.171987\pi\)
\(18\) 0 0
\(19\) −11.6374 −0.612497 −0.306248 0.951952i \(-0.599074\pi\)
−0.306248 + 0.951952i \(0.599074\pi\)
\(20\) 12.1236 2.74291i 0.606179 0.137145i
\(21\) 0 0
\(22\) 8.44666i 0.383939i
\(23\) −10.0456 −0.436766 −0.218383 0.975863i \(-0.570078\pi\)
−0.218383 + 0.975863i \(0.570078\pi\)
\(24\) 0 0
\(25\) 22.5653 10.7614i 0.902611 0.430457i
\(26\) 50.5978i 1.94607i
\(27\) 0 0
\(28\) 1.29615i 0.0462912i
\(29\) 17.0117i 0.586609i −0.956019 0.293304i \(-0.905245\pi\)
0.956019 0.293304i \(-0.0947549\pi\)
\(30\) 0 0
\(31\) −44.1549 −1.42435 −0.712176 0.702001i \(-0.752290\pi\)
−0.712176 + 0.702001i \(0.752290\pi\)
\(32\) 34.9105 1.09095
\(33\) 0 0
\(34\) −74.2550 −2.18397
\(35\) −0.575262 2.54264i −0.0164361 0.0726470i
\(36\) 0 0
\(37\) 68.5012i 1.85138i 0.378278 + 0.925692i \(0.376516\pi\)
−0.378278 + 0.925692i \(0.623484\pi\)
\(38\) 29.6378 0.779942
\(39\) 0 0
\(40\) 18.8037 4.25426i 0.470093 0.106357i
\(41\) 44.3605i 1.08196i 0.841034 + 0.540982i \(0.181947\pi\)
−0.841034 + 0.540982i \(0.818053\pi\)
\(42\) 0 0
\(43\) 66.6852i 1.55082i −0.631459 0.775409i \(-0.717544\pi\)
0.631459 0.775409i \(-0.282456\pi\)
\(44\) 8.24513i 0.187389i
\(45\) 0 0
\(46\) 25.5838 0.556170
\(47\) 43.6257 0.928207 0.464104 0.885781i \(-0.346377\pi\)
0.464104 + 0.885781i \(0.346377\pi\)
\(48\) 0 0
\(49\) 48.7282 0.994452
\(50\) −57.4684 + 27.4068i −1.14937 + 0.548136i
\(51\) 0 0
\(52\) 49.3906i 0.949820i
\(53\) −33.4856 −0.631804 −0.315902 0.948792i \(-0.602307\pi\)
−0.315902 + 0.948792i \(0.602307\pi\)
\(54\) 0 0
\(55\) 3.65937 + 16.1743i 0.0665340 + 0.294079i
\(56\) 2.01034i 0.0358989i
\(57\) 0 0
\(58\) 43.3246i 0.746977i
\(59\) 43.1043i 0.730581i 0.930894 + 0.365291i \(0.119030\pi\)
−0.930894 + 0.365291i \(0.880970\pi\)
\(60\) 0 0
\(61\) 62.2008 1.01968 0.509842 0.860268i \(-0.329704\pi\)
0.509842 + 0.860268i \(0.329704\pi\)
\(62\) 112.452 1.81374
\(63\) 0 0
\(64\) −9.85363 −0.153963
\(65\) 21.9207 + 96.8888i 0.337241 + 1.49060i
\(66\) 0 0
\(67\) 115.863i 1.72930i 0.502373 + 0.864651i \(0.332460\pi\)
−0.502373 + 0.864651i \(0.667540\pi\)
\(68\) 72.4834 1.06593
\(69\) 0 0
\(70\) 1.46506 + 6.47551i 0.0209294 + 0.0925073i
\(71\) 11.7801i 0.165918i 0.996553 + 0.0829588i \(0.0264370\pi\)
−0.996553 + 0.0829588i \(0.973563\pi\)
\(72\) 0 0
\(73\) 31.0848i 0.425820i 0.977072 + 0.212910i \(0.0682940\pi\)
−0.977072 + 0.212910i \(0.931706\pi\)
\(74\) 174.456i 2.35752i
\(75\) 0 0
\(76\) −28.9307 −0.380667
\(77\) 1.72923 0.0224575
\(78\) 0 0
\(79\) 117.132 1.48269 0.741343 0.671126i \(-0.234189\pi\)
0.741343 + 0.671126i \(0.234189\pi\)
\(80\) −96.3830 + 21.8062i −1.20479 + 0.272578i
\(81\) 0 0
\(82\) 112.976i 1.37775i
\(83\) 48.5317 0.584720 0.292360 0.956308i \(-0.405560\pi\)
0.292360 + 0.956308i \(0.405560\pi\)
\(84\) 0 0
\(85\) 142.189 32.1697i 1.67282 0.378468i
\(86\) 169.831i 1.97478i
\(87\) 0 0
\(88\) 12.7882i 0.145321i
\(89\) 127.200i 1.42921i 0.699526 + 0.714607i \(0.253394\pi\)
−0.699526 + 0.714607i \(0.746606\pi\)
\(90\) 0 0
\(91\) 10.3585 0.113830
\(92\) −24.9734 −0.271450
\(93\) 0 0
\(94\) −111.104 −1.18196
\(95\) −56.7528 + 12.8401i −0.597398 + 0.135159i
\(96\) 0 0
\(97\) 106.836i 1.10140i 0.834703 + 0.550700i \(0.185639\pi\)
−0.834703 + 0.550700i \(0.814361\pi\)
\(98\) −124.099 −1.26632
\(99\) 0 0
\(100\) 56.0973 26.7529i 0.560973 0.267529i
\(101\) 155.874i 1.54331i −0.636042 0.771654i \(-0.719430\pi\)
0.636042 0.771654i \(-0.280570\pi\)
\(102\) 0 0
\(103\) 24.8424i 0.241189i −0.992702 0.120594i \(-0.961520\pi\)
0.992702 0.120594i \(-0.0384800\pi\)
\(104\) 76.6051i 0.736587i
\(105\) 0 0
\(106\) 85.2799 0.804527
\(107\) 148.451 1.38740 0.693698 0.720266i \(-0.255980\pi\)
0.693698 + 0.720266i \(0.255980\pi\)
\(108\) 0 0
\(109\) −74.1845 −0.680592 −0.340296 0.940318i \(-0.610527\pi\)
−0.340296 + 0.940318i \(0.610527\pi\)
\(110\) −9.31955 41.1922i −0.0847232 0.374474i
\(111\) 0 0
\(112\) 10.3045i 0.0920043i
\(113\) −13.5324 −0.119756 −0.0598778 0.998206i \(-0.519071\pi\)
−0.0598778 + 0.998206i \(0.519071\pi\)
\(114\) 0 0
\(115\) −48.9899 + 11.0838i −0.425999 + 0.0963805i
\(116\) 42.2910i 0.364577i
\(117\) 0 0
\(118\) 109.776i 0.930308i
\(119\) 15.2017i 0.127746i
\(120\) 0 0
\(121\) −11.0000 −0.0909091
\(122\) −158.411 −1.29845
\(123\) 0 0
\(124\) −109.769 −0.885236
\(125\) 98.1715 77.3780i 0.785372 0.619024i
\(126\) 0 0
\(127\) 10.5789i 0.0832981i 0.999132 + 0.0416491i \(0.0132611\pi\)
−0.999132 + 0.0416491i \(0.986739\pi\)
\(128\) −114.547 −0.894901
\(129\) 0 0
\(130\) −55.8267 246.753i −0.429436 1.89810i
\(131\) 153.818i 1.17418i 0.809520 + 0.587092i \(0.199727\pi\)
−0.809520 + 0.587092i \(0.800273\pi\)
\(132\) 0 0
\(133\) 6.06755i 0.0456206i
\(134\) 295.076i 2.20206i
\(135\) 0 0
\(136\) 112.422 0.826633
\(137\) 100.618 0.734440 0.367220 0.930134i \(-0.380310\pi\)
0.367220 + 0.930134i \(0.380310\pi\)
\(138\) 0 0
\(139\) −117.599 −0.846039 −0.423020 0.906121i \(-0.639030\pi\)
−0.423020 + 0.906121i \(0.639030\pi\)
\(140\) −1.43010 6.32101i −0.0102150 0.0451501i
\(141\) 0 0
\(142\) 30.0012i 0.211276i
\(143\) −65.8931 −0.460791
\(144\) 0 0
\(145\) −18.7697 82.9615i −0.129446 0.572148i
\(146\) 79.1657i 0.542231i
\(147\) 0 0
\(148\) 170.294i 1.15064i
\(149\) 145.756i 0.978226i −0.872221 0.489113i \(-0.837321\pi\)
0.872221 0.489113i \(-0.162679\pi\)
\(150\) 0 0
\(151\) −32.1881 −0.213166 −0.106583 0.994304i \(-0.533991\pi\)
−0.106583 + 0.994304i \(0.533991\pi\)
\(152\) −44.8716 −0.295208
\(153\) 0 0
\(154\) −4.40393 −0.0285969
\(155\) −215.332 + 48.7180i −1.38924 + 0.314310i
\(156\) 0 0
\(157\) 66.1924i 0.421607i −0.977528 0.210804i \(-0.932392\pi\)
0.977528 0.210804i \(-0.0676081\pi\)
\(158\) −298.308 −1.88802
\(159\) 0 0
\(160\) 170.250 38.5183i 1.06406 0.240739i
\(161\) 5.23760i 0.0325317i
\(162\) 0 0
\(163\) 213.474i 1.30966i −0.755776 0.654830i \(-0.772740\pi\)
0.755776 0.654830i \(-0.227260\pi\)
\(164\) 110.280i 0.672440i
\(165\) 0 0
\(166\) −123.599 −0.744571
\(167\) 185.973 1.11361 0.556805 0.830643i \(-0.312027\pi\)
0.556805 + 0.830643i \(0.312027\pi\)
\(168\) 0 0
\(169\) −225.718 −1.33561
\(170\) −362.123 + 81.9287i −2.13013 + 0.481934i
\(171\) 0 0
\(172\) 165.779i 0.963834i
\(173\) −117.325 −0.678180 −0.339090 0.940754i \(-0.610119\pi\)
−0.339090 + 0.940754i \(0.610119\pi\)
\(174\) 0 0
\(175\) −5.61081 11.7651i −0.0320618 0.0672292i
\(176\) 65.5491i 0.372438i
\(177\) 0 0
\(178\) 323.948i 1.81993i
\(179\) 336.458i 1.87966i −0.341648 0.939828i \(-0.610985\pi\)
0.341648 0.939828i \(-0.389015\pi\)
\(180\) 0 0
\(181\) 3.87423 0.0214046 0.0107023 0.999943i \(-0.496593\pi\)
0.0107023 + 0.999943i \(0.496593\pi\)
\(182\) −26.3808 −0.144949
\(183\) 0 0
\(184\) −38.7339 −0.210510
\(185\) 75.5803 + 334.063i 0.408542 + 1.80575i
\(186\) 0 0
\(187\) 96.7016i 0.517121i
\(188\) 108.454 0.576881
\(189\) 0 0
\(190\) 144.536 32.7006i 0.760716 0.172109i
\(191\) 114.301i 0.598434i −0.954185 0.299217i \(-0.903275\pi\)
0.954185 0.299217i \(-0.0967254\pi\)
\(192\) 0 0
\(193\) 221.972i 1.15011i 0.818114 + 0.575057i \(0.195020\pi\)
−0.818114 + 0.575057i \(0.804980\pi\)
\(194\) 272.085i 1.40250i
\(195\) 0 0
\(196\) 121.138 0.618052
\(197\) 71.3783 0.362326 0.181163 0.983453i \(-0.442014\pi\)
0.181163 + 0.983453i \(0.442014\pi\)
\(198\) 0 0
\(199\) −284.564 −1.42997 −0.714985 0.699139i \(-0.753567\pi\)
−0.714985 + 0.699139i \(0.753567\pi\)
\(200\) 87.0071 41.4939i 0.435036 0.207470i
\(201\) 0 0
\(202\) 396.974i 1.96522i
\(203\) −8.86956 −0.0436924
\(204\) 0 0
\(205\) 48.9448 + 216.335i 0.238755 + 1.05529i
\(206\) 63.2678i 0.307125i
\(207\) 0 0
\(208\) 392.658i 1.88778i
\(209\) 38.5970i 0.184675i
\(210\) 0 0
\(211\) 384.597 1.82274 0.911368 0.411593i \(-0.135027\pi\)
0.911368 + 0.411593i \(0.135027\pi\)
\(212\) −83.2452 −0.392666
\(213\) 0 0
\(214\) −378.070 −1.76668
\(215\) −73.5766 325.207i −0.342217 1.51259i
\(216\) 0 0
\(217\) 23.0216i 0.106090i
\(218\) 188.930 0.866653
\(219\) 0 0
\(220\) 9.09720 + 40.2094i 0.0413509 + 0.182770i
\(221\) 579.270i 2.62113i
\(222\) 0 0
\(223\) 94.4995i 0.423764i 0.977295 + 0.211882i \(0.0679593\pi\)
−0.977295 + 0.211882i \(0.932041\pi\)
\(224\) 18.2017i 0.0812576i
\(225\) 0 0
\(226\) 34.4638 0.152495
\(227\) 15.6432 0.0689128 0.0344564 0.999406i \(-0.489030\pi\)
0.0344564 + 0.999406i \(0.489030\pi\)
\(228\) 0 0
\(229\) −149.818 −0.654228 −0.327114 0.944985i \(-0.606076\pi\)
−0.327114 + 0.944985i \(0.606076\pi\)
\(230\) 124.766 28.2277i 0.542460 0.122729i
\(231\) 0 0
\(232\) 65.5935i 0.282731i
\(233\) 136.083 0.584049 0.292024 0.956411i \(-0.405671\pi\)
0.292024 + 0.956411i \(0.405671\pi\)
\(234\) 0 0
\(235\) 212.752 48.1341i 0.905326 0.204826i
\(236\) 107.157i 0.454056i
\(237\) 0 0
\(238\) 38.7152i 0.162669i
\(239\) 193.328i 0.808903i 0.914559 + 0.404452i \(0.132538\pi\)
−0.914559 + 0.404452i \(0.867462\pi\)
\(240\) 0 0
\(241\) −59.0015 −0.244820 −0.122410 0.992480i \(-0.539062\pi\)
−0.122410 + 0.992480i \(0.539062\pi\)
\(242\) 28.0144 0.115762
\(243\) 0 0
\(244\) 154.631 0.633734
\(245\) 237.635 53.7638i 0.969938 0.219444i
\(246\) 0 0
\(247\) 231.207i 0.936061i
\(248\) −170.252 −0.686502
\(249\) 0 0
\(250\) −250.020 + 197.063i −1.00008 + 0.788253i
\(251\) 237.143i 0.944792i −0.881386 0.472396i \(-0.843389\pi\)
0.881386 0.472396i \(-0.156611\pi\)
\(252\) 0 0
\(253\) 33.3176i 0.131690i
\(254\) 26.9419i 0.106070i
\(255\) 0 0
\(256\) 331.139 1.29351
\(257\) −168.744 −0.656591 −0.328296 0.944575i \(-0.606474\pi\)
−0.328296 + 0.944575i \(0.606474\pi\)
\(258\) 0 0
\(259\) 35.7153 0.137897
\(260\) 54.4948 + 240.866i 0.209595 + 0.926406i
\(261\) 0 0
\(262\) 391.739i 1.49519i
\(263\) 28.5331 0.108491 0.0542454 0.998528i \(-0.482725\pi\)
0.0542454 + 0.998528i \(0.482725\pi\)
\(264\) 0 0
\(265\) −163.301 + 36.9461i −0.616229 + 0.139419i
\(266\) 15.4526i 0.0580925i
\(267\) 0 0
\(268\) 288.036i 1.07476i
\(269\) 17.4611i 0.0649113i 0.999473 + 0.0324557i \(0.0103328\pi\)
−0.999473 + 0.0324557i \(0.989667\pi\)
\(270\) 0 0
\(271\) −198.778 −0.733499 −0.366750 0.930320i \(-0.619529\pi\)
−0.366750 + 0.930320i \(0.619529\pi\)
\(272\) −576.246 −2.11855
\(273\) 0 0
\(274\) −256.251 −0.935222
\(275\) 35.6916 + 74.8405i 0.129788 + 0.272147i
\(276\) 0 0
\(277\) 131.609i 0.475123i 0.971372 + 0.237562i \(0.0763482\pi\)
−0.971372 + 0.237562i \(0.923652\pi\)
\(278\) 299.498 1.07733
\(279\) 0 0
\(280\) −2.21809 9.80392i −0.00792176 0.0350140i
\(281\) 88.5256i 0.315038i −0.987516 0.157519i \(-0.949650\pi\)
0.987516 0.157519i \(-0.0503495\pi\)
\(282\) 0 0
\(283\) 158.497i 0.560059i −0.959991 0.280030i \(-0.909656\pi\)
0.959991 0.280030i \(-0.0903443\pi\)
\(284\) 29.2854i 0.103118i
\(285\) 0 0
\(286\) 167.814 0.586762
\(287\) 23.1287 0.0805879
\(288\) 0 0
\(289\) 561.109 1.94155
\(290\) 47.8019 + 211.283i 0.164834 + 0.728563i
\(291\) 0 0
\(292\) 77.2769i 0.264647i
\(293\) 211.430 0.721606 0.360803 0.932642i \(-0.382503\pi\)
0.360803 + 0.932642i \(0.382503\pi\)
\(294\) 0 0
\(295\) 47.5588 + 210.209i 0.161216 + 0.712571i
\(296\) 264.127i 0.892320i
\(297\) 0 0
\(298\) 371.205i 1.24565i
\(299\) 199.581i 0.667497i
\(300\) 0 0
\(301\) −34.7684 −0.115510
\(302\) 81.9755 0.271442
\(303\) 0 0
\(304\) 230.000 0.756579
\(305\) 303.337 68.6287i 0.994548 0.225012i
\(306\) 0 0
\(307\) 134.001i 0.436484i 0.975895 + 0.218242i \(0.0700322\pi\)
−0.975895 + 0.218242i \(0.929968\pi\)
\(308\) 4.29886 0.0139573
\(309\) 0 0
\(310\) 548.400 124.073i 1.76903 0.400236i
\(311\) 142.049i 0.456749i −0.973573 0.228374i \(-0.926659\pi\)
0.973573 0.228374i \(-0.0733410\pi\)
\(312\) 0 0
\(313\) 230.891i 0.737671i 0.929495 + 0.368836i \(0.120243\pi\)
−0.929495 + 0.368836i \(0.879757\pi\)
\(314\) 168.576i 0.536867i
\(315\) 0 0
\(316\) 291.191 0.921489
\(317\) 249.250 0.786278 0.393139 0.919479i \(-0.371389\pi\)
0.393139 + 0.919479i \(0.371389\pi\)
\(318\) 0 0
\(319\) 56.4213 0.176869
\(320\) −48.0536 + 10.8719i −0.150168 + 0.0339748i
\(321\) 0 0
\(322\) 13.3389i 0.0414252i
\(323\) −339.309 −1.05049
\(324\) 0 0
\(325\) 213.803 + 448.316i 0.657855 + 1.37943i
\(326\) 543.669i 1.66770i
\(327\) 0 0
\(328\) 171.045i 0.521479i
\(329\) 22.7456i 0.0691357i
\(330\) 0 0
\(331\) −436.814 −1.31968 −0.659839 0.751407i \(-0.729376\pi\)
−0.659839 + 0.751407i \(0.729376\pi\)
\(332\) 120.650 0.363403
\(333\) 0 0
\(334\) −473.629 −1.41805
\(335\) 127.837 + 565.035i 0.381602 + 1.68667i
\(336\) 0 0
\(337\) 467.424i 1.38701i −0.720450 0.693507i \(-0.756065\pi\)
0.720450 0.693507i \(-0.243935\pi\)
\(338\) 574.850 1.70074
\(339\) 0 0
\(340\) 353.483 79.9740i 1.03966 0.235218i
\(341\) 146.445i 0.429459i
\(342\) 0 0
\(343\) 50.9536i 0.148553i
\(344\) 257.125i 0.747455i
\(345\) 0 0
\(346\) 298.799 0.863582
\(347\) −237.902 −0.685596 −0.342798 0.939409i \(-0.611375\pi\)
−0.342798 + 0.939409i \(0.611375\pi\)
\(348\) 0 0
\(349\) 125.577 0.359820 0.179910 0.983683i \(-0.442419\pi\)
0.179910 + 0.983683i \(0.442419\pi\)
\(350\) 14.2894 + 29.9630i 0.0408269 + 0.0856084i
\(351\) 0 0
\(352\) 115.785i 0.328935i
\(353\) −242.501 −0.686973 −0.343486 0.939158i \(-0.611608\pi\)
−0.343486 + 0.939158i \(0.611608\pi\)
\(354\) 0 0
\(355\) 12.9975 + 57.4487i 0.0366128 + 0.161827i
\(356\) 316.219i 0.888257i
\(357\) 0 0
\(358\) 856.880i 2.39352i
\(359\) 475.810i 1.32538i 0.748895 + 0.662689i \(0.230585\pi\)
−0.748895 + 0.662689i \(0.769415\pi\)
\(360\) 0 0
\(361\) −225.570 −0.624847
\(362\) −9.86676 −0.0272562
\(363\) 0 0
\(364\) 25.7514 0.0707455
\(365\) 34.2972 + 151.593i 0.0939649 + 0.415323i
\(366\) 0 0
\(367\) 508.971i 1.38684i 0.720533 + 0.693420i \(0.243897\pi\)
−0.720533 + 0.693420i \(0.756103\pi\)
\(368\) 198.540 0.539510
\(369\) 0 0
\(370\) −192.485 850.779i −0.520230 2.29940i
\(371\) 17.4588i 0.0470587i
\(372\) 0 0
\(373\) 31.7821i 0.0852068i −0.999092 0.0426034i \(-0.986435\pi\)
0.999092 0.0426034i \(-0.0135652\pi\)
\(374\) 246.276i 0.658492i
\(375\) 0 0
\(376\) 168.212 0.447372
\(377\) 337.979 0.896496
\(378\) 0 0
\(379\) −603.519 −1.59240 −0.796199 0.605035i \(-0.793159\pi\)
−0.796199 + 0.605035i \(0.793159\pi\)
\(380\) −141.088 + 31.9204i −0.371283 + 0.0840012i
\(381\) 0 0
\(382\) 291.097i 0.762034i
\(383\) −151.313 −0.395074 −0.197537 0.980295i \(-0.563294\pi\)
−0.197537 + 0.980295i \(0.563294\pi\)
\(384\) 0 0
\(385\) 8.43300 1.90793i 0.0219039 0.00495566i
\(386\) 565.310i 1.46453i
\(387\) 0 0
\(388\) 265.594i 0.684520i
\(389\) 219.639i 0.564625i −0.959323 0.282312i \(-0.908899\pi\)
0.959323 0.282312i \(-0.0911015\pi\)
\(390\) 0 0
\(391\) −292.897 −0.749096
\(392\) 187.886 0.479301
\(393\) 0 0
\(394\) −181.784 −0.461380
\(395\) 571.224 129.237i 1.44614 0.327182i
\(396\) 0 0
\(397\) 532.971i 1.34250i −0.741233 0.671248i \(-0.765758\pi\)
0.741233 0.671248i \(-0.234242\pi\)
\(398\) 724.718 1.82090
\(399\) 0 0
\(400\) −445.976 + 212.687i −1.11494 + 0.531717i
\(401\) 349.126i 0.870639i −0.900276 0.435319i \(-0.856635\pi\)
0.900276 0.435319i \(-0.143365\pi\)
\(402\) 0 0
\(403\) 877.249i 2.17680i
\(404\) 387.503i 0.959166i
\(405\) 0 0
\(406\) 22.5887 0.0556371
\(407\) −227.193 −0.558213
\(408\) 0 0
\(409\) −668.482 −1.63443 −0.817215 0.576333i \(-0.804483\pi\)
−0.817215 + 0.576333i \(0.804483\pi\)
\(410\) −124.651 550.953i −0.304026 1.34379i
\(411\) 0 0
\(412\) 61.7583i 0.149899i
\(413\) 22.4738 0.0544159
\(414\) 0 0
\(415\) 236.677 53.5471i 0.570306 0.129029i
\(416\) 693.585i 1.66727i
\(417\) 0 0
\(418\) 98.2975i 0.235161i
\(419\) 316.922i 0.756377i 0.925729 + 0.378188i \(0.123453\pi\)
−0.925729 + 0.378188i \(0.876547\pi\)
\(420\) 0 0
\(421\) −138.858 −0.329830 −0.164915 0.986308i \(-0.552735\pi\)
−0.164915 + 0.986308i \(0.552735\pi\)
\(422\) −979.478 −2.32104
\(423\) 0 0
\(424\) −129.114 −0.304513
\(425\) 657.927 313.767i 1.54806 0.738276i
\(426\) 0 0
\(427\) 32.4303i 0.0759492i
\(428\) 369.050 0.862266
\(429\) 0 0
\(430\) 187.382 + 828.224i 0.435772 + 1.92610i
\(431\) 632.454i 1.46741i −0.679468 0.733705i \(-0.737789\pi\)
0.679468 0.733705i \(-0.262211\pi\)
\(432\) 0 0
\(433\) 593.067i 1.36967i 0.728699 + 0.684834i \(0.240125\pi\)
−0.728699 + 0.684834i \(0.759875\pi\)
\(434\) 58.6305i 0.135093i
\(435\) 0 0
\(436\) −184.423 −0.422988
\(437\) 116.905 0.267518
\(438\) 0 0
\(439\) 32.1254 0.0731787 0.0365893 0.999330i \(-0.488351\pi\)
0.0365893 + 0.999330i \(0.488351\pi\)
\(440\) 14.1098 + 62.3649i 0.0320677 + 0.141739i
\(441\) 0 0
\(442\) 1475.26i 3.33770i
\(443\) −43.0520 −0.0971828 −0.0485914 0.998819i \(-0.515473\pi\)
−0.0485914 + 0.998819i \(0.515473\pi\)
\(444\) 0 0
\(445\) 140.345 + 620.322i 0.315382 + 1.39398i
\(446\) 240.668i 0.539614i
\(447\) 0 0
\(448\) 5.13750i 0.0114676i
\(449\) 91.5811i 0.203967i −0.994786 0.101983i \(-0.967481\pi\)
0.994786 0.101983i \(-0.0325189\pi\)
\(450\) 0 0
\(451\) −147.127 −0.326224
\(452\) −33.6415 −0.0744281
\(453\) 0 0
\(454\) −39.8395 −0.0877523
\(455\) 50.5160 11.4290i 0.111024 0.0251187i
\(456\) 0 0
\(457\) 370.296i 0.810276i 0.914256 + 0.405138i \(0.132777\pi\)
−0.914256 + 0.405138i \(0.867223\pi\)
\(458\) 381.551 0.833081
\(459\) 0 0
\(460\) −121.789 + 27.5542i −0.264759 + 0.0599005i
\(461\) 544.300i 1.18069i −0.807149 0.590347i \(-0.798991\pi\)
0.807149 0.590347i \(-0.201009\pi\)
\(462\) 0 0
\(463\) 252.721i 0.545833i −0.962038 0.272916i \(-0.912012\pi\)
0.962038 0.272916i \(-0.0879883\pi\)
\(464\) 336.215i 0.724601i
\(465\) 0 0
\(466\) −346.572 −0.743717
\(467\) −612.912 −1.31245 −0.656223 0.754567i \(-0.727847\pi\)
−0.656223 + 0.754567i \(0.727847\pi\)
\(468\) 0 0
\(469\) 60.4089 0.128804
\(470\) −541.828 + 122.586i −1.15282 + 0.260822i
\(471\) 0 0
\(472\) 166.201i 0.352122i
\(473\) 221.170 0.467589
\(474\) 0 0
\(475\) −262.602 + 125.236i −0.552846 + 0.263654i
\(476\) 37.7915i 0.0793939i
\(477\) 0 0
\(478\) 492.360i 1.03004i
\(479\) 481.367i 1.00494i −0.864594 0.502471i \(-0.832425\pi\)
0.864594 0.502471i \(-0.167575\pi\)
\(480\) 0 0
\(481\) −1360.95 −2.82941
\(482\) 150.263 0.311749
\(483\) 0 0
\(484\) −27.3460 −0.0565000
\(485\) 117.876 + 521.011i 0.243044 + 1.07425i
\(486\) 0 0
\(487\) 836.741i 1.71815i −0.511846 0.859077i \(-0.671038\pi\)
0.511846 0.859077i \(-0.328962\pi\)
\(488\) 239.834 0.491462
\(489\) 0 0
\(490\) −605.199 + 136.924i −1.23510 + 0.279436i
\(491\) 118.116i 0.240562i 0.992740 + 0.120281i \(0.0383795\pi\)
−0.992740 + 0.120281i \(0.961620\pi\)
\(492\) 0 0
\(493\) 496.003i 1.00609i
\(494\) 588.829i 1.19196i
\(495\) 0 0
\(496\) 872.669 1.75941
\(497\) 6.14195 0.0123580
\(498\) 0 0
\(499\) 806.088 1.61541 0.807704 0.589589i \(-0.200710\pi\)
0.807704 + 0.589589i \(0.200710\pi\)
\(500\) 244.054 192.362i 0.488109 0.384723i
\(501\) 0 0
\(502\) 603.947i 1.20308i
\(503\) −636.754 −1.26591 −0.632957 0.774187i \(-0.718159\pi\)
−0.632957 + 0.774187i \(0.718159\pi\)
\(504\) 0 0
\(505\) −171.982 760.158i −0.340559 1.50526i
\(506\) 84.8519i 0.167692i
\(507\) 0 0
\(508\) 26.2991i 0.0517698i
\(509\) 172.214i 0.338339i −0.985587 0.169169i \(-0.945892\pi\)
0.985587 0.169169i \(-0.0541085\pi\)
\(510\) 0 0
\(511\) 16.2070 0.0317163
\(512\) −385.144 −0.752234
\(513\) 0 0
\(514\) 429.751 0.836091
\(515\) −27.4097 121.150i −0.0532227 0.235243i
\(516\) 0 0
\(517\) 144.690i 0.279865i
\(518\) −90.9583 −0.175595
\(519\) 0 0
\(520\) 84.5216 + 373.583i 0.162542 + 0.718430i
\(521\) 636.699i 1.22207i −0.791603 0.611036i \(-0.790753\pi\)
0.791603 0.611036i \(-0.209247\pi\)
\(522\) 0 0
\(523\) 470.003i 0.898668i −0.893364 0.449334i \(-0.851661\pi\)
0.893364 0.449334i \(-0.148339\pi\)
\(524\) 382.392i 0.729756i
\(525\) 0 0
\(526\) −72.6670 −0.138150
\(527\) −1287.41 −2.44290
\(528\) 0 0
\(529\) −428.085 −0.809235
\(530\) 415.888 94.0929i 0.784695 0.177534i
\(531\) 0 0
\(532\) 15.0839i 0.0283532i
\(533\) −881.333 −1.65353
\(534\) 0 0
\(535\) 723.959 163.793i 1.35319 0.306154i
\(536\) 446.745i 0.833479i
\(537\) 0 0
\(538\) 44.4694i 0.0826569i
\(539\) 161.613i 0.299839i
\(540\) 0 0
\(541\) 432.219 0.798927 0.399463 0.916749i \(-0.369196\pi\)
0.399463 + 0.916749i \(0.369196\pi\)
\(542\) 506.241 0.934024
\(543\) 0 0
\(544\) 1017.87 1.87109
\(545\) −361.779 + 81.8509i −0.663815 + 0.150185i
\(546\) 0 0
\(547\) 134.676i 0.246208i 0.992394 + 0.123104i \(0.0392849\pi\)
−0.992394 + 0.123104i \(0.960715\pi\)
\(548\) 250.137 0.456454
\(549\) 0 0
\(550\) −90.8981 190.601i −0.165269 0.346547i
\(551\) 197.972i 0.359296i
\(552\) 0 0
\(553\) 61.0705i 0.110435i
\(554\) 335.177i 0.605013i
\(555\) 0 0
\(556\) −292.352 −0.525813
\(557\) −762.780 −1.36944 −0.684722 0.728804i \(-0.740076\pi\)
−0.684722 + 0.728804i \(0.740076\pi\)
\(558\) 0 0
\(559\) 1324.87 2.37007
\(560\) 11.3694 + 50.2523i 0.0203024 + 0.0897363i
\(561\) 0 0
\(562\) 225.454i 0.401163i
\(563\) −514.186 −0.913296 −0.456648 0.889647i \(-0.650950\pi\)
−0.456648 + 0.889647i \(0.650950\pi\)
\(564\) 0 0
\(565\) −65.9940 + 14.9309i −0.116804 + 0.0264263i
\(566\) 403.654i 0.713169i
\(567\) 0 0
\(568\) 45.4218i 0.0799680i
\(569\) 335.611i 0.589826i −0.955524 0.294913i \(-0.904709\pi\)
0.955524 0.294913i \(-0.0952907\pi\)
\(570\) 0 0
\(571\) 930.967 1.63042 0.815208 0.579169i \(-0.196623\pi\)
0.815208 + 0.579169i \(0.196623\pi\)
\(572\) −163.810 −0.286382
\(573\) 0 0
\(574\) −58.9034 −0.102619
\(575\) −226.682 + 108.105i −0.394230 + 0.188009i
\(576\) 0 0
\(577\) 57.3089i 0.0993221i −0.998766 0.0496611i \(-0.984186\pi\)
0.998766 0.0496611i \(-0.0158141\pi\)
\(578\) −1429.01 −2.47234
\(579\) 0 0
\(580\) −46.6614 206.242i −0.0804507 0.355590i
\(581\) 25.3035i 0.0435517i
\(582\) 0 0
\(583\) 111.059i 0.190496i
\(584\) 119.857i 0.205234i
\(585\) 0 0
\(586\) −538.463 −0.918879
\(587\) −287.044 −0.489002 −0.244501 0.969649i \(-0.578624\pi\)
−0.244501 + 0.969649i \(0.578624\pi\)
\(588\) 0 0
\(589\) 513.851 0.872412
\(590\) −121.121 535.351i −0.205290 0.907375i
\(591\) 0 0
\(592\) 1353.84i 2.28690i
\(593\) 784.320 1.32263 0.661316 0.750108i \(-0.269998\pi\)
0.661316 + 0.750108i \(0.269998\pi\)
\(594\) 0 0
\(595\) −16.7727 74.1349i −0.0281894 0.124597i
\(596\) 362.349i 0.607967i
\(597\) 0 0
\(598\) 508.287i 0.849978i
\(599\) 181.459i 0.302936i −0.988462 0.151468i \(-0.951600\pi\)
0.988462 0.151468i \(-0.0484001\pi\)
\(600\) 0 0
\(601\) 295.753 0.492101 0.246051 0.969257i \(-0.420867\pi\)
0.246051 + 0.969257i \(0.420867\pi\)
\(602\) 88.5469 0.147088
\(603\) 0 0
\(604\) −80.0197 −0.132483
\(605\) −53.6442 + 12.1368i −0.0886681 + 0.0200608i
\(606\) 0 0
\(607\) 851.913i 1.40348i −0.712433 0.701740i \(-0.752407\pi\)
0.712433 0.701740i \(-0.247593\pi\)
\(608\) −406.269 −0.668206
\(609\) 0 0
\(610\) −772.528 + 174.781i −1.26644 + 0.286526i
\(611\) 866.735i 1.41855i
\(612\) 0 0
\(613\) 29.3560i 0.0478891i −0.999713 0.0239446i \(-0.992377\pi\)
0.999713 0.0239446i \(-0.00762252\pi\)
\(614\) 341.268i 0.555810i
\(615\) 0 0
\(616\) 6.66755 0.0108239
\(617\) 609.377 0.987645 0.493822 0.869563i \(-0.335599\pi\)
0.493822 + 0.869563i \(0.335599\pi\)
\(618\) 0 0
\(619\) −11.3024 −0.0182591 −0.00912955 0.999958i \(-0.502906\pi\)
−0.00912955 + 0.999958i \(0.502906\pi\)
\(620\) −535.316 + 121.113i −0.863413 + 0.195344i
\(621\) 0 0
\(622\) 361.765i 0.581615i
\(623\) 66.3197 0.106452
\(624\) 0 0
\(625\) 393.383 485.669i 0.629413 0.777071i
\(626\) 588.025i 0.939337i
\(627\) 0 0
\(628\) 164.554i 0.262029i
\(629\) 1997.26i 3.17530i
\(630\) 0 0
\(631\) 181.951 0.288354 0.144177 0.989552i \(-0.453947\pi\)
0.144177 + 0.989552i \(0.453947\pi\)
\(632\) 451.638 0.714617
\(633\) 0 0
\(634\) −634.781 −1.00123
\(635\) 11.6721 + 51.5904i 0.0183813 + 0.0812448i
\(636\) 0 0
\(637\) 968.107i 1.51979i
\(638\) −143.692 −0.225222
\(639\) 0 0
\(640\) −558.618 + 126.385i −0.872840 + 0.197476i
\(641\) 689.024i 1.07492i 0.843289 + 0.537460i \(0.180616\pi\)
−0.843289 + 0.537460i \(0.819384\pi\)
\(642\) 0 0
\(643\) 973.695i 1.51430i 0.653241 + 0.757150i \(0.273409\pi\)
−0.653241 + 0.757150i \(0.726591\pi\)
\(644\) 13.0207i 0.0202184i
\(645\) 0 0
\(646\) 864.139 1.33768
\(647\) 364.273 0.563019 0.281510 0.959558i \(-0.409165\pi\)
0.281510 + 0.959558i \(0.409165\pi\)
\(648\) 0 0
\(649\) −142.961 −0.220278
\(650\) −544.505 1141.75i −0.837700 1.75654i
\(651\) 0 0
\(652\) 530.698i 0.813954i
\(653\) −261.834 −0.400971 −0.200485 0.979697i \(-0.564252\pi\)
−0.200485 + 0.979697i \(0.564252\pi\)
\(654\) 0 0
\(655\) 169.714 + 750.132i 0.259106 + 1.14524i
\(656\) 876.732i 1.33648i
\(657\) 0 0
\(658\) 57.9278i 0.0880361i
\(659\) 725.538i 1.10097i 0.834846 + 0.550484i \(0.185557\pi\)
−0.834846 + 0.550484i \(0.814443\pi\)
\(660\) 0 0
\(661\) −155.237 −0.234852 −0.117426 0.993082i \(-0.537464\pi\)
−0.117426 + 0.993082i \(0.537464\pi\)
\(662\) 1112.46 1.68045
\(663\) 0 0
\(664\) 187.128 0.281820
\(665\) 6.69458 + 29.5899i 0.0100670 + 0.0444960i
\(666\) 0 0
\(667\) 170.893i 0.256211i
\(668\) 462.329 0.692109
\(669\) 0 0
\(670\) −325.570 1439.01i −0.485925 2.14778i
\(671\) 206.297i 0.307447i
\(672\) 0 0
\(673\) 967.081i 1.43697i −0.695543 0.718485i \(-0.744836\pi\)
0.695543 0.718485i \(-0.255164\pi\)
\(674\) 1190.42i 1.76620i
\(675\) 0 0
\(676\) −561.135 −0.830081
\(677\) 974.015 1.43872 0.719361 0.694636i \(-0.244435\pi\)
0.719361 + 0.694636i \(0.244435\pi\)
\(678\) 0 0
\(679\) 55.7022 0.0820356
\(680\) 548.254 124.040i 0.806255 0.182412i
\(681\) 0 0
\(682\) 372.962i 0.546864i
\(683\) −1033.38 −1.51300 −0.756500 0.653994i \(-0.773092\pi\)
−0.756500 + 0.653994i \(0.773092\pi\)
\(684\) 0 0
\(685\) 490.689 111.016i 0.716335 0.162068i
\(686\) 129.767i 0.189164i
\(687\) 0 0
\(688\) 1317.95i 1.91563i
\(689\) 665.275i 0.965567i
\(690\) 0 0
\(691\) 113.736 0.164596 0.0822982 0.996608i \(-0.473774\pi\)
0.0822982 + 0.996608i \(0.473774\pi\)
\(692\) −291.671 −0.421489
\(693\) 0 0
\(694\) 605.880 0.873025
\(695\) −573.502 + 129.752i −0.825183 + 0.186694i
\(696\) 0 0
\(697\) 1293.40i 1.85567i
\(698\) −319.816 −0.458189
\(699\) 0 0
\(700\) −13.9485 29.2481i −0.0199264 0.0417830i
\(701\) 1232.70i 1.75849i 0.476374 + 0.879243i \(0.341951\pi\)
−0.476374 + 0.879243i \(0.658049\pi\)
\(702\) 0 0
\(703\) 797.179i 1.13397i
\(704\) 32.6808i 0.0464216i
\(705\) 0 0
\(706\) 617.594 0.874779
\(707\) −81.2699 −0.114950
\(708\) 0 0
\(709\) 1313.50 1.85261 0.926303 0.376779i \(-0.122968\pi\)
0.926303 + 0.376779i \(0.122968\pi\)
\(710\) −33.1016 146.308i −0.0466220 0.206068i
\(711\) 0 0
\(712\) 490.458i 0.688845i
\(713\) 443.564 0.622109
\(714\) 0 0
\(715\) −321.344 + 72.7026i −0.449432 + 0.101682i
\(716\) 836.436i 1.16821i
\(717\) 0 0
\(718\) 1211.78i 1.68771i
\(719\) 158.445i 0.220369i 0.993911 + 0.110184i \(0.0351441\pi\)
−0.993911 + 0.110184i \(0.964856\pi\)
\(720\) 0 0
\(721\) −12.9524 −0.0179645
\(722\) 574.473 0.795669
\(723\) 0 0
\(724\) 9.63135 0.0133030
\(725\) −183.070 383.873i −0.252510 0.529479i
\(726\) 0 0
\(727\) 364.192i 0.500952i −0.968123 0.250476i \(-0.919413\pi\)
0.968123 0.250476i \(-0.0805871\pi\)
\(728\) 39.9405 0.0548633
\(729\) 0 0
\(730\) −87.3468 386.071i −0.119653 0.528864i
\(731\) 1944.32i 2.65980i
\(732\) 0 0
\(733\) 40.1103i 0.0547208i −0.999626 0.0273604i \(-0.991290\pi\)
0.999626 0.0273604i \(-0.00871017\pi\)
\(734\) 1296.23i 1.76598i
\(735\) 0 0
\(736\) −350.698 −0.476492
\(737\) −384.275 −0.521404
\(738\) 0 0
\(739\) 599.976 0.811876 0.405938 0.913901i \(-0.366945\pi\)
0.405938 + 0.913901i \(0.366945\pi\)
\(740\) 187.893 + 830.481i 0.253909 + 1.12227i
\(741\) 0 0
\(742\) 44.4633i 0.0599236i
\(743\) −360.552 −0.485265 −0.242632 0.970118i \(-0.578011\pi\)
−0.242632 + 0.970118i \(0.578011\pi\)
\(744\) 0 0
\(745\) −160.818 710.813i −0.215863 0.954111i
\(746\) 80.9416i 0.108501i
\(747\) 0 0
\(748\) 240.400i 0.321391i
\(749\) 77.3997i 0.103337i
\(750\) 0 0
\(751\) −550.409 −0.732901 −0.366451 0.930437i \(-0.619427\pi\)
−0.366451 + 0.930437i \(0.619427\pi\)
\(752\) −862.210 −1.14656
\(753\) 0 0
\(754\) −860.753 −1.14158
\(755\) −156.973 + 35.5145i −0.207911 + 0.0470391i
\(756\) 0 0
\(757\) 400.305i 0.528805i 0.964412 + 0.264402i \(0.0851747\pi\)
−0.964412 + 0.264402i \(0.914825\pi\)
\(758\) 1537.02 2.02773
\(759\) 0 0
\(760\) −218.827 + 49.5087i −0.287931 + 0.0651431i
\(761\) 374.188i 0.491706i 0.969307 + 0.245853i \(0.0790680\pi\)
−0.969307 + 0.245853i \(0.920932\pi\)
\(762\) 0 0
\(763\) 38.6784i 0.0506926i
\(764\) 284.152i 0.371927i
\(765\) 0 0
\(766\) 385.359 0.503080
\(767\) −856.375 −1.11653
\(768\) 0 0
\(769\) −642.958 −0.836096 −0.418048 0.908425i \(-0.637286\pi\)
−0.418048 + 0.908425i \(0.637286\pi\)
\(770\) −21.4768 + 4.85904i −0.0278920 + 0.00631044i
\(771\) 0 0
\(772\) 551.822i 0.714796i
\(773\) −1285.61 −1.66315 −0.831574 0.555414i \(-0.812560\pi\)
−0.831574 + 0.555414i \(0.812560\pi\)
\(774\) 0 0
\(775\) −996.368 + 475.170i −1.28564 + 0.613123i
\(776\) 411.937i 0.530847i
\(777\) 0 0
\(778\) 559.369i 0.718983i
\(779\) 516.243i 0.662699i
\(780\) 0 0
\(781\) −39.0703 −0.0500260
\(782\) 745.938 0.953885
\(783\) 0 0
\(784\) −963.054 −1.22838
\(785\) −73.0328 322.803i −0.0930354 0.411214i
\(786\) 0 0
\(787\) 1359.15i 1.72701i −0.504342 0.863504i \(-0.668265\pi\)
0.504342 0.863504i \(-0.331735\pi\)
\(788\) 177.447 0.225186
\(789\) 0 0
\(790\) −1454.77 + 329.136i −1.84148 + 0.416627i
\(791\) 7.05553i 0.00891976i
\(792\) 0 0
\(793\) 1235.77i 1.55835i
\(794\) 1357.35i 1.70951i
\(795\) 0 0
\(796\) −707.427 −0.888727
\(797\) 1506.17 1.88980 0.944898 0.327364i \(-0.106160\pi\)
0.944898 + 0.327364i \(0.106160\pi\)
\(798\) 0 0
\(799\) 1271.98 1.59196
\(800\) 787.766 375.687i 0.984707 0.469609i
\(801\) 0 0
\(802\) 889.141i 1.10866i
\(803\) −103.097 −0.128389
\(804\) 0 0
\(805\) 5.77886 + 25.5424i 0.00717871 + 0.0317297i
\(806\) 2234.14i 2.77189i
\(807\) 0 0
\(808\) 601.019i 0.743835i
\(809\) 38.4397i 0.0475151i −0.999718 0.0237576i \(-0.992437\pi\)
0.999718 0.0237576i \(-0.00756298\pi\)
\(810\) 0 0
\(811\) −413.331 −0.509656 −0.254828 0.966986i \(-0.582019\pi\)
−0.254828 + 0.966986i \(0.582019\pi\)
\(812\) −22.0497 −0.0271548
\(813\) 0 0
\(814\) 578.606 0.710818
\(815\) −235.535 1041.06i −0.289000 1.27737i
\(816\) 0 0
\(817\) 776.045i 0.949872i
\(818\) 1702.46 2.08125
\(819\) 0 0
\(820\) 121.677 + 537.808i 0.148386 + 0.655864i
\(821\) 226.821i 0.276275i 0.990413 + 0.138137i \(0.0441115\pi\)
−0.990413 + 0.138137i \(0.955888\pi\)
\(822\) 0 0
\(823\) 87.6605i 0.106513i −0.998581 0.0532567i \(-0.983040\pi\)
0.998581 0.0532567i \(-0.0169601\pi\)
\(824\) 95.7874i 0.116247i
\(825\) 0 0
\(826\) −57.2354 −0.0692922
\(827\) 1135.36 1.37286 0.686432 0.727194i \(-0.259176\pi\)
0.686432 + 0.727194i \(0.259176\pi\)
\(828\) 0 0
\(829\) −298.877 −0.360527 −0.180264 0.983618i \(-0.557695\pi\)
−0.180264 + 0.983618i \(0.557695\pi\)
\(830\) −602.760 + 136.372i −0.726217 + 0.164303i
\(831\) 0 0
\(832\) 195.767i 0.235297i
\(833\) 1420.75 1.70558
\(834\) 0 0
\(835\) 906.942 205.192i 1.08616 0.245739i
\(836\) 95.9522i 0.114775i
\(837\) 0 0
\(838\) 807.125i 0.963156i
\(839\) 824.580i 0.982813i 0.870930 + 0.491407i \(0.163517\pi\)
−0.870930 + 0.491407i \(0.836483\pi\)
\(840\) 0 0
\(841\) 551.604 0.655890
\(842\) 353.639 0.419999
\(843\) 0 0
\(844\) 956.109 1.13283
\(845\) −1100.77 + 249.044i −1.30268 + 0.294727i
\(846\) 0 0
\(847\) 5.73520i 0.00677119i
\(848\) 661.803 0.780428
\(849\) 0 0
\(850\) −1675.59 + 799.091i −1.97128 + 0.940107i
\(851\) 688.137i 0.808622i
\(852\) 0 0
\(853\) 1267.04i 1.48539i −0.669628 0.742696i \(-0.733547\pi\)
0.669628 0.742696i \(-0.266453\pi\)
\(854\) 82.5923i 0.0967123i
\(855\) 0 0
\(856\) 572.398 0.668689
\(857\) 15.4870 0.0180712 0.00903558 0.999959i \(-0.497124\pi\)
0.00903558 + 0.999959i \(0.497124\pi\)
\(858\) 0 0
\(859\) 783.182 0.911736 0.455868 0.890047i \(-0.349329\pi\)
0.455868 + 0.890047i \(0.349329\pi\)
\(860\) −182.911 808.464i −0.212688 0.940074i
\(861\) 0 0
\(862\) 1610.71i 1.86857i
\(863\) −437.554 −0.507015 −0.253508 0.967333i \(-0.581584\pi\)
−0.253508 + 0.967333i \(0.581584\pi\)
\(864\) 0 0
\(865\) −572.165 + 129.450i −0.661463 + 0.149653i
\(866\) 1510.40i 1.74411i
\(867\) 0 0
\(868\) 57.2316i 0.0659350i
\(869\) 388.483i 0.447047i
\(870\) 0 0
\(871\) −2301.91 −2.64284
\(872\) −286.040 −0.328028
\(873\) 0 0
\(874\) −297.730 −0.340652
\(875\) −40.3434 51.1848i −0.0461068 0.0584969i
\(876\) 0 0
\(877\) 564.528i 0.643704i −0.946790 0.321852i \(-0.895695\pi\)
0.946790 0.321852i \(-0.104305\pi\)
\(878\) −81.8159 −0.0931843
\(879\) 0 0
\(880\) −72.3231 319.666i −0.0821853 0.363257i
\(881\) 1328.59i 1.50804i −0.656850 0.754022i \(-0.728111\pi\)
0.656850 0.754022i \(-0.271889\pi\)
\(882\) 0 0
\(883\) 778.410i 0.881552i 0.897617 + 0.440776i \(0.145297\pi\)
−0.897617 + 0.440776i \(0.854703\pi\)
\(884\) 1440.06i 1.62903i
\(885\) 0 0
\(886\) 109.643 0.123751
\(887\) 803.383 0.905730 0.452865 0.891579i \(-0.350402\pi\)
0.452865 + 0.891579i \(0.350402\pi\)
\(888\) 0 0
\(889\) 5.51562 0.00620430
\(890\) −357.426 1579.81i −0.401602 1.77507i
\(891\) 0 0
\(892\) 234.926i 0.263370i
\(893\) −507.692 −0.568524
\(894\) 0 0
\(895\) −371.229 1640.82i −0.414781 1.83332i
\(896\) 59.7228i 0.0666549i
\(897\) 0 0
\(898\) 233.235i 0.259728i
\(899\) 751.148i 0.835538i
\(900\) 0 0
\(901\) −976.327 −1.08360
\(902\) 374.698 0.415408
\(903\) 0 0
\(904\) −52.1781 −0.0577192
\(905\) 18.8937 4.27461i 0.0208770 0.00472332i
\(906\) 0 0
\(907\) 1372.85i 1.51362i −0.653635 0.756810i \(-0.726757\pi\)
0.653635 0.756810i \(-0.273243\pi\)
\(908\) 38.8890 0.0428293
\(909\) 0 0
\(910\) −128.652 + 29.1070i −0.141376 + 0.0319857i
\(911\) 1688.79i 1.85377i −0.375342 0.926887i \(-0.622475\pi\)
0.375342 0.926887i \(-0.377525\pi\)
\(912\) 0 0
\(913\) 160.962i 0.176300i
\(914\) 943.056i 1.03179i
\(915\) 0 0
\(916\) −372.448 −0.406603
\(917\) 80.1980 0.0874569
\(918\) 0 0
\(919\) −214.818 −0.233752 −0.116876 0.993147i \(-0.537288\pi\)
−0.116876 + 0.993147i \(0.537288\pi\)
\(920\) −188.895 + 42.7367i −0.205321 + 0.0464530i
\(921\) 0 0
\(922\) 1386.20i 1.50347i
\(923\) −234.042 −0.253567
\(924\) 0 0
\(925\) 737.171 + 1545.75i 0.796942 + 1.67108i
\(926\) 643.620i 0.695054i
\(927\) 0 0
\(928\) 593.886i 0.639963i
\(929\) 656.011i 0.706147i 0.935596 + 0.353074i \(0.114863\pi\)
−0.935596 + 0.353074i \(0.885137\pi\)
\(930\) 0 0
\(931\) −567.071 −0.609099
\(932\) 338.303 0.362986
\(933\) 0 0
\(934\) 1560.94 1.67124
\(935\) 106.695 + 471.589i 0.114112 + 0.504373i
\(936\) 0 0
\(937\) 1448.23i 1.54560i 0.634650 + 0.772800i \(0.281144\pi\)
−0.634650 + 0.772800i \(0.718856\pi\)
\(938\) −153.847 −0.164016
\(939\) 0 0
\(940\) 528.900 119.661i 0.562660 0.127299i
\(941\) 522.010i 0.554740i −0.960763 0.277370i \(-0.910537\pi\)
0.960763 0.277370i \(-0.0894627\pi\)
\(942\) 0 0
\(943\) 445.629i 0.472565i
\(944\) 851.905i 0.902441i
\(945\) 0 0
\(946\) −563.267 −0.595420
\(947\) 229.963 0.242833 0.121416 0.992602i \(-0.461256\pi\)
0.121416 + 0.992602i \(0.461256\pi\)
\(948\) 0 0
\(949\) −617.578 −0.650767
\(950\) 668.785 318.945i 0.703984 0.335732i
\(951\) 0 0
\(952\) 58.6148i 0.0615701i
\(953\) 1682.00 1.76496 0.882479 0.470352i \(-0.155873\pi\)
0.882479 + 0.470352i \(0.155873\pi\)
\(954\) 0 0
\(955\) −126.113 557.416i −0.132055 0.583681i
\(956\) 480.613i 0.502734i
\(957\) 0 0
\(958\) 1225.93i 1.27967i
\(959\) 52.4605i 0.0547033i
\(960\) 0 0
\(961\) 988.658 1.02878
\(962\) 3466.01 3.60292
\(963\) 0 0
\(964\) −146.678 −0.152155
\(965\) 244.911 + 1082.50i 0.253794 + 1.12176i
\(966\) 0 0
\(967\) 720.519i 0.745107i 0.928011 + 0.372554i \(0.121518\pi\)
−0.928011 + 0.372554i \(0.878482\pi\)
\(968\) −42.4138 −0.0438159
\(969\) 0 0
\(970\) −300.203 1326.89i −0.309488 1.36793i
\(971\) 1031.47i 1.06227i −0.847286 0.531137i \(-0.821765\pi\)
0.847286 0.531137i \(-0.178235\pi\)
\(972\) 0 0
\(973\) 61.3142i 0.0630156i
\(974\) 2130.98i 2.18787i
\(975\) 0 0
\(976\) −1229.32 −1.25955
\(977\) 1321.30 1.35241 0.676204 0.736715i \(-0.263624\pi\)
0.676204 + 0.736715i \(0.263624\pi\)
\(978\) 0 0
\(979\) −421.875 −0.430924
\(980\) 590.760 133.657i 0.602817 0.136385i
\(981\) 0 0
\(982\) 300.813i 0.306327i
\(983\) −1211.86 −1.23282 −0.616410 0.787425i \(-0.711414\pi\)
−0.616410 + 0.787425i \(0.711414\pi\)
\(984\) 0 0
\(985\) 348.094 78.7547i 0.353395 0.0799540i
\(986\) 1263.20i 1.28114i
\(987\) 0 0
\(988\) 574.781i 0.581762i
\(989\) 669.894i 0.677345i
\(990\) 0 0
\(991\) −369.725 −0.373083 −0.186541 0.982447i \(-0.559728\pi\)
−0.186541 + 0.982447i \(0.559728\pi\)
\(992\) −1541.47 −1.55390
\(993\) 0 0
\(994\) −15.6421 −0.0157365
\(995\) −1387.75 + 313.972i −1.39472 + 0.315549i
\(996\) 0 0
\(997\) 335.786i 0.336796i −0.985719 0.168398i \(-0.946141\pi\)
0.985719 0.168398i \(-0.0538594\pi\)
\(998\) −2052.92 −2.05703
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.g.a.89.8 yes 40
3.2 odd 2 inner 495.3.g.a.89.34 yes 40
5.4 even 2 inner 495.3.g.a.89.33 yes 40
15.14 odd 2 inner 495.3.g.a.89.7 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
495.3.g.a.89.7 40 15.14 odd 2 inner
495.3.g.a.89.8 yes 40 1.1 even 1 trivial
495.3.g.a.89.33 yes 40 5.4 even 2 inner
495.3.g.a.89.34 yes 40 3.2 odd 2 inner