Properties

Label 495.3.g.a.89.38
Level $495$
Weight $3$
Character 495.89
Analytic conductor $13.488$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(89,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.89"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 89.38
Character \(\chi\) \(=\) 495.89
Dual form 495.3.g.a.89.37

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.53246 q^{2} +8.47824 q^{4} +(-4.02218 + 2.97020i) q^{5} +11.9775i q^{7} +15.8192 q^{8} +(-14.2082 + 10.4921i) q^{10} -3.31662i q^{11} +8.88033i q^{13} +42.3098i q^{14} +21.9676 q^{16} +20.9112 q^{17} -32.1345 q^{19} +(-34.1010 + 25.1821i) q^{20} -11.7158i q^{22} +25.5821 q^{23} +(7.35583 - 23.8933i) q^{25} +31.3694i q^{26} +101.548i q^{28} -6.07542i q^{29} +46.2603 q^{31} +14.3229 q^{32} +73.8677 q^{34} +(-35.5754 - 48.1754i) q^{35} -12.9739i q^{37} -113.514 q^{38} +(-63.6276 + 46.9862i) q^{40} +43.8120i q^{41} -48.3388i q^{43} -28.1192i q^{44} +90.3677 q^{46} +37.3165 q^{47} -94.4594 q^{49} +(25.9841 - 84.4022i) q^{50} +75.2896i q^{52} +82.3754 q^{53} +(9.85104 + 13.3401i) q^{55} +189.474i q^{56} -21.4611i q^{58} -48.1280i q^{59} -8.63837 q^{61} +163.412 q^{62} -37.2755 q^{64} +(-26.3764 - 35.7183i) q^{65} -49.8698i q^{67} +177.290 q^{68} +(-125.669 - 170.178i) q^{70} +3.62072i q^{71} -122.698i q^{73} -45.8297i q^{74} -272.444 q^{76} +39.7247 q^{77} -20.9703 q^{79} +(-88.3577 + 65.2483i) q^{80} +154.764i q^{82} -71.6603 q^{83} +(-84.1084 + 62.1103i) q^{85} -170.755i q^{86} -52.4663i q^{88} +83.5205i q^{89} -106.364 q^{91} +216.891 q^{92} +131.819 q^{94} +(129.251 - 95.4460i) q^{95} +73.3915i q^{97} -333.674 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 72 q^{4} + 8 q^{10} + 184 q^{16} - 80 q^{19} + 32 q^{25} - 16 q^{31} - 160 q^{34} - 136 q^{40} + 560 q^{46} - 104 q^{49} - 96 q^{61} + 264 q^{64} - 872 q^{70} - 176 q^{76} - 672 q^{79} + 16 q^{85}+ \cdots + 400 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.53246 1.76623 0.883114 0.469159i \(-0.155443\pi\)
0.883114 + 0.469159i \(0.155443\pi\)
\(3\) 0 0
\(4\) 8.47824 2.11956
\(5\) −4.02218 + 2.97020i −0.804436 + 0.594040i
\(6\) 0 0
\(7\) 11.9775i 1.71106i 0.517749 + 0.855532i \(0.326770\pi\)
−0.517749 + 0.855532i \(0.673230\pi\)
\(8\) 15.8192 1.97740
\(9\) 0 0
\(10\) −14.2082 + 10.4921i −1.42082 + 1.04921i
\(11\) 3.31662i 0.301511i
\(12\) 0 0
\(13\) 8.88033i 0.683102i 0.939863 + 0.341551i \(0.110952\pi\)
−0.939863 + 0.341551i \(0.889048\pi\)
\(14\) 42.3098i 3.02213i
\(15\) 0 0
\(16\) 21.9676 1.37298
\(17\) 20.9112 1.23007 0.615034 0.788500i \(-0.289142\pi\)
0.615034 + 0.788500i \(0.289142\pi\)
\(18\) 0 0
\(19\) −32.1345 −1.69129 −0.845646 0.533745i \(-0.820784\pi\)
−0.845646 + 0.533745i \(0.820784\pi\)
\(20\) −34.1010 + 25.1821i −1.70505 + 1.25910i
\(21\) 0 0
\(22\) 11.7158i 0.532538i
\(23\) 25.5821 1.11227 0.556133 0.831093i \(-0.312285\pi\)
0.556133 + 0.831093i \(0.312285\pi\)
\(24\) 0 0
\(25\) 7.35583 23.8933i 0.294233 0.955734i
\(26\) 31.3694i 1.20651i
\(27\) 0 0
\(28\) 101.548i 3.62671i
\(29\) 6.07542i 0.209497i −0.994499 0.104749i \(-0.966596\pi\)
0.994499 0.104749i \(-0.0334038\pi\)
\(30\) 0 0
\(31\) 46.2603 1.49227 0.746133 0.665797i \(-0.231908\pi\)
0.746133 + 0.665797i \(0.231908\pi\)
\(32\) 14.3229 0.447591
\(33\) 0 0
\(34\) 73.8677 2.17258
\(35\) −35.5754 48.1754i −1.01644 1.37644i
\(36\) 0 0
\(37\) 12.9739i 0.350646i −0.984511 0.175323i \(-0.943903\pi\)
0.984511 0.175323i \(-0.0560969\pi\)
\(38\) −113.514 −2.98721
\(39\) 0 0
\(40\) −63.6276 + 46.9862i −1.59069 + 1.17465i
\(41\) 43.8120i 1.06859i 0.845300 + 0.534293i \(0.179422\pi\)
−0.845300 + 0.534293i \(0.820578\pi\)
\(42\) 0 0
\(43\) 48.3388i 1.12416i −0.827083 0.562079i \(-0.810002\pi\)
0.827083 0.562079i \(-0.189998\pi\)
\(44\) 28.1192i 0.639072i
\(45\) 0 0
\(46\) 90.3677 1.96451
\(47\) 37.3165 0.793968 0.396984 0.917826i \(-0.370057\pi\)
0.396984 + 0.917826i \(0.370057\pi\)
\(48\) 0 0
\(49\) −94.4594 −1.92774
\(50\) 25.9841 84.4022i 0.519683 1.68804i
\(51\) 0 0
\(52\) 75.2896i 1.44788i
\(53\) 82.3754 1.55425 0.777126 0.629345i \(-0.216677\pi\)
0.777126 + 0.629345i \(0.216677\pi\)
\(54\) 0 0
\(55\) 9.85104 + 13.3401i 0.179110 + 0.242546i
\(56\) 189.474i 3.38346i
\(57\) 0 0
\(58\) 21.4611i 0.370020i
\(59\) 48.1280i 0.815728i −0.913043 0.407864i \(-0.866274\pi\)
0.913043 0.407864i \(-0.133726\pi\)
\(60\) 0 0
\(61\) −8.63837 −0.141613 −0.0708063 0.997490i \(-0.522557\pi\)
−0.0708063 + 0.997490i \(0.522557\pi\)
\(62\) 163.412 2.63568
\(63\) 0 0
\(64\) −37.2755 −0.582429
\(65\) −26.3764 35.7183i −0.405790 0.549512i
\(66\) 0 0
\(67\) 49.8698i 0.744325i −0.928168 0.372162i \(-0.878616\pi\)
0.928168 0.372162i \(-0.121384\pi\)
\(68\) 177.290 2.60720
\(69\) 0 0
\(70\) −125.669 170.178i −1.79527 2.43111i
\(71\) 3.62072i 0.0509960i 0.999675 + 0.0254980i \(0.00811715\pi\)
−0.999675 + 0.0254980i \(0.991883\pi\)
\(72\) 0 0
\(73\) 122.698i 1.68079i −0.541971 0.840397i \(-0.682322\pi\)
0.541971 0.840397i \(-0.317678\pi\)
\(74\) 45.8297i 0.619320i
\(75\) 0 0
\(76\) −272.444 −3.58479
\(77\) 39.7247 0.515905
\(78\) 0 0
\(79\) −20.9703 −0.265447 −0.132724 0.991153i \(-0.542372\pi\)
−0.132724 + 0.991153i \(0.542372\pi\)
\(80\) −88.3577 + 65.2483i −1.10447 + 0.815603i
\(81\) 0 0
\(82\) 154.764i 1.88737i
\(83\) −71.6603 −0.863377 −0.431689 0.902023i \(-0.642082\pi\)
−0.431689 + 0.902023i \(0.642082\pi\)
\(84\) 0 0
\(85\) −84.1084 + 62.1103i −0.989511 + 0.730710i
\(86\) 170.755i 1.98552i
\(87\) 0 0
\(88\) 52.4663i 0.596208i
\(89\) 83.5205i 0.938433i 0.883083 + 0.469216i \(0.155464\pi\)
−0.883083 + 0.469216i \(0.844536\pi\)
\(90\) 0 0
\(91\) −106.364 −1.16883
\(92\) 216.891 2.35751
\(93\) 0 0
\(94\) 131.819 1.40233
\(95\) 129.251 95.4460i 1.36053 1.00469i
\(96\) 0 0
\(97\) 73.3915i 0.756613i 0.925680 + 0.378306i \(0.123493\pi\)
−0.925680 + 0.378306i \(0.876507\pi\)
\(98\) −333.674 −3.40483
\(99\) 0 0
\(100\) 62.3645 202.574i 0.623645 2.02574i
\(101\) 47.4513i 0.469815i −0.972018 0.234907i \(-0.924521\pi\)
0.972018 0.234907i \(-0.0754787\pi\)
\(102\) 0 0
\(103\) 124.614i 1.20985i 0.796283 + 0.604925i \(0.206797\pi\)
−0.796283 + 0.604925i \(0.793203\pi\)
\(104\) 140.480i 1.35077i
\(105\) 0 0
\(106\) 290.987 2.74516
\(107\) 55.1994 0.515882 0.257941 0.966161i \(-0.416956\pi\)
0.257941 + 0.966161i \(0.416956\pi\)
\(108\) 0 0
\(109\) −153.102 −1.40460 −0.702302 0.711879i \(-0.747844\pi\)
−0.702302 + 0.711879i \(0.747844\pi\)
\(110\) 34.7984 + 47.1231i 0.316349 + 0.428392i
\(111\) 0 0
\(112\) 263.116i 2.34925i
\(113\) −79.0747 −0.699776 −0.349888 0.936791i \(-0.613780\pi\)
−0.349888 + 0.936791i \(0.613780\pi\)
\(114\) 0 0
\(115\) −102.896 + 75.9840i −0.894746 + 0.660730i
\(116\) 51.5089i 0.444042i
\(117\) 0 0
\(118\) 170.010i 1.44076i
\(119\) 250.462i 2.10473i
\(120\) 0 0
\(121\) −11.0000 −0.0909091
\(122\) −30.5146 −0.250120
\(123\) 0 0
\(124\) 392.206 3.16295
\(125\) 41.3816 + 117.952i 0.331053 + 0.943612i
\(126\) 0 0
\(127\) 145.813i 1.14813i 0.818808 + 0.574067i \(0.194635\pi\)
−0.818808 + 0.574067i \(0.805365\pi\)
\(128\) −188.966 −1.47629
\(129\) 0 0
\(130\) −93.1733 126.173i −0.716718 0.970563i
\(131\) 150.989i 1.15258i −0.817244 0.576292i \(-0.804499\pi\)
0.817244 0.576292i \(-0.195501\pi\)
\(132\) 0 0
\(133\) 384.890i 2.89391i
\(134\) 176.163i 1.31465i
\(135\) 0 0
\(136\) 330.798 2.43234
\(137\) 121.013 0.883304 0.441652 0.897186i \(-0.354393\pi\)
0.441652 + 0.897186i \(0.354393\pi\)
\(138\) 0 0
\(139\) 98.6998 0.710070 0.355035 0.934853i \(-0.384469\pi\)
0.355035 + 0.934853i \(0.384469\pi\)
\(140\) −301.617 408.443i −2.15441 2.91745i
\(141\) 0 0
\(142\) 12.7900i 0.0900706i
\(143\) 29.4527 0.205963
\(144\) 0 0
\(145\) 18.0452 + 24.4364i 0.124450 + 0.168527i
\(146\) 433.425i 2.96867i
\(147\) 0 0
\(148\) 109.996i 0.743215i
\(149\) 234.493i 1.57378i −0.617093 0.786890i \(-0.711690\pi\)
0.617093 0.786890i \(-0.288310\pi\)
\(150\) 0 0
\(151\) −128.844 −0.853268 −0.426634 0.904424i \(-0.640301\pi\)
−0.426634 + 0.904424i \(0.640301\pi\)
\(152\) −508.342 −3.34436
\(153\) 0 0
\(154\) 140.326 0.911207
\(155\) −186.067 + 137.402i −1.20043 + 0.886466i
\(156\) 0 0
\(157\) 102.290i 0.651527i 0.945451 + 0.325763i \(0.105621\pi\)
−0.945451 + 0.325763i \(0.894379\pi\)
\(158\) −74.0768 −0.468840
\(159\) 0 0
\(160\) −57.6093 + 42.5419i −0.360058 + 0.265887i
\(161\) 306.409i 1.90316i
\(162\) 0 0
\(163\) 84.0948i 0.515919i 0.966156 + 0.257959i \(0.0830501\pi\)
−0.966156 + 0.257959i \(0.916950\pi\)
\(164\) 371.449i 2.26493i
\(165\) 0 0
\(166\) −253.137 −1.52492
\(167\) 169.813 1.01685 0.508424 0.861107i \(-0.330228\pi\)
0.508424 + 0.861107i \(0.330228\pi\)
\(168\) 0 0
\(169\) 90.1397 0.533371
\(170\) −297.109 + 219.402i −1.74770 + 1.29060i
\(171\) 0 0
\(172\) 409.828i 2.38272i
\(173\) 85.9443 0.496788 0.248394 0.968659i \(-0.420097\pi\)
0.248394 + 0.968659i \(0.420097\pi\)
\(174\) 0 0
\(175\) 286.181 + 88.1041i 1.63532 + 0.503452i
\(176\) 72.8584i 0.413968i
\(177\) 0 0
\(178\) 295.033i 1.65749i
\(179\) 71.3623i 0.398672i −0.979931 0.199336i \(-0.936121\pi\)
0.979931 0.199336i \(-0.0638785\pi\)
\(180\) 0 0
\(181\) −26.5638 −0.146761 −0.0733807 0.997304i \(-0.523379\pi\)
−0.0733807 + 0.997304i \(0.523379\pi\)
\(182\) −375.725 −2.06442
\(183\) 0 0
\(184\) 404.688 2.19939
\(185\) 38.5351 + 52.1833i 0.208298 + 0.282072i
\(186\) 0 0
\(187\) 69.3545i 0.370880i
\(188\) 316.378 1.68286
\(189\) 0 0
\(190\) 456.573 337.159i 2.40301 1.77452i
\(191\) 226.785i 1.18735i −0.804703 0.593677i \(-0.797676\pi\)
0.804703 0.593677i \(-0.202324\pi\)
\(192\) 0 0
\(193\) 45.4162i 0.235317i −0.993054 0.117659i \(-0.962461\pi\)
0.993054 0.117659i \(-0.0375388\pi\)
\(194\) 259.252i 1.33635i
\(195\) 0 0
\(196\) −800.850 −4.08597
\(197\) 11.2017 0.0568612 0.0284306 0.999596i \(-0.490949\pi\)
0.0284306 + 0.999596i \(0.490949\pi\)
\(198\) 0 0
\(199\) 177.268 0.890794 0.445397 0.895333i \(-0.353063\pi\)
0.445397 + 0.895333i \(0.353063\pi\)
\(200\) 116.363 377.973i 0.581816 1.88987i
\(201\) 0 0
\(202\) 167.620i 0.829800i
\(203\) 72.7680 0.358463
\(204\) 0 0
\(205\) −130.130 176.220i −0.634782 0.859608i
\(206\) 440.195i 2.13687i
\(207\) 0 0
\(208\) 195.080i 0.937884i
\(209\) 106.578i 0.509943i
\(210\) 0 0
\(211\) 363.589 1.72317 0.861585 0.507613i \(-0.169472\pi\)
0.861585 + 0.507613i \(0.169472\pi\)
\(212\) 698.399 3.29433
\(213\) 0 0
\(214\) 194.989 0.911165
\(215\) 143.576 + 194.427i 0.667795 + 0.904313i
\(216\) 0 0
\(217\) 554.080i 2.55336i
\(218\) −540.825 −2.48085
\(219\) 0 0
\(220\) 83.5195 + 113.100i 0.379634 + 0.514092i
\(221\) 185.698i 0.840262i
\(222\) 0 0
\(223\) 300.794i 1.34885i 0.738342 + 0.674427i \(0.235609\pi\)
−0.738342 + 0.674427i \(0.764391\pi\)
\(224\) 171.552i 0.765858i
\(225\) 0 0
\(226\) −279.328 −1.23596
\(227\) −111.606 −0.491656 −0.245828 0.969313i \(-0.579060\pi\)
−0.245828 + 0.969313i \(0.579060\pi\)
\(228\) 0 0
\(229\) −56.8355 −0.248190 −0.124095 0.992270i \(-0.539603\pi\)
−0.124095 + 0.992270i \(0.539603\pi\)
\(230\) −363.475 + 268.410i −1.58033 + 1.16700i
\(231\) 0 0
\(232\) 96.1082i 0.414260i
\(233\) −193.708 −0.831366 −0.415683 0.909510i \(-0.636457\pi\)
−0.415683 + 0.909510i \(0.636457\pi\)
\(234\) 0 0
\(235\) −150.093 + 110.837i −0.638696 + 0.471648i
\(236\) 408.041i 1.72899i
\(237\) 0 0
\(238\) 884.748i 3.71743i
\(239\) 317.127i 1.32689i −0.748224 0.663446i \(-0.769093\pi\)
0.748224 0.663446i \(-0.230907\pi\)
\(240\) 0 0
\(241\) −280.493 −1.16387 −0.581935 0.813235i \(-0.697704\pi\)
−0.581935 + 0.813235i \(0.697704\pi\)
\(242\) −38.8570 −0.160566
\(243\) 0 0
\(244\) −73.2382 −0.300156
\(245\) 379.933 280.563i 1.55075 1.14516i
\(246\) 0 0
\(247\) 285.365i 1.15532i
\(248\) 731.800 2.95081
\(249\) 0 0
\(250\) 146.179 + 416.659i 0.584714 + 1.66663i
\(251\) 299.975i 1.19512i 0.801824 + 0.597560i \(0.203863\pi\)
−0.801824 + 0.597560i \(0.796137\pi\)
\(252\) 0 0
\(253\) 84.8463i 0.335361i
\(254\) 515.078i 2.02787i
\(255\) 0 0
\(256\) −518.411 −2.02504
\(257\) 326.950 1.27218 0.636090 0.771615i \(-0.280551\pi\)
0.636090 + 0.771615i \(0.280551\pi\)
\(258\) 0 0
\(259\) 155.394 0.599978
\(260\) −223.625 302.828i −0.860097 1.16472i
\(261\) 0 0
\(262\) 533.360i 2.03573i
\(263\) −60.3698 −0.229543 −0.114771 0.993392i \(-0.536614\pi\)
−0.114771 + 0.993392i \(0.536614\pi\)
\(264\) 0 0
\(265\) −331.328 + 244.671i −1.25030 + 0.923288i
\(266\) 1359.61i 5.11130i
\(267\) 0 0
\(268\) 422.808i 1.57764i
\(269\) 159.233i 0.591944i −0.955197 0.295972i \(-0.904356\pi\)
0.955197 0.295972i \(-0.0956435\pi\)
\(270\) 0 0
\(271\) −302.681 −1.11690 −0.558452 0.829537i \(-0.688605\pi\)
−0.558452 + 0.829537i \(0.688605\pi\)
\(272\) 459.369 1.68886
\(273\) 0 0
\(274\) 427.472 1.56012
\(275\) −79.2453 24.3965i −0.288165 0.0887146i
\(276\) 0 0
\(277\) 230.494i 0.832109i 0.909340 + 0.416054i \(0.136587\pi\)
−0.909340 + 0.416054i \(0.863413\pi\)
\(278\) 348.653 1.25415
\(279\) 0 0
\(280\) −562.775 762.097i −2.00991 2.72177i
\(281\) 216.007i 0.768708i 0.923186 + 0.384354i \(0.125576\pi\)
−0.923186 + 0.384354i \(0.874424\pi\)
\(282\) 0 0
\(283\) 475.434i 1.67998i −0.542601 0.839990i \(-0.682561\pi\)
0.542601 0.839990i \(-0.317439\pi\)
\(284\) 30.6973i 0.108089i
\(285\) 0 0
\(286\) 104.040 0.363778
\(287\) −524.756 −1.82842
\(288\) 0 0
\(289\) 148.277 0.513068
\(290\) 63.7439 + 86.3205i 0.219807 + 0.297657i
\(291\) 0 0
\(292\) 1040.26i 3.56255i
\(293\) 50.4047 0.172030 0.0860149 0.996294i \(-0.472587\pi\)
0.0860149 + 0.996294i \(0.472587\pi\)
\(294\) 0 0
\(295\) 142.950 + 193.579i 0.484575 + 0.656201i
\(296\) 205.237i 0.693367i
\(297\) 0 0
\(298\) 828.337i 2.77966i
\(299\) 227.178i 0.759791i
\(300\) 0 0
\(301\) 578.976 1.92351
\(302\) −455.134 −1.50707
\(303\) 0 0
\(304\) −705.920 −2.32210
\(305\) 34.7450 25.6577i 0.113918 0.0841235i
\(306\) 0 0
\(307\) 281.282i 0.916228i −0.888893 0.458114i \(-0.848525\pi\)
0.888893 0.458114i \(-0.151475\pi\)
\(308\) 336.796 1.09349
\(309\) 0 0
\(310\) −657.273 + 485.367i −2.12024 + 1.56570i
\(311\) 219.149i 0.704659i −0.935876 0.352330i \(-0.885390\pi\)
0.935876 0.352330i \(-0.114610\pi\)
\(312\) 0 0
\(313\) 134.925i 0.431071i 0.976496 + 0.215536i \(0.0691497\pi\)
−0.976496 + 0.215536i \(0.930850\pi\)
\(314\) 361.334i 1.15075i
\(315\) 0 0
\(316\) −177.792 −0.562632
\(317\) 204.752 0.645904 0.322952 0.946415i \(-0.395325\pi\)
0.322952 + 0.946415i \(0.395325\pi\)
\(318\) 0 0
\(319\) −20.1499 −0.0631658
\(320\) 149.929 110.716i 0.468527 0.345986i
\(321\) 0 0
\(322\) 1082.37i 3.36141i
\(323\) −671.970 −2.08040
\(324\) 0 0
\(325\) 212.181 + 65.3222i 0.652864 + 0.200991i
\(326\) 297.061i 0.911230i
\(327\) 0 0
\(328\) 693.071i 2.11302i
\(329\) 446.956i 1.35853i
\(330\) 0 0
\(331\) −273.536 −0.826391 −0.413196 0.910642i \(-0.635587\pi\)
−0.413196 + 0.910642i \(0.635587\pi\)
\(332\) −607.554 −1.82998
\(333\) 0 0
\(334\) 599.859 1.79598
\(335\) 148.123 + 200.585i 0.442159 + 0.598761i
\(336\) 0 0
\(337\) 8.13691i 0.0241451i −0.999927 0.0120726i \(-0.996157\pi\)
0.999927 0.0120726i \(-0.00384291\pi\)
\(338\) 318.415 0.942055
\(339\) 0 0
\(340\) −713.091 + 526.586i −2.09733 + 1.54878i
\(341\) 153.428i 0.449935i
\(342\) 0 0
\(343\) 544.488i 1.58743i
\(344\) 764.681i 2.22291i
\(345\) 0 0
\(346\) 303.595 0.877441
\(347\) 119.124 0.343296 0.171648 0.985158i \(-0.445091\pi\)
0.171648 + 0.985158i \(0.445091\pi\)
\(348\) 0 0
\(349\) −300.806 −0.861907 −0.430954 0.902374i \(-0.641823\pi\)
−0.430954 + 0.902374i \(0.641823\pi\)
\(350\) 1010.92 + 311.224i 2.88835 + 0.889211i
\(351\) 0 0
\(352\) 47.5037i 0.134954i
\(353\) −312.338 −0.884809 −0.442405 0.896816i \(-0.645874\pi\)
−0.442405 + 0.896816i \(0.645874\pi\)
\(354\) 0 0
\(355\) −10.7543 14.5632i −0.0302937 0.0410230i
\(356\) 708.107i 1.98907i
\(357\) 0 0
\(358\) 252.084i 0.704146i
\(359\) 534.106i 1.48776i −0.668313 0.743880i \(-0.732983\pi\)
0.668313 0.743880i \(-0.267017\pi\)
\(360\) 0 0
\(361\) 671.628 1.86047
\(362\) −93.8355 −0.259214
\(363\) 0 0
\(364\) −901.778 −2.47741
\(365\) 364.438 + 493.513i 0.998459 + 1.35209i
\(366\) 0 0
\(367\) 338.463i 0.922243i −0.887337 0.461122i \(-0.847447\pi\)
0.887337 0.461122i \(-0.152553\pi\)
\(368\) 561.978 1.52712
\(369\) 0 0
\(370\) 136.123 + 184.335i 0.367901 + 0.498203i
\(371\) 986.647i 2.65943i
\(372\) 0 0
\(373\) 202.496i 0.542884i 0.962455 + 0.271442i \(0.0875006\pi\)
−0.962455 + 0.271442i \(0.912499\pi\)
\(374\) 244.992i 0.655058i
\(375\) 0 0
\(376\) 590.317 1.56999
\(377\) 53.9517 0.143108
\(378\) 0 0
\(379\) −531.040 −1.40116 −0.700580 0.713574i \(-0.747075\pi\)
−0.700580 + 0.713574i \(0.747075\pi\)
\(380\) 1095.82 809.214i 2.88374 2.12951i
\(381\) 0 0
\(382\) 801.107i 2.09714i
\(383\) −530.502 −1.38512 −0.692561 0.721359i \(-0.743518\pi\)
−0.692561 + 0.721359i \(0.743518\pi\)
\(384\) 0 0
\(385\) −159.780 + 117.990i −0.415013 + 0.306468i
\(386\) 160.431i 0.415624i
\(387\) 0 0
\(388\) 622.231i 1.60369i
\(389\) 486.382i 1.25034i 0.780488 + 0.625170i \(0.214970\pi\)
−0.780488 + 0.625170i \(0.785030\pi\)
\(390\) 0 0
\(391\) 534.952 1.36816
\(392\) −1494.27 −3.81192
\(393\) 0 0
\(394\) 39.5694 0.100430
\(395\) 84.3464 62.2861i 0.213535 0.157686i
\(396\) 0 0
\(397\) 617.209i 1.55468i 0.629080 + 0.777341i \(0.283432\pi\)
−0.629080 + 0.777341i \(0.716568\pi\)
\(398\) 626.191 1.57334
\(399\) 0 0
\(400\) 161.590 524.880i 0.403975 1.31220i
\(401\) 90.3979i 0.225431i −0.993627 0.112716i \(-0.964045\pi\)
0.993627 0.112716i \(-0.0359549\pi\)
\(402\) 0 0
\(403\) 410.806i 1.01937i
\(404\) 402.303i 0.995801i
\(405\) 0 0
\(406\) 257.050 0.633128
\(407\) −43.0295 −0.105724
\(408\) 0 0
\(409\) 418.934 1.02429 0.512144 0.858900i \(-0.328851\pi\)
0.512144 + 0.858900i \(0.328851\pi\)
\(410\) −459.680 622.488i −1.12117 1.51826i
\(411\) 0 0
\(412\) 1056.51i 2.56435i
\(413\) 576.451 1.39576
\(414\) 0 0
\(415\) 288.230 212.845i 0.694531 0.512881i
\(416\) 127.192i 0.305751i
\(417\) 0 0
\(418\) 376.483i 0.900676i
\(419\) 701.649i 1.67458i 0.546759 + 0.837290i \(0.315861\pi\)
−0.546759 + 0.837290i \(0.684139\pi\)
\(420\) 0 0
\(421\) 282.781 0.671688 0.335844 0.941918i \(-0.390978\pi\)
0.335844 + 0.941918i \(0.390978\pi\)
\(422\) 1284.36 3.04351
\(423\) 0 0
\(424\) 1303.11 3.07338
\(425\) 153.819 499.638i 0.361927 1.17562i
\(426\) 0 0
\(427\) 103.466i 0.242308i
\(428\) 467.994 1.09344
\(429\) 0 0
\(430\) 507.176 + 686.806i 1.17948 + 1.59722i
\(431\) 87.2912i 0.202532i −0.994859 0.101266i \(-0.967711\pi\)
0.994859 0.101266i \(-0.0322893\pi\)
\(432\) 0 0
\(433\) 770.823i 1.78019i 0.455774 + 0.890096i \(0.349363\pi\)
−0.455774 + 0.890096i \(0.650637\pi\)
\(434\) 1957.26i 4.50982i
\(435\) 0 0
\(436\) −1298.03 −2.97714
\(437\) −822.069 −1.88116
\(438\) 0 0
\(439\) −736.791 −1.67834 −0.839170 0.543869i \(-0.816959\pi\)
−0.839170 + 0.543869i \(0.816959\pi\)
\(440\) 155.836 + 211.029i 0.354172 + 0.479611i
\(441\) 0 0
\(442\) 655.970i 1.48410i
\(443\) −643.473 −1.45253 −0.726267 0.687412i \(-0.758747\pi\)
−0.726267 + 0.687412i \(0.758747\pi\)
\(444\) 0 0
\(445\) −248.073 335.934i −0.557467 0.754909i
\(446\) 1062.54i 2.38238i
\(447\) 0 0
\(448\) 446.465i 0.996574i
\(449\) 571.450i 1.27272i −0.771393 0.636359i \(-0.780440\pi\)
0.771393 0.636359i \(-0.219560\pi\)
\(450\) 0 0
\(451\) 145.308 0.322191
\(452\) −670.415 −1.48322
\(453\) 0 0
\(454\) −394.243 −0.868377
\(455\) 427.814 315.922i 0.940250 0.694333i
\(456\) 0 0
\(457\) 335.758i 0.734700i 0.930083 + 0.367350i \(0.119735\pi\)
−0.930083 + 0.367350i \(0.880265\pi\)
\(458\) −200.769 −0.438360
\(459\) 0 0
\(460\) −872.375 + 644.211i −1.89647 + 1.40046i
\(461\) 588.712i 1.27703i 0.769608 + 0.638517i \(0.220452\pi\)
−0.769608 + 0.638517i \(0.779548\pi\)
\(462\) 0 0
\(463\) 108.334i 0.233983i 0.993133 + 0.116992i \(0.0373251\pi\)
−0.993133 + 0.116992i \(0.962675\pi\)
\(464\) 133.463i 0.287635i
\(465\) 0 0
\(466\) −684.266 −1.46838
\(467\) 22.9583 0.0491612 0.0245806 0.999698i \(-0.492175\pi\)
0.0245806 + 0.999698i \(0.492175\pi\)
\(468\) 0 0
\(469\) 597.313 1.27359
\(470\) −530.199 + 391.528i −1.12808 + 0.833039i
\(471\) 0 0
\(472\) 761.346i 1.61302i
\(473\) −160.322 −0.338947
\(474\) 0 0
\(475\) −236.376 + 767.801i −0.497634 + 1.61642i
\(476\) 2123.48i 4.46110i
\(477\) 0 0
\(478\) 1120.24i 2.34359i
\(479\) 654.037i 1.36542i −0.730689 0.682711i \(-0.760801\pi\)
0.730689 0.682711i \(-0.239199\pi\)
\(480\) 0 0
\(481\) 115.212 0.239527
\(482\) −990.828 −2.05566
\(483\) 0 0
\(484\) −93.2607 −0.192687
\(485\) −217.987 295.193i −0.449458 0.608646i
\(486\) 0 0
\(487\) 331.080i 0.679835i −0.940455 0.339918i \(-0.889601\pi\)
0.940455 0.339918i \(-0.110399\pi\)
\(488\) −136.652 −0.280025
\(489\) 0 0
\(490\) 1342.09 991.078i 2.73897 2.02261i
\(491\) 496.116i 1.01042i −0.862997 0.505210i \(-0.831415\pi\)
0.862997 0.505210i \(-0.168585\pi\)
\(492\) 0 0
\(493\) 127.044i 0.257696i
\(494\) 1008.04i 2.04057i
\(495\) 0 0
\(496\) 1016.23 2.04885
\(497\) −43.3670 −0.0872575
\(498\) 0 0
\(499\) −360.827 −0.723100 −0.361550 0.932353i \(-0.617752\pi\)
−0.361550 + 0.932353i \(0.617752\pi\)
\(500\) 350.843 + 1000.02i 0.701686 + 2.00004i
\(501\) 0 0
\(502\) 1059.65i 2.11085i
\(503\) −505.779 −1.00553 −0.502763 0.864425i \(-0.667683\pi\)
−0.502763 + 0.864425i \(0.667683\pi\)
\(504\) 0 0
\(505\) 140.940 + 190.857i 0.279089 + 0.377936i
\(506\) 299.716i 0.592323i
\(507\) 0 0
\(508\) 1236.24i 2.43354i
\(509\) 45.9736i 0.0903214i −0.998980 0.0451607i \(-0.985620\pi\)
0.998980 0.0451607i \(-0.0143800\pi\)
\(510\) 0 0
\(511\) 1469.61 2.87595
\(512\) −1075.40 −2.10039
\(513\) 0 0
\(514\) 1154.94 2.24696
\(515\) −370.130 501.222i −0.718699 0.973246i
\(516\) 0 0
\(517\) 123.765i 0.239390i
\(518\) 548.923 1.05970
\(519\) 0 0
\(520\) −417.253 565.034i −0.802409 1.08660i
\(521\) 768.500i 1.47505i −0.675321 0.737524i \(-0.735995\pi\)
0.675321 0.737524i \(-0.264005\pi\)
\(522\) 0 0
\(523\) 313.175i 0.598805i −0.954127 0.299402i \(-0.903213\pi\)
0.954127 0.299402i \(-0.0967873\pi\)
\(524\) 1280.12i 2.44297i
\(525\) 0 0
\(526\) −213.254 −0.405425
\(527\) 967.356 1.83559
\(528\) 0 0
\(529\) 125.444 0.237135
\(530\) −1170.40 + 864.291i −2.20831 + 1.63074i
\(531\) 0 0
\(532\) 3263.19i 6.13382i
\(533\) −389.065 −0.729953
\(534\) 0 0
\(535\) −222.022 + 163.953i −0.414994 + 0.306454i
\(536\) 788.899i 1.47183i
\(537\) 0 0
\(538\) 562.483i 1.04551i
\(539\) 313.286i 0.581236i
\(540\) 0 0
\(541\) −447.242 −0.826695 −0.413348 0.910573i \(-0.635641\pi\)
−0.413348 + 0.910573i \(0.635641\pi\)
\(542\) −1069.21 −1.97271
\(543\) 0 0
\(544\) 299.509 0.550568
\(545\) 615.803 454.743i 1.12991 0.834391i
\(546\) 0 0
\(547\) 869.109i 1.58886i −0.607353 0.794432i \(-0.707769\pi\)
0.607353 0.794432i \(-0.292231\pi\)
\(548\) 1025.98 1.87222
\(549\) 0 0
\(550\) −279.930 86.1796i −0.508964 0.156690i
\(551\) 195.231i 0.354321i
\(552\) 0 0
\(553\) 251.171i 0.454197i
\(554\) 814.210i 1.46969i
\(555\) 0 0
\(556\) 836.801 1.50504
\(557\) −259.488 −0.465867 −0.232934 0.972493i \(-0.574833\pi\)
−0.232934 + 0.972493i \(0.574833\pi\)
\(558\) 0 0
\(559\) 429.265 0.767916
\(560\) −781.508 1058.30i −1.39555 1.88982i
\(561\) 0 0
\(562\) 763.035i 1.35771i
\(563\) −74.5811 −0.132471 −0.0662355 0.997804i \(-0.521099\pi\)
−0.0662355 + 0.997804i \(0.521099\pi\)
\(564\) 0 0
\(565\) 318.053 234.868i 0.562925 0.415695i
\(566\) 1679.45i 2.96723i
\(567\) 0 0
\(568\) 57.2768i 0.100839i
\(569\) 532.055i 0.935070i 0.883975 + 0.467535i \(0.154858\pi\)
−0.883975 + 0.467535i \(0.845142\pi\)
\(570\) 0 0
\(571\) 751.794 1.31663 0.658313 0.752744i \(-0.271270\pi\)
0.658313 + 0.752744i \(0.271270\pi\)
\(572\) 249.707 0.436551
\(573\) 0 0
\(574\) −1853.68 −3.22940
\(575\) 188.178 611.242i 0.327265 1.06303i
\(576\) 0 0
\(577\) 9.96725i 0.0172743i 0.999963 + 0.00863713i \(0.00274932\pi\)
−0.999963 + 0.00863713i \(0.997251\pi\)
\(578\) 523.781 0.906195
\(579\) 0 0
\(580\) 152.992 + 207.178i 0.263779 + 0.357203i
\(581\) 858.308i 1.47729i
\(582\) 0 0
\(583\) 273.208i 0.468625i
\(584\) 1940.98i 3.32360i
\(585\) 0 0
\(586\) 178.052 0.303844
\(587\) 186.077 0.316997 0.158499 0.987359i \(-0.449335\pi\)
0.158499 + 0.987359i \(0.449335\pi\)
\(588\) 0 0
\(589\) −1486.55 −2.52386
\(590\) 504.963 + 683.810i 0.855870 + 1.15900i
\(591\) 0 0
\(592\) 285.006i 0.481429i
\(593\) −114.489 −0.193067 −0.0965335 0.995330i \(-0.530776\pi\)
−0.0965335 + 0.995330i \(0.530776\pi\)
\(594\) 0 0
\(595\) −743.924 1007.40i −1.25029 1.69312i
\(596\) 1988.09i 3.33572i
\(597\) 0 0
\(598\) 802.495i 1.34196i
\(599\) 735.724i 1.22825i −0.789208 0.614127i \(-0.789508\pi\)
0.789208 0.614127i \(-0.210492\pi\)
\(600\) 0 0
\(601\) −1066.26 −1.77415 −0.887075 0.461625i \(-0.847267\pi\)
−0.887075 + 0.461625i \(0.847267\pi\)
\(602\) 2045.21 3.39735
\(603\) 0 0
\(604\) −1092.37 −1.80855
\(605\) 44.2440 32.6722i 0.0731305 0.0540036i
\(606\) 0 0
\(607\) 336.422i 0.554238i −0.960836 0.277119i \(-0.910620\pi\)
0.960836 0.277119i \(-0.0893796\pi\)
\(608\) −460.260 −0.757007
\(609\) 0 0
\(610\) 122.735 90.6346i 0.201205 0.148581i
\(611\) 331.383i 0.542361i
\(612\) 0 0
\(613\) 56.5327i 0.0922231i 0.998936 + 0.0461115i \(0.0146830\pi\)
−0.998936 + 0.0461115i \(0.985317\pi\)
\(614\) 993.617i 1.61827i
\(615\) 0 0
\(616\) 628.413 1.02015
\(617\) −107.194 −0.173734 −0.0868669 0.996220i \(-0.527685\pi\)
−0.0868669 + 0.996220i \(0.527685\pi\)
\(618\) 0 0
\(619\) 551.896 0.891593 0.445796 0.895134i \(-0.352921\pi\)
0.445796 + 0.895134i \(0.352921\pi\)
\(620\) −1577.52 + 1164.93i −2.54439 + 1.87892i
\(621\) 0 0
\(622\) 774.134i 1.24459i
\(623\) −1000.36 −1.60572
\(624\) 0 0
\(625\) −516.784 351.511i −0.826854 0.562417i
\(626\) 476.618i 0.761370i
\(627\) 0 0
\(628\) 867.237i 1.38095i
\(629\) 271.299i 0.431318i
\(630\) 0 0
\(631\) 187.206 0.296681 0.148341 0.988936i \(-0.452607\pi\)
0.148341 + 0.988936i \(0.452607\pi\)
\(632\) −331.734 −0.524895
\(633\) 0 0
\(634\) 723.276 1.14081
\(635\) −433.094 586.486i −0.682038 0.923600i
\(636\) 0 0
\(637\) 838.831i 1.31685i
\(638\) −71.1786 −0.111565
\(639\) 0 0
\(640\) 760.053 561.266i 1.18758 0.876978i
\(641\) 980.284i 1.52930i 0.644444 + 0.764652i \(0.277089\pi\)
−0.644444 + 0.764652i \(0.722911\pi\)
\(642\) 0 0
\(643\) 579.355i 0.901019i −0.892772 0.450509i \(-0.851242\pi\)
0.892772 0.450509i \(-0.148758\pi\)
\(644\) 2597.81i 4.03386i
\(645\) 0 0
\(646\) −2373.71 −3.67447
\(647\) 68.4383 0.105778 0.0528890 0.998600i \(-0.483157\pi\)
0.0528890 + 0.998600i \(0.483157\pi\)
\(648\) 0 0
\(649\) −159.622 −0.245951
\(650\) 749.519 + 230.748i 1.15311 + 0.354996i
\(651\) 0 0
\(652\) 712.976i 1.09352i
\(653\) 1064.76 1.63057 0.815285 0.579060i \(-0.196580\pi\)
0.815285 + 0.579060i \(0.196580\pi\)
\(654\) 0 0
\(655\) 448.466 + 607.303i 0.684681 + 0.927180i
\(656\) 962.446i 1.46714i
\(657\) 0 0
\(658\) 1578.85i 2.39947i
\(659\) 435.812i 0.661323i −0.943749 0.330662i \(-0.892728\pi\)
0.943749 0.330662i \(-0.107272\pi\)
\(660\) 0 0
\(661\) −883.343 −1.33637 −0.668187 0.743994i \(-0.732929\pi\)
−0.668187 + 0.743994i \(0.732929\pi\)
\(662\) −966.252 −1.45960
\(663\) 0 0
\(664\) −1133.61 −1.70724
\(665\) 1143.20 + 1548.10i 1.71910 + 2.32796i
\(666\) 0 0
\(667\) 155.422i 0.233017i
\(668\) 1439.72 2.15527
\(669\) 0 0
\(670\) 523.238 + 708.558i 0.780953 + 1.05755i
\(671\) 28.6502i 0.0426978i
\(672\) 0 0
\(673\) 1191.28i 1.77010i −0.465493 0.885052i \(-0.654123\pi\)
0.465493 0.885052i \(-0.345877\pi\)
\(674\) 28.7433i 0.0426458i
\(675\) 0 0
\(676\) 764.227 1.13051
\(677\) 98.6878 0.145772 0.0728861 0.997340i \(-0.476779\pi\)
0.0728861 + 0.997340i \(0.476779\pi\)
\(678\) 0 0
\(679\) −879.043 −1.29461
\(680\) −1330.53 + 982.535i −1.95666 + 1.44491i
\(681\) 0 0
\(682\) 541.977i 0.794688i
\(683\) −243.769 −0.356910 −0.178455 0.983948i \(-0.557110\pi\)
−0.178455 + 0.983948i \(0.557110\pi\)
\(684\) 0 0
\(685\) −486.735 + 359.432i −0.710561 + 0.524718i
\(686\) 1923.38i 2.80376i
\(687\) 0 0
\(688\) 1061.89i 1.54344i
\(689\) 731.521i 1.06171i
\(690\) 0 0
\(691\) 126.468 0.183022 0.0915109 0.995804i \(-0.470830\pi\)
0.0915109 + 0.995804i \(0.470830\pi\)
\(692\) 728.657 1.05297
\(693\) 0 0
\(694\) 420.800 0.606340
\(695\) −396.988 + 293.158i −0.571206 + 0.421810i
\(696\) 0 0
\(697\) 916.160i 1.31443i
\(698\) −1062.58 −1.52232
\(699\) 0 0
\(700\) 2426.32 + 746.968i 3.46617 + 1.06710i
\(701\) 564.200i 0.804851i 0.915453 + 0.402425i \(0.131833\pi\)
−0.915453 + 0.402425i \(0.868167\pi\)
\(702\) 0 0
\(703\) 416.910i 0.593044i
\(704\) 123.629i 0.175609i
\(705\) 0 0
\(706\) −1103.32 −1.56277
\(707\) 568.346 0.803883
\(708\) 0 0
\(709\) 937.330 1.32204 0.661022 0.750366i \(-0.270123\pi\)
0.661022 + 0.750366i \(0.270123\pi\)
\(710\) −37.9889 51.4437i −0.0535055 0.0724560i
\(711\) 0 0
\(712\) 1321.23i 1.85566i
\(713\) 1183.44 1.65980
\(714\) 0 0
\(715\) −118.464 + 87.4805i −0.165684 + 0.122350i
\(716\) 605.027i 0.845010i
\(717\) 0 0
\(718\) 1886.70i 2.62772i
\(719\) 397.871i 0.553368i −0.960961 0.276684i \(-0.910765\pi\)
0.960961 0.276684i \(-0.0892355\pi\)
\(720\) 0 0
\(721\) −1492.56 −2.07013
\(722\) 2372.50 3.28601
\(723\) 0 0
\(724\) −225.214 −0.311070
\(725\) −145.162 44.6897i −0.200224 0.0616410i
\(726\) 0 0
\(727\) 830.580i 1.14248i −0.820785 0.571238i \(-0.806463\pi\)
0.820785 0.571238i \(-0.193537\pi\)
\(728\) −1682.59 −2.31125
\(729\) 0 0
\(730\) 1287.36 + 1743.31i 1.76351 + 2.38810i
\(731\) 1010.82i 1.38279i
\(732\) 0 0
\(733\) 275.106i 0.375316i −0.982234 0.187658i \(-0.939910\pi\)
0.982234 0.187658i \(-0.0600896\pi\)
\(734\) 1195.61i 1.62889i
\(735\) 0 0
\(736\) 366.410 0.497840
\(737\) −165.399 −0.224422
\(738\) 0 0
\(739\) −299.185 −0.404851 −0.202425 0.979298i \(-0.564882\pi\)
−0.202425 + 0.979298i \(0.564882\pi\)
\(740\) 326.710 + 442.423i 0.441499 + 0.597869i
\(741\) 0 0
\(742\) 3485.29i 4.69715i
\(743\) −1268.06 −1.70668 −0.853340 0.521355i \(-0.825427\pi\)
−0.853340 + 0.521355i \(0.825427\pi\)
\(744\) 0 0
\(745\) 696.492 + 943.174i 0.934889 + 1.26601i
\(746\) 715.308i 0.958858i
\(747\) 0 0
\(748\) 588.004i 0.786102i
\(749\) 661.148i 0.882707i
\(750\) 0 0
\(751\) −462.879 −0.616350 −0.308175 0.951330i \(-0.599718\pi\)
−0.308175 + 0.951330i \(0.599718\pi\)
\(752\) 819.755 1.09010
\(753\) 0 0
\(754\) 190.582 0.252761
\(755\) 518.232 382.691i 0.686399 0.506876i
\(756\) 0 0
\(757\) 233.013i 0.307811i 0.988086 + 0.153905i \(0.0491851\pi\)
−0.988086 + 0.153905i \(0.950815\pi\)
\(758\) −1875.87 −2.47477
\(759\) 0 0
\(760\) 2044.64 1509.88i 2.69032 1.98668i
\(761\) 596.489i 0.783823i 0.920003 + 0.391911i \(0.128186\pi\)
−0.920003 + 0.391911i \(0.871814\pi\)
\(762\) 0 0
\(763\) 1833.77i 2.40337i
\(764\) 1922.74i 2.51667i
\(765\) 0 0
\(766\) −1873.97 −2.44644
\(767\) 427.392 0.557226
\(768\) 0 0
\(769\) 64.2763 0.0835843 0.0417922 0.999126i \(-0.486693\pi\)
0.0417922 + 0.999126i \(0.486693\pi\)
\(770\) −564.415 + 416.796i −0.733007 + 0.541293i
\(771\) 0 0
\(772\) 385.050i 0.498769i
\(773\) −669.406 −0.865985 −0.432992 0.901398i \(-0.642542\pi\)
−0.432992 + 0.901398i \(0.642542\pi\)
\(774\) 0 0
\(775\) 340.282 1105.31i 0.439074 1.42621i
\(776\) 1160.99i 1.49613i
\(777\) 0 0
\(778\) 1718.12i 2.20839i
\(779\) 1407.88i 1.80729i
\(780\) 0 0
\(781\) 12.0086 0.0153759
\(782\) 1889.69 2.41649
\(783\) 0 0
\(784\) −2075.05 −2.64675
\(785\) −303.821 411.427i −0.387033 0.524111i
\(786\) 0 0
\(787\) 1304.38i 1.65740i 0.559690 + 0.828702i \(0.310920\pi\)
−0.559690 + 0.828702i \(0.689080\pi\)
\(788\) 94.9704 0.120521
\(789\) 0 0
\(790\) 297.950 220.023i 0.377152 0.278510i
\(791\) 947.114i 1.19736i
\(792\) 0 0
\(793\) 76.7115i 0.0967359i
\(794\) 2180.26i 2.74592i
\(795\) 0 0
\(796\) 1502.92 1.88809
\(797\) −507.312 −0.636527 −0.318263 0.948002i \(-0.603100\pi\)
−0.318263 + 0.948002i \(0.603100\pi\)
\(798\) 0 0
\(799\) 780.331 0.976634
\(800\) 105.357 342.222i 0.131696 0.427778i
\(801\) 0 0
\(802\) 319.327i 0.398163i
\(803\) −406.943 −0.506779
\(804\) 0 0
\(805\) −910.095 1232.43i −1.13055 1.53097i
\(806\) 1451.16i 1.80044i
\(807\) 0 0
\(808\) 750.641i 0.929011i
\(809\) 782.832i 0.967654i −0.875164 0.483827i \(-0.839246\pi\)
0.875164 0.483827i \(-0.160754\pi\)
\(810\) 0 0
\(811\) −1182.73 −1.45836 −0.729178 0.684324i \(-0.760097\pi\)
−0.729178 + 0.684324i \(0.760097\pi\)
\(812\) 616.945 0.759785
\(813\) 0 0
\(814\) −152.000 −0.186732
\(815\) −249.778 338.244i −0.306476 0.415023i
\(816\) 0 0
\(817\) 1553.35i 1.90128i
\(818\) 1479.87 1.80913
\(819\) 0 0
\(820\) −1103.28 1494.03i −1.34546 1.82199i
\(821\) 317.113i 0.386253i −0.981174 0.193126i \(-0.938137\pi\)
0.981174 0.193126i \(-0.0618627\pi\)
\(822\) 0 0
\(823\) 606.110i 0.736465i −0.929734 0.368232i \(-0.879963\pi\)
0.929734 0.368232i \(-0.120037\pi\)
\(824\) 1971.30i 2.39236i
\(825\) 0 0
\(826\) 2036.29 2.46524
\(827\) 84.2509 0.101875 0.0509377 0.998702i \(-0.483779\pi\)
0.0509377 + 0.998702i \(0.483779\pi\)
\(828\) 0 0
\(829\) 1297.66 1.56533 0.782666 0.622441i \(-0.213859\pi\)
0.782666 + 0.622441i \(0.213859\pi\)
\(830\) 1018.16 751.867i 1.22670 0.905864i
\(831\) 0 0
\(832\) 331.019i 0.397859i
\(833\) −1975.26 −2.37126
\(834\) 0 0
\(835\) −683.020 + 504.380i −0.817988 + 0.604048i
\(836\) 903.596i 1.08086i
\(837\) 0 0
\(838\) 2478.54i 2.95769i
\(839\) 1523.93i 1.81637i −0.418574 0.908183i \(-0.637470\pi\)
0.418574 0.908183i \(-0.362530\pi\)
\(840\) 0 0
\(841\) 804.089 0.956111
\(842\) 998.911 1.18635
\(843\) 0 0
\(844\) 3082.60 3.65237
\(845\) −362.558 + 267.733i −0.429063 + 0.316844i
\(846\) 0 0
\(847\) 131.752i 0.155551i
\(848\) 1809.59 2.13395
\(849\) 0 0
\(850\) 543.358 1764.95i 0.639245 2.07641i
\(851\) 331.900i 0.390011i
\(852\) 0 0
\(853\) 940.069i 1.10207i −0.834481 0.551037i \(-0.814232\pi\)
0.834481 0.551037i \(-0.185768\pi\)
\(854\) 365.488i 0.427972i
\(855\) 0 0
\(856\) 873.209 1.02010
\(857\) −403.572 −0.470912 −0.235456 0.971885i \(-0.575658\pi\)
−0.235456 + 0.971885i \(0.575658\pi\)
\(858\) 0 0
\(859\) 1546.38 1.80021 0.900107 0.435669i \(-0.143488\pi\)
0.900107 + 0.435669i \(0.143488\pi\)
\(860\) 1217.27 + 1648.40i 1.41543 + 1.91675i
\(861\) 0 0
\(862\) 308.352i 0.357717i
\(863\) 1545.58 1.79094 0.895470 0.445122i \(-0.146840\pi\)
0.895470 + 0.445122i \(0.146840\pi\)
\(864\) 0 0
\(865\) −345.683 + 255.272i −0.399634 + 0.295112i
\(866\) 2722.90i 3.14422i
\(867\) 0 0
\(868\) 4697.63i 5.41201i
\(869\) 69.5507i 0.0800354i
\(870\) 0 0
\(871\) 442.860 0.508450
\(872\) −2421.95 −2.77746
\(873\) 0 0
\(874\) −2903.92 −3.32257
\(875\) −1412.76 + 495.646i −1.61458 + 0.566452i
\(876\) 0 0
\(877\) 958.856i 1.09334i −0.837350 0.546668i \(-0.815896\pi\)
0.837350 0.546668i \(-0.184104\pi\)
\(878\) −2602.68 −2.96433
\(879\) 0 0
\(880\) 216.404 + 293.049i 0.245914 + 0.333011i
\(881\) 431.579i 0.489874i 0.969539 + 0.244937i \(0.0787673\pi\)
−0.969539 + 0.244937i \(0.921233\pi\)
\(882\) 0 0
\(883\) 517.909i 0.586534i −0.956031 0.293267i \(-0.905258\pi\)
0.956031 0.293267i \(-0.0947425\pi\)
\(884\) 1574.39i 1.78099i
\(885\) 0 0
\(886\) −2273.04 −2.56551
\(887\) 873.218 0.984462 0.492231 0.870465i \(-0.336181\pi\)
0.492231 + 0.870465i \(0.336181\pi\)
\(888\) 0 0
\(889\) −1746.47 −1.96453
\(890\) −876.306 1186.67i −0.984613 1.33334i
\(891\) 0 0
\(892\) 2550.21i 2.85898i
\(893\) −1199.15 −1.34283
\(894\) 0 0
\(895\) 211.960 + 287.032i 0.236827 + 0.320706i
\(896\) 2263.33i 2.52603i
\(897\) 0 0
\(898\) 2018.62i 2.24791i
\(899\) 281.050i 0.312626i
\(900\) 0 0
\(901\) 1722.56 1.91184
\(902\) 513.294 0.569062
\(903\) 0 0
\(904\) −1250.90 −1.38374
\(905\) 106.844 78.8998i 0.118060 0.0871821i
\(906\) 0 0
\(907\) 1007.47i 1.11077i 0.831592 + 0.555387i \(0.187430\pi\)
−0.831592 + 0.555387i \(0.812570\pi\)
\(908\) −946.222 −1.04210
\(909\) 0 0
\(910\) 1511.23 1115.98i 1.66070 1.22635i
\(911\) 939.296i 1.03106i 0.856871 + 0.515530i \(0.172405\pi\)
−0.856871 + 0.515530i \(0.827595\pi\)
\(912\) 0 0
\(913\) 237.670i 0.260318i
\(914\) 1186.05i 1.29765i
\(915\) 0 0
\(916\) −481.865 −0.526053
\(917\) 1808.46 1.97215
\(918\) 0 0
\(919\) −668.911 −0.727868 −0.363934 0.931425i \(-0.618567\pi\)
−0.363934 + 0.931425i \(0.618567\pi\)
\(920\) −1627.73 + 1202.01i −1.76927 + 1.30653i
\(921\) 0 0
\(922\) 2079.60i 2.25553i
\(923\) −32.1532 −0.0348355
\(924\) 0 0
\(925\) −309.990 95.4337i −0.335124 0.103172i
\(926\) 382.686i 0.413268i
\(927\) 0 0
\(928\) 87.0177i 0.0937691i
\(929\) 613.010i 0.659860i 0.944005 + 0.329930i \(0.107025\pi\)
−0.944005 + 0.329930i \(0.892975\pi\)
\(930\) 0 0
\(931\) 3035.41 3.26037
\(932\) −1642.30 −1.76213
\(933\) 0 0
\(934\) 81.0992 0.0868299
\(935\) 205.997 + 278.956i 0.220317 + 0.298349i
\(936\) 0 0
\(937\) 525.834i 0.561189i 0.959826 + 0.280594i \(0.0905315\pi\)
−0.959826 + 0.280594i \(0.909468\pi\)
\(938\) 2109.98 2.24945
\(939\) 0 0
\(940\) −1272.53 + 939.706i −1.35375 + 0.999688i
\(941\) 156.165i 0.165957i −0.996551 0.0829783i \(-0.973557\pi\)
0.996551 0.0829783i \(-0.0264432\pi\)
\(942\) 0 0
\(943\) 1120.80i 1.18855i
\(944\) 1057.26i 1.11998i
\(945\) 0 0
\(946\) −566.330 −0.598657
\(947\) −516.506 −0.545413 −0.272706 0.962097i \(-0.587919\pi\)
−0.272706 + 0.962097i \(0.587919\pi\)
\(948\) 0 0
\(949\) 1089.60 1.14815
\(950\) −834.988 + 2712.22i −0.878934 + 2.85497i
\(951\) 0 0
\(952\) 3962.12i 4.16189i
\(953\) 1407.50 1.47691 0.738456 0.674302i \(-0.235555\pi\)
0.738456 + 0.674302i \(0.235555\pi\)
\(954\) 0 0
\(955\) 673.596 + 912.168i 0.705336 + 0.955150i
\(956\) 2688.68i 2.81243i
\(957\) 0 0
\(958\) 2310.36i 2.41165i
\(959\) 1449.42i 1.51139i
\(960\) 0 0
\(961\) 1179.01 1.22686
\(962\) 406.983 0.423059
\(963\) 0 0
\(964\) −2378.09 −2.46689
\(965\) 134.895 + 182.672i 0.139788 + 0.189297i
\(966\) 0 0
\(967\) 472.714i 0.488846i −0.969669 0.244423i \(-0.921401\pi\)
0.969669 0.244423i \(-0.0785986\pi\)
\(968\) −174.011 −0.179764
\(969\) 0 0
\(970\) −770.030 1042.76i −0.793846 1.07501i
\(971\) 44.7781i 0.0461154i −0.999734 0.0230577i \(-0.992660\pi\)
0.999734 0.0230577i \(-0.00734015\pi\)
\(972\) 0 0
\(973\) 1182.17i 1.21498i
\(974\) 1169.52i 1.20074i
\(975\) 0 0
\(976\) −189.764 −0.194431
\(977\) 671.923 0.687741 0.343870 0.939017i \(-0.388262\pi\)
0.343870 + 0.939017i \(0.388262\pi\)
\(978\) 0 0
\(979\) 277.006 0.282948
\(980\) 3221.16 2378.68i 3.28690 2.42723i
\(981\) 0 0
\(982\) 1752.51i 1.78463i
\(983\) 778.514 0.791977 0.395989 0.918255i \(-0.370402\pi\)
0.395989 + 0.918255i \(0.370402\pi\)
\(984\) 0 0
\(985\) −45.0551 + 33.2712i −0.0457412 + 0.0337779i
\(986\) 448.777i 0.455150i
\(987\) 0 0
\(988\) 2419.40i 2.44878i
\(989\) 1236.61i 1.25036i
\(990\) 0 0
\(991\) 23.1742 0.0233846 0.0116923 0.999932i \(-0.496278\pi\)
0.0116923 + 0.999932i \(0.496278\pi\)
\(992\) 662.582 0.667925
\(993\) 0 0
\(994\) −153.192 −0.154117
\(995\) −713.003 + 526.521i −0.716586 + 0.529167i
\(996\) 0 0
\(997\) 878.080i 0.880722i 0.897821 + 0.440361i \(0.145150\pi\)
−0.897821 + 0.440361i \(0.854850\pi\)
\(998\) −1274.60 −1.27716
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.g.a.89.38 yes 40
3.2 odd 2 inner 495.3.g.a.89.4 yes 40
5.4 even 2 inner 495.3.g.a.89.3 40
15.14 odd 2 inner 495.3.g.a.89.37 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
495.3.g.a.89.3 40 5.4 even 2 inner
495.3.g.a.89.4 yes 40 3.2 odd 2 inner
495.3.g.a.89.37 yes 40 15.14 odd 2 inner
495.3.g.a.89.38 yes 40 1.1 even 1 trivial