Properties

Label 495.3.e.a.386.15
Level $495$
Weight $3$
Character 495.386
Analytic conductor $13.488$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(386,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.386"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 386.15
Character \(\chi\) \(=\) 495.386
Dual form 495.3.e.a.386.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.11561i q^{2} +2.75541 q^{4} -2.23607i q^{5} -12.6993 q^{7} +7.53641i q^{8} +2.49458 q^{10} +3.31662i q^{11} -9.12509 q^{13} -14.1675i q^{14} +2.61397 q^{16} -31.5229i q^{17} -9.04678 q^{19} -6.16129i q^{20} -3.70006 q^{22} +4.42287i q^{23} -5.00000 q^{25} -10.1800i q^{26} -34.9920 q^{28} -44.8219i q^{29} -27.6070 q^{31} +33.0618i q^{32} +35.1673 q^{34} +28.3966i q^{35} -60.3888 q^{37} -10.0927i q^{38} +16.8519 q^{40} +24.6869i q^{41} -77.7411 q^{43} +9.13868i q^{44} -4.93420 q^{46} -2.98217i q^{47} +112.273 q^{49} -5.57805i q^{50} -25.1434 q^{52} -20.5037i q^{53} +7.41620 q^{55} -95.7075i q^{56} +50.0038 q^{58} +41.2471i q^{59} +26.1992 q^{61} -30.7987i q^{62} -26.4282 q^{64} +20.4043i q^{65} +107.643 q^{67} -86.8586i q^{68} -31.6795 q^{70} +17.9972i q^{71} -82.8666 q^{73} -67.3703i q^{74} -24.9276 q^{76} -42.1190i q^{77} -66.0390 q^{79} -5.84501i q^{80} -27.5409 q^{82} -70.6886i q^{83} -70.4873 q^{85} -86.7288i q^{86} -24.9954 q^{88} -12.0920i q^{89} +115.883 q^{91} +12.1869i q^{92} +3.32694 q^{94} +20.2292i q^{95} +67.7241 q^{97} +125.253i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 40 q^{4} - 32 q^{7} + 40 q^{10} + 48 q^{13} - 24 q^{16} - 120 q^{25} + 128 q^{28} + 96 q^{31} + 112 q^{34} - 320 q^{37} - 120 q^{40} + 208 q^{43} - 288 q^{46} + 296 q^{49} - 192 q^{52} + 96 q^{58}+ \cdots + 576 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.11561i 0.557805i 0.960319 + 0.278902i \(0.0899706\pi\)
−0.960319 + 0.278902i \(0.910029\pi\)
\(3\) 0 0
\(4\) 2.75541 0.688854
\(5\) − 2.23607i − 0.447214i
\(6\) 0 0
\(7\) −12.6993 −1.81419 −0.907096 0.420923i \(-0.861706\pi\)
−0.907096 + 0.420923i \(0.861706\pi\)
\(8\) 7.53641i 0.942051i
\(9\) 0 0
\(10\) 2.49458 0.249458
\(11\) 3.31662i 0.301511i
\(12\) 0 0
\(13\) −9.12509 −0.701930 −0.350965 0.936389i \(-0.614146\pi\)
−0.350965 + 0.936389i \(0.614146\pi\)
\(14\) − 14.1675i − 1.01197i
\(15\) 0 0
\(16\) 2.61397 0.163373
\(17\) − 31.5229i − 1.85429i −0.374705 0.927144i \(-0.622256\pi\)
0.374705 0.927144i \(-0.377744\pi\)
\(18\) 0 0
\(19\) −9.04678 −0.476147 −0.238073 0.971247i \(-0.576516\pi\)
−0.238073 + 0.971247i \(0.576516\pi\)
\(20\) − 6.16129i − 0.308065i
\(21\) 0 0
\(22\) −3.70006 −0.168185
\(23\) 4.42287i 0.192299i 0.995367 + 0.0961494i \(0.0306527\pi\)
−0.995367 + 0.0961494i \(0.969347\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) − 10.1800i − 0.391540i
\(27\) 0 0
\(28\) −34.9920 −1.24971
\(29\) − 44.8219i − 1.54558i −0.634660 0.772792i \(-0.718860\pi\)
0.634660 0.772792i \(-0.281140\pi\)
\(30\) 0 0
\(31\) −27.6070 −0.890550 −0.445275 0.895394i \(-0.646894\pi\)
−0.445275 + 0.895394i \(0.646894\pi\)
\(32\) 33.0618i 1.03318i
\(33\) 0 0
\(34\) 35.1673 1.03433
\(35\) 28.3966i 0.811332i
\(36\) 0 0
\(37\) −60.3888 −1.63213 −0.816065 0.577960i \(-0.803849\pi\)
−0.816065 + 0.577960i \(0.803849\pi\)
\(38\) − 10.0927i − 0.265597i
\(39\) 0 0
\(40\) 16.8519 0.421298
\(41\) 24.6869i 0.602119i 0.953605 + 0.301059i \(0.0973402\pi\)
−0.953605 + 0.301059i \(0.902660\pi\)
\(42\) 0 0
\(43\) −77.7411 −1.80793 −0.903966 0.427603i \(-0.859358\pi\)
−0.903966 + 0.427603i \(0.859358\pi\)
\(44\) 9.13868i 0.207697i
\(45\) 0 0
\(46\) −4.93420 −0.107265
\(47\) − 2.98217i − 0.0634505i −0.999497 0.0317252i \(-0.989900\pi\)
0.999497 0.0317252i \(-0.0101001\pi\)
\(48\) 0 0
\(49\) 112.273 2.29129
\(50\) − 5.57805i − 0.111561i
\(51\) 0 0
\(52\) −25.1434 −0.483527
\(53\) − 20.5037i − 0.386863i −0.981114 0.193431i \(-0.938038\pi\)
0.981114 0.193431i \(-0.0619616\pi\)
\(54\) 0 0
\(55\) 7.41620 0.134840
\(56\) − 95.7075i − 1.70906i
\(57\) 0 0
\(58\) 50.0038 0.862134
\(59\) 41.2471i 0.699104i 0.936917 + 0.349552i \(0.113666\pi\)
−0.936917 + 0.349552i \(0.886334\pi\)
\(60\) 0 0
\(61\) 26.1992 0.429495 0.214747 0.976670i \(-0.431107\pi\)
0.214747 + 0.976670i \(0.431107\pi\)
\(62\) − 30.7987i − 0.496753i
\(63\) 0 0
\(64\) −26.4282 −0.412940
\(65\) 20.4043i 0.313913i
\(66\) 0 0
\(67\) 107.643 1.60661 0.803307 0.595565i \(-0.203072\pi\)
0.803307 + 0.595565i \(0.203072\pi\)
\(68\) − 86.8586i − 1.27733i
\(69\) 0 0
\(70\) −31.6795 −0.452565
\(71\) 17.9972i 0.253482i 0.991936 + 0.126741i \(0.0404517\pi\)
−0.991936 + 0.126741i \(0.959548\pi\)
\(72\) 0 0
\(73\) −82.8666 −1.13516 −0.567580 0.823319i \(-0.692120\pi\)
−0.567580 + 0.823319i \(0.692120\pi\)
\(74\) − 67.3703i − 0.910410i
\(75\) 0 0
\(76\) −24.9276 −0.327995
\(77\) − 42.1190i − 0.547000i
\(78\) 0 0
\(79\) −66.0390 −0.835937 −0.417968 0.908462i \(-0.637258\pi\)
−0.417968 + 0.908462i \(0.637258\pi\)
\(80\) − 5.84501i − 0.0730627i
\(81\) 0 0
\(82\) −27.5409 −0.335865
\(83\) − 70.6886i − 0.851669i −0.904801 0.425835i \(-0.859981\pi\)
0.904801 0.425835i \(-0.140019\pi\)
\(84\) 0 0
\(85\) −70.4873 −0.829263
\(86\) − 86.7288i − 1.00847i
\(87\) 0 0
\(88\) −24.9954 −0.284039
\(89\) − 12.0920i − 0.135865i −0.997690 0.0679324i \(-0.978360\pi\)
0.997690 0.0679324i \(-0.0216402\pi\)
\(90\) 0 0
\(91\) 115.883 1.27344
\(92\) 12.1869i 0.132466i
\(93\) 0 0
\(94\) 3.32694 0.0353930
\(95\) 20.2292i 0.212939i
\(96\) 0 0
\(97\) 67.7241 0.698187 0.349094 0.937088i \(-0.386490\pi\)
0.349094 + 0.937088i \(0.386490\pi\)
\(98\) 125.253i 1.27810i
\(99\) 0 0
\(100\) −13.7771 −0.137771
\(101\) − 114.701i − 1.13566i −0.823146 0.567829i \(-0.807783\pi\)
0.823146 0.567829i \(-0.192217\pi\)
\(102\) 0 0
\(103\) 79.4536 0.771394 0.385697 0.922626i \(-0.373961\pi\)
0.385697 + 0.922626i \(0.373961\pi\)
\(104\) − 68.7704i − 0.661254i
\(105\) 0 0
\(106\) 22.8741 0.215794
\(107\) 50.9166i 0.475856i 0.971283 + 0.237928i \(0.0764682\pi\)
−0.971283 + 0.237928i \(0.923532\pi\)
\(108\) 0 0
\(109\) −66.0009 −0.605512 −0.302756 0.953068i \(-0.597907\pi\)
−0.302756 + 0.953068i \(0.597907\pi\)
\(110\) 8.27358i 0.0752144i
\(111\) 0 0
\(112\) −33.1957 −0.296390
\(113\) 115.631i 1.02328i 0.859199 + 0.511642i \(0.170963\pi\)
−0.859199 + 0.511642i \(0.829037\pi\)
\(114\) 0 0
\(115\) 9.88985 0.0859987
\(116\) − 123.503i − 1.06468i
\(117\) 0 0
\(118\) −46.0157 −0.389964
\(119\) 400.320i 3.36404i
\(120\) 0 0
\(121\) −11.0000 −0.0909091
\(122\) 29.2280i 0.239574i
\(123\) 0 0
\(124\) −76.0689 −0.613459
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) 138.530 1.09079 0.545394 0.838180i \(-0.316380\pi\)
0.545394 + 0.838180i \(0.316380\pi\)
\(128\) 102.764i 0.802841i
\(129\) 0 0
\(130\) −22.7633 −0.175102
\(131\) 222.548i 1.69884i 0.527715 + 0.849421i \(0.323049\pi\)
−0.527715 + 0.849421i \(0.676951\pi\)
\(132\) 0 0
\(133\) 114.888 0.863822
\(134\) 120.088i 0.896178i
\(135\) 0 0
\(136\) 237.569 1.74683
\(137\) 25.0512i 0.182855i 0.995812 + 0.0914276i \(0.0291430\pi\)
−0.995812 + 0.0914276i \(0.970857\pi\)
\(138\) 0 0
\(139\) 277.204 1.99427 0.997135 0.0756377i \(-0.0240992\pi\)
0.997135 + 0.0756377i \(0.0240992\pi\)
\(140\) 78.2444i 0.558889i
\(141\) 0 0
\(142\) −20.0779 −0.141393
\(143\) − 30.2645i − 0.211640i
\(144\) 0 0
\(145\) −100.225 −0.691206
\(146\) − 92.4468i − 0.633197i
\(147\) 0 0
\(148\) −166.396 −1.12430
\(149\) 185.398i 1.24428i 0.782904 + 0.622142i \(0.213737\pi\)
−0.782904 + 0.622142i \(0.786263\pi\)
\(150\) 0 0
\(151\) 23.6428 0.156575 0.0782873 0.996931i \(-0.475055\pi\)
0.0782873 + 0.996931i \(0.475055\pi\)
\(152\) − 68.1802i − 0.448554i
\(153\) 0 0
\(154\) 46.9883 0.305119
\(155\) 61.7312i 0.398266i
\(156\) 0 0
\(157\) 116.640 0.742927 0.371464 0.928448i \(-0.378856\pi\)
0.371464 + 0.928448i \(0.378856\pi\)
\(158\) − 73.6738i − 0.466290i
\(159\) 0 0
\(160\) 73.9284 0.462053
\(161\) − 56.1676i − 0.348867i
\(162\) 0 0
\(163\) −186.451 −1.14387 −0.571936 0.820298i \(-0.693808\pi\)
−0.571936 + 0.820298i \(0.693808\pi\)
\(164\) 68.0226i 0.414772i
\(165\) 0 0
\(166\) 78.8608 0.475065
\(167\) − 69.4681i − 0.415976i −0.978131 0.207988i \(-0.933308\pi\)
0.978131 0.207988i \(-0.0666916\pi\)
\(168\) 0 0
\(169\) −85.7328 −0.507295
\(170\) − 78.6364i − 0.462567i
\(171\) 0 0
\(172\) −214.209 −1.24540
\(173\) 23.4828i 0.135739i 0.997694 + 0.0678694i \(0.0216201\pi\)
−0.997694 + 0.0678694i \(0.978380\pi\)
\(174\) 0 0
\(175\) 63.4967 0.362839
\(176\) 8.66956i 0.0492588i
\(177\) 0 0
\(178\) 13.4899 0.0757860
\(179\) − 124.336i − 0.694615i −0.937751 0.347308i \(-0.887096\pi\)
0.937751 0.347308i \(-0.112904\pi\)
\(180\) 0 0
\(181\) 27.5614 0.152273 0.0761363 0.997097i \(-0.475742\pi\)
0.0761363 + 0.997097i \(0.475742\pi\)
\(182\) 129.280i 0.710329i
\(183\) 0 0
\(184\) −33.3326 −0.181155
\(185\) 135.033i 0.729911i
\(186\) 0 0
\(187\) 104.550 0.559089
\(188\) − 8.21712i − 0.0437081i
\(189\) 0 0
\(190\) −22.5679 −0.118779
\(191\) − 197.513i − 1.03410i −0.855956 0.517049i \(-0.827030\pi\)
0.855956 0.517049i \(-0.172970\pi\)
\(192\) 0 0
\(193\) −332.235 −1.72143 −0.860713 0.509090i \(-0.829982\pi\)
−0.860713 + 0.509090i \(0.829982\pi\)
\(194\) 75.5537i 0.389452i
\(195\) 0 0
\(196\) 309.360 1.57837
\(197\) − 281.286i − 1.42785i −0.700224 0.713923i \(-0.746916\pi\)
0.700224 0.713923i \(-0.253084\pi\)
\(198\) 0 0
\(199\) 13.8710 0.0697036 0.0348518 0.999392i \(-0.488904\pi\)
0.0348518 + 0.999392i \(0.488904\pi\)
\(200\) − 37.6820i − 0.188410i
\(201\) 0 0
\(202\) 127.962 0.633476
\(203\) 569.209i 2.80399i
\(204\) 0 0
\(205\) 55.2015 0.269276
\(206\) 88.6392i 0.430287i
\(207\) 0 0
\(208\) −23.8527 −0.114676
\(209\) − 30.0048i − 0.143564i
\(210\) 0 0
\(211\) −260.034 −1.23239 −0.616193 0.787595i \(-0.711326\pi\)
−0.616193 + 0.787595i \(0.711326\pi\)
\(212\) − 56.4962i − 0.266492i
\(213\) 0 0
\(214\) −56.8030 −0.265435
\(215\) 173.834i 0.808532i
\(216\) 0 0
\(217\) 350.591 1.61563
\(218\) − 73.6312i − 0.337758i
\(219\) 0 0
\(220\) 20.4347 0.0928850
\(221\) 287.649i 1.30158i
\(222\) 0 0
\(223\) −391.761 −1.75678 −0.878388 0.477947i \(-0.841381\pi\)
−0.878388 + 0.477947i \(0.841381\pi\)
\(224\) − 419.863i − 1.87439i
\(225\) 0 0
\(226\) −128.999 −0.570793
\(227\) 211.525i 0.931828i 0.884830 + 0.465914i \(0.154274\pi\)
−0.884830 + 0.465914i \(0.845726\pi\)
\(228\) 0 0
\(229\) −50.3417 −0.219833 −0.109916 0.993941i \(-0.535058\pi\)
−0.109916 + 0.993941i \(0.535058\pi\)
\(230\) 11.0332i 0.0479705i
\(231\) 0 0
\(232\) 337.796 1.45602
\(233\) 371.450i 1.59421i 0.603843 + 0.797104i \(0.293636\pi\)
−0.603843 + 0.797104i \(0.706364\pi\)
\(234\) 0 0
\(235\) −6.66834 −0.0283759
\(236\) 113.653i 0.481580i
\(237\) 0 0
\(238\) −446.601 −1.87648
\(239\) − 402.590i − 1.68448i −0.539104 0.842239i \(-0.681237\pi\)
0.539104 0.842239i \(-0.318763\pi\)
\(240\) 0 0
\(241\) 309.549 1.28443 0.642217 0.766523i \(-0.278015\pi\)
0.642217 + 0.766523i \(0.278015\pi\)
\(242\) − 12.2717i − 0.0507095i
\(243\) 0 0
\(244\) 72.1896 0.295859
\(245\) − 251.051i − 1.02470i
\(246\) 0 0
\(247\) 82.5527 0.334221
\(248\) − 208.058i − 0.838943i
\(249\) 0 0
\(250\) −12.4729 −0.0498916
\(251\) 135.958i 0.541666i 0.962626 + 0.270833i \(0.0872991\pi\)
−0.962626 + 0.270833i \(0.912701\pi\)
\(252\) 0 0
\(253\) −14.6690 −0.0579803
\(254\) 154.545i 0.608446i
\(255\) 0 0
\(256\) −220.357 −0.860769
\(257\) − 296.823i − 1.15495i −0.816407 0.577476i \(-0.804038\pi\)
0.816407 0.577476i \(-0.195962\pi\)
\(258\) 0 0
\(259\) 766.898 2.96100
\(260\) 56.2224i 0.216240i
\(261\) 0 0
\(262\) −248.277 −0.947623
\(263\) 194.114i 0.738075i 0.929414 + 0.369038i \(0.120313\pi\)
−0.929414 + 0.369038i \(0.879687\pi\)
\(264\) 0 0
\(265\) −45.8477 −0.173010
\(266\) 128.170i 0.481844i
\(267\) 0 0
\(268\) 296.602 1.10672
\(269\) − 243.609i − 0.905608i −0.891610 0.452804i \(-0.850424\pi\)
0.891610 0.452804i \(-0.149576\pi\)
\(270\) 0 0
\(271\) 82.0767 0.302866 0.151433 0.988468i \(-0.451611\pi\)
0.151433 + 0.988468i \(0.451611\pi\)
\(272\) − 82.3999i − 0.302941i
\(273\) 0 0
\(274\) −27.9473 −0.101998
\(275\) − 16.5831i − 0.0603023i
\(276\) 0 0
\(277\) −375.339 −1.35501 −0.677507 0.735517i \(-0.736939\pi\)
−0.677507 + 0.735517i \(0.736939\pi\)
\(278\) 309.251i 1.11241i
\(279\) 0 0
\(280\) −214.008 −0.764316
\(281\) − 490.945i − 1.74713i −0.486704 0.873567i \(-0.661801\pi\)
0.486704 0.873567i \(-0.338199\pi\)
\(282\) 0 0
\(283\) 71.6683 0.253245 0.126623 0.991951i \(-0.459586\pi\)
0.126623 + 0.991951i \(0.459586\pi\)
\(284\) 49.5898i 0.174612i
\(285\) 0 0
\(286\) 33.7634 0.118054
\(287\) − 313.507i − 1.09236i
\(288\) 0 0
\(289\) −704.693 −2.43838
\(290\) − 111.812i − 0.385558i
\(291\) 0 0
\(292\) −228.332 −0.781959
\(293\) − 234.351i − 0.799832i −0.916552 0.399916i \(-0.869039\pi\)
0.916552 0.399916i \(-0.130961\pi\)
\(294\) 0 0
\(295\) 92.2314 0.312649
\(296\) − 455.115i − 1.53755i
\(297\) 0 0
\(298\) −206.832 −0.694068
\(299\) − 40.3591i − 0.134980i
\(300\) 0 0
\(301\) 987.261 3.27994
\(302\) 26.3761i 0.0873380i
\(303\) 0 0
\(304\) −23.6480 −0.0777895
\(305\) − 58.5831i − 0.192076i
\(306\) 0 0
\(307\) 224.422 0.731018 0.365509 0.930808i \(-0.380895\pi\)
0.365509 + 0.930808i \(0.380895\pi\)
\(308\) − 116.055i − 0.376803i
\(309\) 0 0
\(310\) −68.8680 −0.222155
\(311\) − 195.641i − 0.629071i −0.949246 0.314536i \(-0.898151\pi\)
0.949246 0.314536i \(-0.101849\pi\)
\(312\) 0 0
\(313\) 266.861 0.852592 0.426296 0.904584i \(-0.359818\pi\)
0.426296 + 0.904584i \(0.359818\pi\)
\(314\) 130.124i 0.414408i
\(315\) 0 0
\(316\) −181.965 −0.575838
\(317\) 365.911i 1.15429i 0.816641 + 0.577146i \(0.195834\pi\)
−0.816641 + 0.577146i \(0.804166\pi\)
\(318\) 0 0
\(319\) 148.657 0.466011
\(320\) 59.0952i 0.184673i
\(321\) 0 0
\(322\) 62.6611 0.194600
\(323\) 285.181i 0.882913i
\(324\) 0 0
\(325\) 45.6254 0.140386
\(326\) − 208.007i − 0.638058i
\(327\) 0 0
\(328\) −186.050 −0.567227
\(329\) 37.8716i 0.115111i
\(330\) 0 0
\(331\) −156.291 −0.472177 −0.236089 0.971732i \(-0.575866\pi\)
−0.236089 + 0.971732i \(0.575866\pi\)
\(332\) − 194.776i − 0.586676i
\(333\) 0 0
\(334\) 77.4993 0.232034
\(335\) − 240.698i − 0.718500i
\(336\) 0 0
\(337\) 79.3564 0.235479 0.117739 0.993045i \(-0.462435\pi\)
0.117739 + 0.993045i \(0.462435\pi\)
\(338\) − 95.6443i − 0.282971i
\(339\) 0 0
\(340\) −194.222 −0.571241
\(341\) − 91.5622i − 0.268511i
\(342\) 0 0
\(343\) −803.531 −2.34266
\(344\) − 585.889i − 1.70316i
\(345\) 0 0
\(346\) −26.1976 −0.0757157
\(347\) − 461.970i − 1.33133i −0.746253 0.665663i \(-0.768149\pi\)
0.746253 0.665663i \(-0.231851\pi\)
\(348\) 0 0
\(349\) −470.245 −1.34741 −0.673703 0.739002i \(-0.735297\pi\)
−0.673703 + 0.739002i \(0.735297\pi\)
\(350\) 70.8376i 0.202393i
\(351\) 0 0
\(352\) −109.654 −0.311516
\(353\) 97.9301i 0.277422i 0.990333 + 0.138711i \(0.0442960\pi\)
−0.990333 + 0.138711i \(0.955704\pi\)
\(354\) 0 0
\(355\) 40.2430 0.113360
\(356\) − 33.3184i − 0.0935909i
\(357\) 0 0
\(358\) 138.711 0.387460
\(359\) 318.455i 0.887063i 0.896259 + 0.443531i \(0.146274\pi\)
−0.896259 + 0.443531i \(0.853726\pi\)
\(360\) 0 0
\(361\) −279.156 −0.773284
\(362\) 30.7477i 0.0849384i
\(363\) 0 0
\(364\) 319.305 0.877211
\(365\) 185.295i 0.507659i
\(366\) 0 0
\(367\) −99.3286 −0.270650 −0.135325 0.990801i \(-0.543208\pi\)
−0.135325 + 0.990801i \(0.543208\pi\)
\(368\) 11.5613i 0.0314165i
\(369\) 0 0
\(370\) −150.645 −0.407148
\(371\) 260.384i 0.701843i
\(372\) 0 0
\(373\) 294.653 0.789953 0.394977 0.918691i \(-0.370753\pi\)
0.394977 + 0.918691i \(0.370753\pi\)
\(374\) 116.637i 0.311862i
\(375\) 0 0
\(376\) 22.4749 0.0597736
\(377\) 409.004i 1.08489i
\(378\) 0 0
\(379\) −187.832 −0.495599 −0.247800 0.968811i \(-0.579707\pi\)
−0.247800 + 0.968811i \(0.579707\pi\)
\(380\) 55.7399i 0.146684i
\(381\) 0 0
\(382\) 220.347 0.576825
\(383\) − 469.714i − 1.22641i −0.789924 0.613204i \(-0.789880\pi\)
0.789924 0.613204i \(-0.210120\pi\)
\(384\) 0 0
\(385\) −94.1809 −0.244626
\(386\) − 370.645i − 0.960220i
\(387\) 0 0
\(388\) 186.608 0.480949
\(389\) 108.264i 0.278314i 0.990270 + 0.139157i \(0.0444393\pi\)
−0.990270 + 0.139157i \(0.955561\pi\)
\(390\) 0 0
\(391\) 139.422 0.356577
\(392\) 846.138i 2.15852i
\(393\) 0 0
\(394\) 313.805 0.796460
\(395\) 147.668i 0.373842i
\(396\) 0 0
\(397\) −295.766 −0.745003 −0.372502 0.928032i \(-0.621500\pi\)
−0.372502 + 0.928032i \(0.621500\pi\)
\(398\) 15.4746i 0.0388810i
\(399\) 0 0
\(400\) −13.0698 −0.0326746
\(401\) − 199.002i − 0.496265i −0.968726 0.248132i \(-0.920183\pi\)
0.968726 0.248132i \(-0.0798168\pi\)
\(402\) 0 0
\(403\) 251.917 0.625104
\(404\) − 316.050i − 0.782302i
\(405\) 0 0
\(406\) −635.015 −1.56408
\(407\) − 200.287i − 0.492106i
\(408\) 0 0
\(409\) −180.714 −0.441843 −0.220922 0.975292i \(-0.570906\pi\)
−0.220922 + 0.975292i \(0.570906\pi\)
\(410\) 61.5834i 0.150203i
\(411\) 0 0
\(412\) 218.928 0.531377
\(413\) − 523.812i − 1.26831i
\(414\) 0 0
\(415\) −158.064 −0.380878
\(416\) − 301.692i − 0.725221i
\(417\) 0 0
\(418\) 33.4736 0.0800805
\(419\) − 419.400i − 1.00096i −0.865750 0.500478i \(-0.833158\pi\)
0.865750 0.500478i \(-0.166842\pi\)
\(420\) 0 0
\(421\) 624.508 1.48339 0.741696 0.670736i \(-0.234022\pi\)
0.741696 + 0.670736i \(0.234022\pi\)
\(422\) − 290.096i − 0.687431i
\(423\) 0 0
\(424\) 154.524 0.364444
\(425\) 157.614i 0.370858i
\(426\) 0 0
\(427\) −332.712 −0.779186
\(428\) 140.296i 0.327795i
\(429\) 0 0
\(430\) −193.931 −0.451003
\(431\) 195.941i 0.454618i 0.973823 + 0.227309i \(0.0729928\pi\)
−0.973823 + 0.227309i \(0.927007\pi\)
\(432\) 0 0
\(433\) 474.712 1.09633 0.548167 0.836369i \(-0.315326\pi\)
0.548167 + 0.836369i \(0.315326\pi\)
\(434\) 391.123i 0.901206i
\(435\) 0 0
\(436\) −181.860 −0.417109
\(437\) − 40.0128i − 0.0915624i
\(438\) 0 0
\(439\) −834.138 −1.90009 −0.950044 0.312117i \(-0.898962\pi\)
−0.950044 + 0.312117i \(0.898962\pi\)
\(440\) 55.8915i 0.127026i
\(441\) 0 0
\(442\) −320.904 −0.726028
\(443\) 290.154i 0.654975i 0.944855 + 0.327488i \(0.106202\pi\)
−0.944855 + 0.327488i \(0.893798\pi\)
\(444\) 0 0
\(445\) −27.0384 −0.0607606
\(446\) − 437.053i − 0.979939i
\(447\) 0 0
\(448\) 335.621 0.749153
\(449\) 440.567i 0.981219i 0.871380 + 0.490610i \(0.163226\pi\)
−0.871380 + 0.490610i \(0.836774\pi\)
\(450\) 0 0
\(451\) −81.8771 −0.181546
\(452\) 318.612i 0.704893i
\(453\) 0 0
\(454\) −235.979 −0.519778
\(455\) − 259.121i − 0.569498i
\(456\) 0 0
\(457\) 655.012 1.43329 0.716643 0.697440i \(-0.245678\pi\)
0.716643 + 0.697440i \(0.245678\pi\)
\(458\) − 56.1616i − 0.122624i
\(459\) 0 0
\(460\) 27.2506 0.0592405
\(461\) 205.888i 0.446612i 0.974748 + 0.223306i \(0.0716849\pi\)
−0.974748 + 0.223306i \(0.928315\pi\)
\(462\) 0 0
\(463\) 195.172 0.421538 0.210769 0.977536i \(-0.432403\pi\)
0.210769 + 0.977536i \(0.432403\pi\)
\(464\) − 117.163i − 0.252507i
\(465\) 0 0
\(466\) −414.394 −0.889257
\(467\) − 544.431i − 1.16580i −0.812542 0.582902i \(-0.801917\pi\)
0.812542 0.582902i \(-0.198083\pi\)
\(468\) 0 0
\(469\) −1367.00 −2.91471
\(470\) − 7.43926i − 0.0158282i
\(471\) 0 0
\(472\) −310.855 −0.658592
\(473\) − 257.838i − 0.545112i
\(474\) 0 0
\(475\) 45.2339 0.0952293
\(476\) 1103.05i 2.31733i
\(477\) 0 0
\(478\) 449.134 0.939610
\(479\) − 492.669i − 1.02854i −0.857630 0.514268i \(-0.828064\pi\)
0.857630 0.514268i \(-0.171936\pi\)
\(480\) 0 0
\(481\) 551.053 1.14564
\(482\) 345.336i 0.716464i
\(483\) 0 0
\(484\) −30.3096 −0.0626231
\(485\) − 151.436i − 0.312239i
\(486\) 0 0
\(487\) −349.610 −0.717886 −0.358943 0.933360i \(-0.616863\pi\)
−0.358943 + 0.933360i \(0.616863\pi\)
\(488\) 197.448i 0.404606i
\(489\) 0 0
\(490\) 280.075 0.571582
\(491\) 135.851i 0.276683i 0.990385 + 0.138341i \(0.0441771\pi\)
−0.990385 + 0.138341i \(0.955823\pi\)
\(492\) 0 0
\(493\) −1412.92 −2.86596
\(494\) 92.0966i 0.186430i
\(495\) 0 0
\(496\) −72.1640 −0.145492
\(497\) − 228.553i − 0.459865i
\(498\) 0 0
\(499\) −84.6656 −0.169671 −0.0848353 0.996395i \(-0.527036\pi\)
−0.0848353 + 0.996395i \(0.527036\pi\)
\(500\) 30.8065i 0.0616129i
\(501\) 0 0
\(502\) −151.676 −0.302144
\(503\) 405.710i 0.806581i 0.915072 + 0.403290i \(0.132134\pi\)
−0.915072 + 0.403290i \(0.867866\pi\)
\(504\) 0 0
\(505\) −256.480 −0.507882
\(506\) − 16.3649i − 0.0323417i
\(507\) 0 0
\(508\) 381.708 0.751393
\(509\) − 947.062i − 1.86063i −0.366758 0.930317i \(-0.619532\pi\)
0.366758 0.930317i \(-0.380468\pi\)
\(510\) 0 0
\(511\) 1052.35 2.05940
\(512\) 165.222i 0.322700i
\(513\) 0 0
\(514\) 331.138 0.644238
\(515\) − 177.664i − 0.344978i
\(516\) 0 0
\(517\) 9.89074 0.0191310
\(518\) 855.559i 1.65166i
\(519\) 0 0
\(520\) −153.775 −0.295722
\(521\) − 129.920i − 0.249367i −0.992197 0.124684i \(-0.960208\pi\)
0.992197 0.124684i \(-0.0397916\pi\)
\(522\) 0 0
\(523\) 477.650 0.913288 0.456644 0.889649i \(-0.349051\pi\)
0.456644 + 0.889649i \(0.349051\pi\)
\(524\) 613.213i 1.17025i
\(525\) 0 0
\(526\) −216.555 −0.411702
\(527\) 870.254i 1.65134i
\(528\) 0 0
\(529\) 509.438 0.963021
\(530\) − 51.1481i − 0.0965059i
\(531\) 0 0
\(532\) 316.565 0.595047
\(533\) − 225.270i − 0.422645i
\(534\) 0 0
\(535\) 113.853 0.212809
\(536\) 811.243i 1.51351i
\(537\) 0 0
\(538\) 271.772 0.505153
\(539\) 372.369i 0.690851i
\(540\) 0 0
\(541\) −963.454 −1.78088 −0.890438 0.455104i \(-0.849602\pi\)
−0.890438 + 0.455104i \(0.849602\pi\)
\(542\) 91.5655i 0.168940i
\(543\) 0 0
\(544\) 1042.20 1.91582
\(545\) 147.582i 0.270793i
\(546\) 0 0
\(547\) 433.672 0.792819 0.396410 0.918074i \(-0.370256\pi\)
0.396410 + 0.918074i \(0.370256\pi\)
\(548\) 69.0263i 0.125960i
\(549\) 0 0
\(550\) 18.5003 0.0336369
\(551\) 405.494i 0.735924i
\(552\) 0 0
\(553\) 838.652 1.51655
\(554\) − 418.731i − 0.755833i
\(555\) 0 0
\(556\) 763.811 1.37376
\(557\) − 728.503i − 1.30791i −0.756535 0.653953i \(-0.773110\pi\)
0.756535 0.653953i \(-0.226890\pi\)
\(558\) 0 0
\(559\) 709.395 1.26904
\(560\) 74.2279i 0.132550i
\(561\) 0 0
\(562\) 547.703 0.974560
\(563\) 468.762i 0.832615i 0.909224 + 0.416308i \(0.136676\pi\)
−0.909224 + 0.416308i \(0.863324\pi\)
\(564\) 0 0
\(565\) 258.559 0.457627
\(566\) 79.9539i 0.141261i
\(567\) 0 0
\(568\) −135.634 −0.238793
\(569\) − 50.4987i − 0.0887499i −0.999015 0.0443749i \(-0.985870\pi\)
0.999015 0.0443749i \(-0.0141296\pi\)
\(570\) 0 0
\(571\) −135.691 −0.237638 −0.118819 0.992916i \(-0.537911\pi\)
−0.118819 + 0.992916i \(0.537911\pi\)
\(572\) − 83.3912i − 0.145789i
\(573\) 0 0
\(574\) 349.752 0.609323
\(575\) − 22.1144i − 0.0384598i
\(576\) 0 0
\(577\) −620.094 −1.07469 −0.537343 0.843364i \(-0.680572\pi\)
−0.537343 + 0.843364i \(0.680572\pi\)
\(578\) − 786.162i − 1.36014i
\(579\) 0 0
\(580\) −276.161 −0.476140
\(581\) 897.699i 1.54509i
\(582\) 0 0
\(583\) 68.0031 0.116643
\(584\) − 624.517i − 1.06938i
\(585\) 0 0
\(586\) 261.444 0.446150
\(587\) 682.341i 1.16242i 0.813753 + 0.581210i \(0.197421\pi\)
−0.813753 + 0.581210i \(0.802579\pi\)
\(588\) 0 0
\(589\) 249.755 0.424032
\(590\) 102.894i 0.174397i
\(591\) 0 0
\(592\) −157.854 −0.266646
\(593\) 22.8537i 0.0385392i 0.999814 + 0.0192696i \(0.00613408\pi\)
−0.999814 + 0.0192696i \(0.993866\pi\)
\(594\) 0 0
\(595\) 895.143 1.50444
\(596\) 510.849i 0.857130i
\(597\) 0 0
\(598\) 45.0250 0.0752927
\(599\) − 140.644i − 0.234799i −0.993085 0.117399i \(-0.962544\pi\)
0.993085 0.117399i \(-0.0374557\pi\)
\(600\) 0 0
\(601\) −478.918 −0.796868 −0.398434 0.917197i \(-0.630446\pi\)
−0.398434 + 0.917197i \(0.630446\pi\)
\(602\) 1101.40i 1.82957i
\(603\) 0 0
\(604\) 65.1456 0.107857
\(605\) 24.5967i 0.0406558i
\(606\) 0 0
\(607\) 136.422 0.224747 0.112374 0.993666i \(-0.464155\pi\)
0.112374 + 0.993666i \(0.464155\pi\)
\(608\) − 299.103i − 0.491946i
\(609\) 0 0
\(610\) 65.3559 0.107141
\(611\) 27.2126i 0.0445378i
\(612\) 0 0
\(613\) −507.524 −0.827935 −0.413967 0.910292i \(-0.635857\pi\)
−0.413967 + 0.910292i \(0.635857\pi\)
\(614\) 250.368i 0.407765i
\(615\) 0 0
\(616\) 317.426 0.515301
\(617\) − 586.984i − 0.951352i −0.879620 0.475676i \(-0.842203\pi\)
0.879620 0.475676i \(-0.157797\pi\)
\(618\) 0 0
\(619\) 845.382 1.36572 0.682861 0.730548i \(-0.260735\pi\)
0.682861 + 0.730548i \(0.260735\pi\)
\(620\) 170.095i 0.274347i
\(621\) 0 0
\(622\) 218.259 0.350899
\(623\) 153.560i 0.246485i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 297.713i 0.475580i
\(627\) 0 0
\(628\) 321.390 0.511768
\(629\) 1903.63i 3.02644i
\(630\) 0 0
\(631\) −137.038 −0.217175 −0.108588 0.994087i \(-0.534633\pi\)
−0.108588 + 0.994087i \(0.534633\pi\)
\(632\) − 497.697i − 0.787495i
\(633\) 0 0
\(634\) −408.213 −0.643870
\(635\) − 309.762i − 0.487815i
\(636\) 0 0
\(637\) −1024.50 −1.60833
\(638\) 165.844i 0.259943i
\(639\) 0 0
\(640\) 229.787 0.359041
\(641\) − 766.448i − 1.19571i −0.801605 0.597854i \(-0.796020\pi\)
0.801605 0.597854i \(-0.203980\pi\)
\(642\) 0 0
\(643\) −365.800 −0.568896 −0.284448 0.958691i \(-0.591810\pi\)
−0.284448 + 0.958691i \(0.591810\pi\)
\(644\) − 154.765i − 0.240318i
\(645\) 0 0
\(646\) −318.151 −0.492493
\(647\) − 868.788i − 1.34279i −0.741098 0.671397i \(-0.765694\pi\)
0.741098 0.671397i \(-0.234306\pi\)
\(648\) 0 0
\(649\) −136.801 −0.210788
\(650\) 50.9002i 0.0783080i
\(651\) 0 0
\(652\) −513.751 −0.787961
\(653\) − 711.802i − 1.09005i −0.838420 0.545024i \(-0.816520\pi\)
0.838420 0.545024i \(-0.183480\pi\)
\(654\) 0 0
\(655\) 497.633 0.759746
\(656\) 64.5307i 0.0983700i
\(657\) 0 0
\(658\) −42.2500 −0.0642097
\(659\) 482.328i 0.731909i 0.930633 + 0.365955i \(0.119257\pi\)
−0.930633 + 0.365955i \(0.880743\pi\)
\(660\) 0 0
\(661\) −904.710 −1.36870 −0.684350 0.729154i \(-0.739914\pi\)
−0.684350 + 0.729154i \(0.739914\pi\)
\(662\) − 174.359i − 0.263383i
\(663\) 0 0
\(664\) 532.738 0.802316
\(665\) − 256.898i − 0.386313i
\(666\) 0 0
\(667\) 198.242 0.297214
\(668\) − 191.413i − 0.286547i
\(669\) 0 0
\(670\) 268.525 0.400783
\(671\) 86.8928i 0.129497i
\(672\) 0 0
\(673\) 23.6860 0.0351947 0.0175973 0.999845i \(-0.494398\pi\)
0.0175973 + 0.999845i \(0.494398\pi\)
\(674\) 88.5308i 0.131351i
\(675\) 0 0
\(676\) −236.229 −0.349452
\(677\) − 422.665i − 0.624321i −0.950029 0.312160i \(-0.898947\pi\)
0.950029 0.312160i \(-0.101053\pi\)
\(678\) 0 0
\(679\) −860.052 −1.26665
\(680\) − 531.221i − 0.781208i
\(681\) 0 0
\(682\) 102.148 0.149777
\(683\) − 709.073i − 1.03817i −0.854721 0.519087i \(-0.826272\pi\)
0.854721 0.519087i \(-0.173728\pi\)
\(684\) 0 0
\(685\) 56.0161 0.0817753
\(686\) − 896.427i − 1.30675i
\(687\) 0 0
\(688\) −203.213 −0.295368
\(689\) 187.098i 0.271550i
\(690\) 0 0
\(691\) −69.2933 −0.100280 −0.0501399 0.998742i \(-0.515967\pi\)
−0.0501399 + 0.998742i \(0.515967\pi\)
\(692\) 64.7049i 0.0935041i
\(693\) 0 0
\(694\) 515.378 0.742620
\(695\) − 619.846i − 0.891865i
\(696\) 0 0
\(697\) 778.202 1.11650
\(698\) − 524.610i − 0.751590i
\(699\) 0 0
\(700\) 174.960 0.249943
\(701\) − 1012.90i − 1.44494i −0.691401 0.722471i \(-0.743006\pi\)
0.691401 0.722471i \(-0.256994\pi\)
\(702\) 0 0
\(703\) 546.324 0.777133
\(704\) − 87.6524i − 0.124506i
\(705\) 0 0
\(706\) −109.252 −0.154748
\(707\) 1456.63i 2.06030i
\(708\) 0 0
\(709\) −452.862 −0.638733 −0.319366 0.947631i \(-0.603470\pi\)
−0.319366 + 0.947631i \(0.603470\pi\)
\(710\) 44.8955i 0.0632330i
\(711\) 0 0
\(712\) 91.1299 0.127991
\(713\) − 122.102i − 0.171252i
\(714\) 0 0
\(715\) −67.6735 −0.0946482
\(716\) − 342.597i − 0.478488i
\(717\) 0 0
\(718\) −355.272 −0.494808
\(719\) 240.714i 0.334790i 0.985890 + 0.167395i \(0.0535355\pi\)
−0.985890 + 0.167395i \(0.946465\pi\)
\(720\) 0 0
\(721\) −1009.01 −1.39946
\(722\) − 311.429i − 0.431342i
\(723\) 0 0
\(724\) 75.9430 0.104894
\(725\) 224.110i 0.309117i
\(726\) 0 0
\(727\) −500.438 −0.688361 −0.344180 0.938904i \(-0.611843\pi\)
−0.344180 + 0.938904i \(0.611843\pi\)
\(728\) 873.339i 1.19964i
\(729\) 0 0
\(730\) −206.717 −0.283174
\(731\) 2450.63i 3.35243i
\(732\) 0 0
\(733\) 13.6818 0.0186655 0.00933276 0.999956i \(-0.497029\pi\)
0.00933276 + 0.999956i \(0.497029\pi\)
\(734\) − 110.812i − 0.150970i
\(735\) 0 0
\(736\) −146.228 −0.198680
\(737\) 357.012i 0.484413i
\(738\) 0 0
\(739\) −91.6056 −0.123959 −0.0619795 0.998077i \(-0.519741\pi\)
−0.0619795 + 0.998077i \(0.519741\pi\)
\(740\) 372.073i 0.502802i
\(741\) 0 0
\(742\) −290.487 −0.391492
\(743\) 1104.81i 1.48696i 0.668761 + 0.743478i \(0.266825\pi\)
−0.668761 + 0.743478i \(0.733175\pi\)
\(744\) 0 0
\(745\) 414.563 0.556461
\(746\) 328.717i 0.440640i
\(747\) 0 0
\(748\) 288.078 0.385130
\(749\) − 646.607i − 0.863294i
\(750\) 0 0
\(751\) −1317.52 −1.75435 −0.877175 0.480170i \(-0.840575\pi\)
−0.877175 + 0.480170i \(0.840575\pi\)
\(752\) − 7.79531i − 0.0103661i
\(753\) 0 0
\(754\) −456.289 −0.605158
\(755\) − 52.8668i − 0.0700222i
\(756\) 0 0
\(757\) 548.802 0.724970 0.362485 0.931990i \(-0.381928\pi\)
0.362485 + 0.931990i \(0.381928\pi\)
\(758\) − 209.547i − 0.276448i
\(759\) 0 0
\(760\) −152.456 −0.200600
\(761\) − 797.390i − 1.04782i −0.851774 0.523910i \(-0.824473\pi\)
0.851774 0.523910i \(-0.175527\pi\)
\(762\) 0 0
\(763\) 838.168 1.09852
\(764\) − 544.230i − 0.712342i
\(765\) 0 0
\(766\) 524.018 0.684097
\(767\) − 376.384i − 0.490722i
\(768\) 0 0
\(769\) −631.448 −0.821129 −0.410564 0.911832i \(-0.634668\pi\)
−0.410564 + 0.911832i \(0.634668\pi\)
\(770\) − 105.069i − 0.136453i
\(771\) 0 0
\(772\) −915.446 −1.18581
\(773\) 182.477i 0.236063i 0.993010 + 0.118032i \(0.0376584\pi\)
−0.993010 + 0.118032i \(0.962342\pi\)
\(774\) 0 0
\(775\) 138.035 0.178110
\(776\) 510.397i 0.657728i
\(777\) 0 0
\(778\) −120.781 −0.155245
\(779\) − 223.337i − 0.286697i
\(780\) 0 0
\(781\) −59.6900 −0.0764276
\(782\) 155.540i 0.198901i
\(783\) 0 0
\(784\) 293.479 0.374336
\(785\) − 260.814i − 0.332247i
\(786\) 0 0
\(787\) 1523.24 1.93550 0.967750 0.251911i \(-0.0810590\pi\)
0.967750 + 0.251911i \(0.0810590\pi\)
\(788\) − 775.059i − 0.983578i
\(789\) 0 0
\(790\) −164.740 −0.208531
\(791\) − 1468.44i − 1.85644i
\(792\) 0 0
\(793\) −239.070 −0.301475
\(794\) − 329.960i − 0.415566i
\(795\) 0 0
\(796\) 38.2204 0.0480156
\(797\) − 511.144i − 0.641335i −0.947192 0.320667i \(-0.896093\pi\)
0.947192 0.320667i \(-0.103907\pi\)
\(798\) 0 0
\(799\) −94.0067 −0.117655
\(800\) − 165.309i − 0.206636i
\(801\) 0 0
\(802\) 222.009 0.276819
\(803\) − 274.837i − 0.342263i
\(804\) 0 0
\(805\) −125.595 −0.156018
\(806\) 281.041i 0.348686i
\(807\) 0 0
\(808\) 864.437 1.06985
\(809\) 321.467i 0.397363i 0.980064 + 0.198681i \(0.0636659\pi\)
−0.980064 + 0.198681i \(0.936334\pi\)
\(810\) 0 0
\(811\) 1.44390 0.00178039 0.000890197 1.00000i \(-0.499717\pi\)
0.000890197 1.00000i \(0.499717\pi\)
\(812\) 1568.41i 1.93154i
\(813\) 0 0
\(814\) 223.442 0.274499
\(815\) 416.918i 0.511555i
\(816\) 0 0
\(817\) 703.307 0.860841
\(818\) − 201.606i − 0.246462i
\(819\) 0 0
\(820\) 152.103 0.185492
\(821\) 1214.75i 1.47960i 0.672828 + 0.739799i \(0.265079\pi\)
−0.672828 + 0.739799i \(0.734921\pi\)
\(822\) 0 0
\(823\) 759.694 0.923079 0.461540 0.887120i \(-0.347297\pi\)
0.461540 + 0.887120i \(0.347297\pi\)
\(824\) 598.794i 0.726692i
\(825\) 0 0
\(826\) 584.369 0.707469
\(827\) 1064.46i 1.28713i 0.765390 + 0.643567i \(0.222546\pi\)
−0.765390 + 0.643567i \(0.777454\pi\)
\(828\) 0 0
\(829\) −382.338 −0.461204 −0.230602 0.973048i \(-0.574069\pi\)
−0.230602 + 0.973048i \(0.574069\pi\)
\(830\) − 176.338i − 0.212456i
\(831\) 0 0
\(832\) 241.160 0.289855
\(833\) − 3539.18i − 4.24872i
\(834\) 0 0
\(835\) −155.335 −0.186030
\(836\) − 82.6756i − 0.0988943i
\(837\) 0 0
\(838\) 467.887 0.558338
\(839\) 945.778i 1.12727i 0.826025 + 0.563634i \(0.190597\pi\)
−0.826025 + 0.563634i \(0.809403\pi\)
\(840\) 0 0
\(841\) −1168.00 −1.38883
\(842\) 696.707i 0.827443i
\(843\) 0 0
\(844\) −716.500 −0.848934
\(845\) 191.704i 0.226869i
\(846\) 0 0
\(847\) 139.693 0.164927
\(848\) − 53.5961i − 0.0632029i
\(849\) 0 0
\(850\) −175.836 −0.206866
\(851\) − 267.092i − 0.313857i
\(852\) 0 0
\(853\) 42.2044 0.0494776 0.0247388 0.999694i \(-0.492125\pi\)
0.0247388 + 0.999694i \(0.492125\pi\)
\(854\) − 371.177i − 0.434634i
\(855\) 0 0
\(856\) −383.728 −0.448280
\(857\) − 1630.88i − 1.90301i −0.307626 0.951507i \(-0.599534\pi\)
0.307626 0.951507i \(-0.400466\pi\)
\(858\) 0 0
\(859\) −903.228 −1.05149 −0.525744 0.850643i \(-0.676213\pi\)
−0.525744 + 0.850643i \(0.676213\pi\)
\(860\) 478.986i 0.556960i
\(861\) 0 0
\(862\) −218.593 −0.253588
\(863\) 270.091i 0.312967i 0.987681 + 0.156484i \(0.0500158\pi\)
−0.987681 + 0.156484i \(0.949984\pi\)
\(864\) 0 0
\(865\) 52.5091 0.0607042
\(866\) 529.594i 0.611540i
\(867\) 0 0
\(868\) 966.025 1.11293
\(869\) − 219.027i − 0.252044i
\(870\) 0 0
\(871\) −982.254 −1.12773
\(872\) − 497.409i − 0.570423i
\(873\) 0 0
\(874\) 44.6387 0.0510740
\(875\) − 141.983i − 0.162266i
\(876\) 0 0
\(877\) −186.858 −0.213064 −0.106532 0.994309i \(-0.533975\pi\)
−0.106532 + 0.994309i \(0.533975\pi\)
\(878\) − 930.573i − 1.05988i
\(879\) 0 0
\(880\) 19.3857 0.0220292
\(881\) − 1485.66i − 1.68633i −0.537654 0.843166i \(-0.680689\pi\)
0.537654 0.843166i \(-0.319311\pi\)
\(882\) 0 0
\(883\) −497.570 −0.563499 −0.281750 0.959488i \(-0.590915\pi\)
−0.281750 + 0.959488i \(0.590915\pi\)
\(884\) 792.593i 0.896598i
\(885\) 0 0
\(886\) −323.699 −0.365349
\(887\) 164.802i 0.185797i 0.995676 + 0.0928984i \(0.0296132\pi\)
−0.995676 + 0.0928984i \(0.970387\pi\)
\(888\) 0 0
\(889\) −1759.24 −1.97890
\(890\) − 30.1644i − 0.0338925i
\(891\) 0 0
\(892\) −1079.46 −1.21016
\(893\) 26.9791i 0.0302117i
\(894\) 0 0
\(895\) −278.024 −0.310641
\(896\) − 1305.03i − 1.45651i
\(897\) 0 0
\(898\) −491.501 −0.547329
\(899\) 1237.40i 1.37642i
\(900\) 0 0
\(901\) −646.336 −0.717355
\(902\) − 91.3429i − 0.101267i
\(903\) 0 0
\(904\) −871.444 −0.963986
\(905\) − 61.6291i − 0.0680984i
\(906\) 0 0
\(907\) −1532.40 −1.68953 −0.844766 0.535137i \(-0.820260\pi\)
−0.844766 + 0.535137i \(0.820260\pi\)
\(908\) 582.839i 0.641893i
\(909\) 0 0
\(910\) 289.078 0.317669
\(911\) 1440.39i 1.58111i 0.612394 + 0.790553i \(0.290207\pi\)
−0.612394 + 0.790553i \(0.709793\pi\)
\(912\) 0 0
\(913\) 234.447 0.256788
\(914\) 730.738i 0.799494i
\(915\) 0 0
\(916\) −138.712 −0.151432
\(917\) − 2826.22i − 3.08203i
\(918\) 0 0
\(919\) 448.482 0.488010 0.244005 0.969774i \(-0.421539\pi\)
0.244005 + 0.969774i \(0.421539\pi\)
\(920\) 74.5339i 0.0810151i
\(921\) 0 0
\(922\) −229.691 −0.249122
\(923\) − 164.226i − 0.177926i
\(924\) 0 0
\(925\) 301.944 0.326426
\(926\) 217.736i 0.235136i
\(927\) 0 0
\(928\) 1481.89 1.59687
\(929\) 320.054i 0.344515i 0.985052 + 0.172257i \(0.0551060\pi\)
−0.985052 + 0.172257i \(0.944894\pi\)
\(930\) 0 0
\(931\) −1015.71 −1.09099
\(932\) 1023.50i 1.09818i
\(933\) 0 0
\(934\) 607.372 0.650292
\(935\) − 233.780i − 0.250032i
\(936\) 0 0
\(937\) −2.36541 −0.00252445 −0.00126223 0.999999i \(-0.500402\pi\)
−0.00126223 + 0.999999i \(0.500402\pi\)
\(938\) − 1525.04i − 1.62584i
\(939\) 0 0
\(940\) −18.3740 −0.0195468
\(941\) − 49.6427i − 0.0527553i −0.999652 0.0263777i \(-0.991603\pi\)
0.999652 0.0263777i \(-0.00839724\pi\)
\(942\) 0 0
\(943\) −109.187 −0.115787
\(944\) 107.819i 0.114215i
\(945\) 0 0
\(946\) 287.647 0.304066
\(947\) − 1088.55i − 1.14948i −0.818338 0.574738i \(-0.805104\pi\)
0.818338 0.574738i \(-0.194896\pi\)
\(948\) 0 0
\(949\) 756.165 0.796802
\(950\) 50.4634i 0.0531194i
\(951\) 0 0
\(952\) −3016.98 −3.16909
\(953\) − 92.5920i − 0.0971585i −0.998819 0.0485792i \(-0.984531\pi\)
0.998819 0.0485792i \(-0.0154693\pi\)
\(954\) 0 0
\(955\) −441.652 −0.462463
\(956\) − 1109.30i − 1.16036i
\(957\) 0 0
\(958\) 549.626 0.573722
\(959\) − 318.133i − 0.331734i
\(960\) 0 0
\(961\) −198.851 −0.206921
\(962\) 614.760i 0.639044i
\(963\) 0 0
\(964\) 852.935 0.884787
\(965\) 742.901i 0.769845i
\(966\) 0 0
\(967\) −168.695 −0.174452 −0.0872258 0.996189i \(-0.527800\pi\)
−0.0872258 + 0.996189i \(0.527800\pi\)
\(968\) − 82.9005i − 0.0856410i
\(969\) 0 0
\(970\) 168.943 0.174168
\(971\) 1324.00i 1.36354i 0.731566 + 0.681770i \(0.238790\pi\)
−0.731566 + 0.681770i \(0.761210\pi\)
\(972\) 0 0
\(973\) −3520.31 −3.61799
\(974\) − 390.029i − 0.400440i
\(975\) 0 0
\(976\) 68.4838 0.0701679
\(977\) 39.7715i 0.0407078i 0.999793 + 0.0203539i \(0.00647930\pi\)
−0.999793 + 0.0203539i \(0.993521\pi\)
\(978\) 0 0
\(979\) 40.1045 0.0409648
\(980\) − 691.750i − 0.705867i
\(981\) 0 0
\(982\) −151.557 −0.154335
\(983\) − 1193.15i − 1.21379i −0.794783 0.606893i \(-0.792415\pi\)
0.794783 0.606893i \(-0.207585\pi\)
\(984\) 0 0
\(985\) −628.974 −0.638553
\(986\) − 1576.26i − 1.59864i
\(987\) 0 0
\(988\) 227.467 0.230230
\(989\) − 343.839i − 0.347663i
\(990\) 0 0
\(991\) 995.220 1.00426 0.502129 0.864793i \(-0.332550\pi\)
0.502129 + 0.864793i \(0.332550\pi\)
\(992\) − 912.739i − 0.920099i
\(993\) 0 0
\(994\) 254.976 0.256515
\(995\) − 31.0166i − 0.0311724i
\(996\) 0 0
\(997\) 868.526 0.871139 0.435570 0.900155i \(-0.356547\pi\)
0.435570 + 0.900155i \(0.356547\pi\)
\(998\) − 94.4538i − 0.0946430i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.e.a.386.15 yes 24
3.2 odd 2 inner 495.3.e.a.386.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
495.3.e.a.386.10 24 3.2 odd 2 inner
495.3.e.a.386.15 yes 24 1.1 even 1 trivial