Properties

Label 495.3.b.c.406.5
Level $495$
Weight $3$
Character 495.406
Analytic conductor $13.488$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(406,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.406"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 36x^{14} + 500x^{12} + 3364x^{10} + 11310x^{8} + 17932x^{6} + 12708x^{4} + 3244x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 406.5
Root \(-1.15335i\) of defining polynomial
Character \(\chi\) \(=\) 495.406
Dual form 495.3.b.c.406.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.15335i q^{2} +2.66978 q^{4} -2.23607 q^{5} -12.5112i q^{7} -7.69260i q^{8} +2.57897i q^{10} +(-10.8148 + 2.00994i) q^{11} -3.74983i q^{13} -14.4298 q^{14} +1.80684 q^{16} +0.100823i q^{17} +21.0495i q^{19} -5.96981 q^{20} +(2.31817 + 12.4733i) q^{22} -30.1161 q^{23} +5.00000 q^{25} -4.32487 q^{26} -33.4021i q^{28} +10.4508i q^{29} +6.86373 q^{31} -32.8543i q^{32} +0.116284 q^{34} +27.9758i q^{35} -58.1617 q^{37} +24.2775 q^{38} +17.2012i q^{40} -49.2050i q^{41} -76.4814i q^{43} +(-28.8732 + 5.36611i) q^{44} +34.7344i q^{46} +63.7154 q^{47} -107.530 q^{49} -5.76676i q^{50} -10.0112i q^{52} +8.45006 q^{53} +(24.1827 - 4.49437i) q^{55} -96.2435 q^{56} +12.0535 q^{58} +20.5266 q^{59} -81.4502i q^{61} -7.91630i q^{62} -30.6652 q^{64} +8.38487i q^{65} +44.0966 q^{67} +0.269175i q^{68} +32.2660 q^{70} -44.1124 q^{71} +134.904i q^{73} +67.0809i q^{74} +56.1975i q^{76} +(25.1468 + 135.306i) q^{77} +66.2504i q^{79} -4.04022 q^{80} -56.7507 q^{82} -101.508i q^{83} -0.225447i q^{85} -88.2100 q^{86} +(15.4617 + 83.1940i) q^{88} +57.8175 q^{89} -46.9147 q^{91} -80.4032 q^{92} -73.4862i q^{94} -47.0681i q^{95} -44.4855 q^{97} +124.019i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{4} + 28 q^{11} - 16 q^{16} - 40 q^{20} - 20 q^{22} - 56 q^{23} + 80 q^{25} + 88 q^{26} - 96 q^{31} - 200 q^{34} + 184 q^{37} - 296 q^{38} - 300 q^{44} + 200 q^{47} - 496 q^{49} + 80 q^{53} + 20 q^{55}+ \cdots - 144 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.15335i 0.576676i −0.957529 0.288338i \(-0.906897\pi\)
0.957529 0.288338i \(-0.0931027\pi\)
\(3\) 0 0
\(4\) 2.66978 0.667445
\(5\) −2.23607 −0.447214
\(6\) 0 0
\(7\) 12.5112i 1.78731i −0.448754 0.893655i \(-0.648132\pi\)
0.448754 0.893655i \(-0.351868\pi\)
\(8\) 7.69260i 0.961575i
\(9\) 0 0
\(10\) 2.57897i 0.257897i
\(11\) −10.8148 + 2.00994i −0.983165 + 0.182722i
\(12\) 0 0
\(13\) 3.74983i 0.288448i −0.989545 0.144224i \(-0.953931\pi\)
0.989545 0.144224i \(-0.0460686\pi\)
\(14\) −14.4298 −1.03070
\(15\) 0 0
\(16\) 1.80684 0.112928
\(17\) 0.100823i 0.00593076i 0.999996 + 0.00296538i \(0.000943911\pi\)
−0.999996 + 0.00296538i \(0.999056\pi\)
\(18\) 0 0
\(19\) 21.0495i 1.10787i 0.832561 + 0.553934i \(0.186874\pi\)
−0.832561 + 0.553934i \(0.813126\pi\)
\(20\) −5.96981 −0.298490
\(21\) 0 0
\(22\) 2.31817 + 12.4733i 0.105371 + 0.566967i
\(23\) −30.1161 −1.30939 −0.654697 0.755891i \(-0.727204\pi\)
−0.654697 + 0.755891i \(0.727204\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) −4.32487 −0.166341
\(27\) 0 0
\(28\) 33.4021i 1.19293i
\(29\) 10.4508i 0.360373i 0.983632 + 0.180186i \(0.0576701\pi\)
−0.983632 + 0.180186i \(0.942330\pi\)
\(30\) 0 0
\(31\) 6.86373 0.221411 0.110705 0.993853i \(-0.464689\pi\)
0.110705 + 0.993853i \(0.464689\pi\)
\(32\) 32.8543i 1.02670i
\(33\) 0 0
\(34\) 0.116284 0.00342013
\(35\) 27.9758i 0.799310i
\(36\) 0 0
\(37\) −58.1617 −1.57194 −0.785968 0.618267i \(-0.787835\pi\)
−0.785968 + 0.618267i \(0.787835\pi\)
\(38\) 24.2775 0.638880
\(39\) 0 0
\(40\) 17.2012i 0.430030i
\(41\) 49.2050i 1.20012i −0.799954 0.600061i \(-0.795143\pi\)
0.799954 0.600061i \(-0.204857\pi\)
\(42\) 0 0
\(43\) 76.4814i 1.77864i −0.457287 0.889319i \(-0.651179\pi\)
0.457287 0.889319i \(-0.348821\pi\)
\(44\) −28.8732 + 5.36611i −0.656208 + 0.121957i
\(45\) 0 0
\(46\) 34.7344i 0.755096i
\(47\) 63.7154 1.35565 0.677823 0.735225i \(-0.262924\pi\)
0.677823 + 0.735225i \(0.262924\pi\)
\(48\) 0 0
\(49\) −107.530 −2.19448
\(50\) 5.76676i 0.115335i
\(51\) 0 0
\(52\) 10.0112i 0.192523i
\(53\) 8.45006 0.159435 0.0797175 0.996817i \(-0.474598\pi\)
0.0797175 + 0.996817i \(0.474598\pi\)
\(54\) 0 0
\(55\) 24.1827 4.49437i 0.439685 0.0817159i
\(56\) −96.2435 −1.71863
\(57\) 0 0
\(58\) 12.0535 0.207818
\(59\) 20.5266 0.347908 0.173954 0.984754i \(-0.444346\pi\)
0.173954 + 0.984754i \(0.444346\pi\)
\(60\) 0 0
\(61\) 81.4502i 1.33525i −0.744498 0.667624i \(-0.767311\pi\)
0.744498 0.667624i \(-0.232689\pi\)
\(62\) 7.91630i 0.127682i
\(63\) 0 0
\(64\) −30.6652 −0.479144
\(65\) 8.38487i 0.128998i
\(66\) 0 0
\(67\) 44.0966 0.658158 0.329079 0.944302i \(-0.393262\pi\)
0.329079 + 0.944302i \(0.393262\pi\)
\(68\) 0.269175i 0.00395845i
\(69\) 0 0
\(70\) 32.2660 0.460943
\(71\) −44.1124 −0.621301 −0.310650 0.950524i \(-0.600547\pi\)
−0.310650 + 0.950524i \(0.600547\pi\)
\(72\) 0 0
\(73\) 134.904i 1.84799i 0.382399 + 0.923997i \(0.375098\pi\)
−0.382399 + 0.923997i \(0.624902\pi\)
\(74\) 67.0809i 0.906498i
\(75\) 0 0
\(76\) 56.1975i 0.739440i
\(77\) 25.1468 + 135.306i 0.326581 + 1.75722i
\(78\) 0 0
\(79\) 66.2504i 0.838613i 0.907845 + 0.419307i \(0.137727\pi\)
−0.907845 + 0.419307i \(0.862273\pi\)
\(80\) −4.04022 −0.0505028
\(81\) 0 0
\(82\) −56.7507 −0.692081
\(83\) 101.508i 1.22299i −0.791247 0.611497i \(-0.790568\pi\)
0.791247 0.611497i \(-0.209432\pi\)
\(84\) 0 0
\(85\) 0.225447i 0.00265232i
\(86\) −88.2100 −1.02570
\(87\) 0 0
\(88\) 15.4617 + 83.1940i 0.175701 + 0.945387i
\(89\) 57.8175 0.649634 0.324817 0.945777i \(-0.394697\pi\)
0.324817 + 0.945777i \(0.394697\pi\)
\(90\) 0 0
\(91\) −46.9147 −0.515547
\(92\) −80.4032 −0.873948
\(93\) 0 0
\(94\) 73.4862i 0.781768i
\(95\) 47.0681i 0.495453i
\(96\) 0 0
\(97\) −44.4855 −0.458614 −0.229307 0.973354i \(-0.573646\pi\)
−0.229307 + 0.973354i \(0.573646\pi\)
\(98\) 124.019i 1.26550i
\(99\) 0 0
\(100\) 13.3489 0.133489
\(101\) 25.4637i 0.252116i −0.992023 0.126058i \(-0.959767\pi\)
0.992023 0.126058i \(-0.0402325\pi\)
\(102\) 0 0
\(103\) 53.0663 0.515207 0.257603 0.966251i \(-0.417067\pi\)
0.257603 + 0.966251i \(0.417067\pi\)
\(104\) −28.8459 −0.277365
\(105\) 0 0
\(106\) 9.74589i 0.0919423i
\(107\) 97.0812i 0.907301i −0.891180 0.453650i \(-0.850122\pi\)
0.891180 0.453650i \(-0.149878\pi\)
\(108\) 0 0
\(109\) 64.1908i 0.588906i −0.955666 0.294453i \(-0.904863\pi\)
0.955666 0.294453i \(-0.0951375\pi\)
\(110\) −5.18359 27.8911i −0.0471236 0.253555i
\(111\) 0 0
\(112\) 22.6057i 0.201837i
\(113\) 161.921 1.43293 0.716465 0.697623i \(-0.245759\pi\)
0.716465 + 0.697623i \(0.245759\pi\)
\(114\) 0 0
\(115\) 67.3416 0.585579
\(116\) 27.9014i 0.240529i
\(117\) 0 0
\(118\) 23.6744i 0.200630i
\(119\) 1.26141 0.0106001
\(120\) 0 0
\(121\) 112.920 43.4743i 0.933225 0.359292i
\(122\) −93.9407 −0.770006
\(123\) 0 0
\(124\) 18.3247 0.147779
\(125\) −11.1803 −0.0894427
\(126\) 0 0
\(127\) 47.3863i 0.373120i 0.982444 + 0.186560i \(0.0597339\pi\)
−0.982444 + 0.186560i \(0.940266\pi\)
\(128\) 96.0495i 0.750387i
\(129\) 0 0
\(130\) 9.67070 0.0743900
\(131\) 218.239i 1.66594i −0.553315 0.832972i \(-0.686638\pi\)
0.553315 0.832972i \(-0.313362\pi\)
\(132\) 0 0
\(133\) 263.354 1.98010
\(134\) 50.8589i 0.379544i
\(135\) 0 0
\(136\) 0.775590 0.00570287
\(137\) 78.5537 0.573385 0.286692 0.958023i \(-0.407444\pi\)
0.286692 + 0.958023i \(0.407444\pi\)
\(138\) 0 0
\(139\) 60.3621i 0.434260i −0.976143 0.217130i \(-0.930331\pi\)
0.976143 0.217130i \(-0.0696695\pi\)
\(140\) 74.6893i 0.533495i
\(141\) 0 0
\(142\) 50.8771i 0.358289i
\(143\) 7.53694 + 40.5537i 0.0527059 + 0.283592i
\(144\) 0 0
\(145\) 23.3687i 0.161164i
\(146\) 155.591 1.06569
\(147\) 0 0
\(148\) −155.279 −1.04918
\(149\) 219.162i 1.47088i 0.677588 + 0.735442i \(0.263026\pi\)
−0.677588 + 0.735442i \(0.736974\pi\)
\(150\) 0 0
\(151\) 36.3914i 0.241002i 0.992713 + 0.120501i \(0.0384502\pi\)
−0.992713 + 0.120501i \(0.961550\pi\)
\(152\) 161.925 1.06530
\(153\) 0 0
\(154\) 156.055 29.0031i 1.01335 0.188332i
\(155\) −15.3478 −0.0990179
\(156\) 0 0
\(157\) −146.443 −0.932757 −0.466378 0.884585i \(-0.654441\pi\)
−0.466378 + 0.884585i \(0.654441\pi\)
\(158\) 76.4101 0.483608
\(159\) 0 0
\(160\) 73.4645i 0.459153i
\(161\) 376.787i 2.34029i
\(162\) 0 0
\(163\) 218.594 1.34107 0.670534 0.741879i \(-0.266065\pi\)
0.670534 + 0.741879i \(0.266065\pi\)
\(164\) 131.366i 0.801015i
\(165\) 0 0
\(166\) −117.075 −0.705271
\(167\) 109.361i 0.654857i 0.944876 + 0.327428i \(0.106182\pi\)
−0.944876 + 0.327428i \(0.893818\pi\)
\(168\) 0 0
\(169\) 154.939 0.916798
\(170\) −0.260019 −0.00152953
\(171\) 0 0
\(172\) 204.189i 1.18714i
\(173\) 86.0961i 0.497665i −0.968547 0.248833i \(-0.919953\pi\)
0.968547 0.248833i \(-0.0800469\pi\)
\(174\) 0 0
\(175\) 62.5559i 0.357462i
\(176\) −19.5407 + 3.63165i −0.111026 + 0.0206344i
\(177\) 0 0
\(178\) 66.6839i 0.374628i
\(179\) 253.754 1.41762 0.708809 0.705400i \(-0.249233\pi\)
0.708809 + 0.705400i \(0.249233\pi\)
\(180\) 0 0
\(181\) −191.878 −1.06010 −0.530050 0.847966i \(-0.677827\pi\)
−0.530050 + 0.847966i \(0.677827\pi\)
\(182\) 54.1092i 0.297303i
\(183\) 0 0
\(184\) 231.671i 1.25908i
\(185\) 130.053 0.702992
\(186\) 0 0
\(187\) −0.202648 1.09038i −0.00108368 0.00583091i
\(188\) 170.106 0.904819
\(189\) 0 0
\(190\) −54.2860 −0.285716
\(191\) 105.312 0.551374 0.275687 0.961247i \(-0.411095\pi\)
0.275687 + 0.961247i \(0.411095\pi\)
\(192\) 0 0
\(193\) 139.442i 0.722499i 0.932469 + 0.361249i \(0.117650\pi\)
−0.932469 + 0.361249i \(0.882350\pi\)
\(194\) 51.3075i 0.264472i
\(195\) 0 0
\(196\) −287.080 −1.46469
\(197\) 132.635i 0.673275i −0.941634 0.336638i \(-0.890710\pi\)
0.941634 0.336638i \(-0.109290\pi\)
\(198\) 0 0
\(199\) 37.5929 0.188909 0.0944545 0.995529i \(-0.469889\pi\)
0.0944545 + 0.995529i \(0.469889\pi\)
\(200\) 38.4630i 0.192315i
\(201\) 0 0
\(202\) −29.3686 −0.145389
\(203\) 130.752 0.644098
\(204\) 0 0
\(205\) 110.026i 0.536711i
\(206\) 61.2041i 0.297107i
\(207\) 0 0
\(208\) 6.77535i 0.0325738i
\(209\) −42.3083 227.646i −0.202432 1.08922i
\(210\) 0 0
\(211\) 299.313i 1.41854i −0.704935 0.709272i \(-0.749024\pi\)
0.704935 0.709272i \(-0.250976\pi\)
\(212\) 22.5598 0.106414
\(213\) 0 0
\(214\) −111.969 −0.523218
\(215\) 171.018i 0.795431i
\(216\) 0 0
\(217\) 85.8734i 0.395730i
\(218\) −74.0345 −0.339608
\(219\) 0 0
\(220\) 64.5624 11.9990i 0.293465 0.0545408i
\(221\) 0.378068 0.00171072
\(222\) 0 0
\(223\) 372.747 1.67151 0.835756 0.549101i \(-0.185030\pi\)
0.835756 + 0.549101i \(0.185030\pi\)
\(224\) −411.046 −1.83503
\(225\) 0 0
\(226\) 186.752i 0.826336i
\(227\) 142.172i 0.626309i −0.949702 0.313154i \(-0.898614\pi\)
0.949702 0.313154i \(-0.101386\pi\)
\(228\) 0 0
\(229\) −238.078 −1.03964 −0.519820 0.854276i \(-0.674001\pi\)
−0.519820 + 0.854276i \(0.674001\pi\)
\(230\) 77.6685i 0.337689i
\(231\) 0 0
\(232\) 80.3939 0.346525
\(233\) 236.432i 1.01473i −0.861732 0.507365i \(-0.830620\pi\)
0.861732 0.507365i \(-0.169380\pi\)
\(234\) 0 0
\(235\) −142.472 −0.606263
\(236\) 54.8014 0.232209
\(237\) 0 0
\(238\) 1.45485i 0.00611283i
\(239\) 357.930i 1.49762i 0.662787 + 0.748808i \(0.269374\pi\)
−0.662787 + 0.748808i \(0.730626\pi\)
\(240\) 0 0
\(241\) 126.973i 0.526861i 0.964678 + 0.263430i \(0.0848539\pi\)
−0.964678 + 0.263430i \(0.915146\pi\)
\(242\) −50.1412 130.237i −0.207195 0.538168i
\(243\) 0 0
\(244\) 217.454i 0.891205i
\(245\) 240.443 0.981401
\(246\) 0 0
\(247\) 78.9319 0.319562
\(248\) 52.8000i 0.212903i
\(249\) 0 0
\(250\) 12.8949i 0.0515795i
\(251\) −219.707 −0.875325 −0.437663 0.899139i \(-0.644194\pi\)
−0.437663 + 0.899139i \(0.644194\pi\)
\(252\) 0 0
\(253\) 325.699 60.5316i 1.28735 0.239255i
\(254\) 54.6531 0.215170
\(255\) 0 0
\(256\) −233.440 −0.911874
\(257\) −428.677 −1.66800 −0.834001 0.551763i \(-0.813955\pi\)
−0.834001 + 0.551763i \(0.813955\pi\)
\(258\) 0 0
\(259\) 727.671i 2.80954i
\(260\) 22.3858i 0.0860990i
\(261\) 0 0
\(262\) −251.706 −0.960710
\(263\) 252.442i 0.959855i 0.877308 + 0.479928i \(0.159337\pi\)
−0.877308 + 0.479928i \(0.840663\pi\)
\(264\) 0 0
\(265\) −18.8949 −0.0713015
\(266\) 303.739i 1.14188i
\(267\) 0 0
\(268\) 117.728 0.439284
\(269\) 176.094 0.654624 0.327312 0.944916i \(-0.393857\pi\)
0.327312 + 0.944916i \(0.393857\pi\)
\(270\) 0 0
\(271\) 301.498i 1.11254i 0.831003 + 0.556269i \(0.187767\pi\)
−0.831003 + 0.556269i \(0.812233\pi\)
\(272\) 0.182171i 0.000669747i
\(273\) 0 0
\(274\) 90.6001i 0.330657i
\(275\) −54.0741 + 10.0497i −0.196633 + 0.0365444i
\(276\) 0 0
\(277\) 100.640i 0.363322i 0.983361 + 0.181661i \(0.0581474\pi\)
−0.983361 + 0.181661i \(0.941853\pi\)
\(278\) −69.6187 −0.250427
\(279\) 0 0
\(280\) 215.207 0.768596
\(281\) 163.042i 0.580222i −0.956993 0.290111i \(-0.906308\pi\)
0.956993 0.290111i \(-0.0936922\pi\)
\(282\) 0 0
\(283\) 555.179i 1.96176i −0.194603 0.980882i \(-0.562342\pi\)
0.194603 0.980882i \(-0.437658\pi\)
\(284\) −117.770 −0.414684
\(285\) 0 0
\(286\) 46.7726 8.69275i 0.163541 0.0303942i
\(287\) −615.612 −2.14499
\(288\) 0 0
\(289\) 288.990 0.999965
\(290\) −26.9524 −0.0929391
\(291\) 0 0
\(292\) 360.163i 1.23343i
\(293\) 404.729i 1.38133i 0.723177 + 0.690663i \(0.242681\pi\)
−0.723177 + 0.690663i \(0.757319\pi\)
\(294\) 0 0
\(295\) −45.8988 −0.155589
\(296\) 447.415i 1.51154i
\(297\) 0 0
\(298\) 252.771 0.848224
\(299\) 112.930i 0.377692i
\(300\) 0 0
\(301\) −956.873 −3.17898
\(302\) 41.9720 0.138980
\(303\) 0 0
\(304\) 38.0331i 0.125109i
\(305\) 182.128i 0.597141i
\(306\) 0 0
\(307\) 225.744i 0.735323i −0.929960 0.367662i \(-0.880158\pi\)
0.929960 0.367662i \(-0.119842\pi\)
\(308\) 67.1363 + 361.237i 0.217975 + 1.17285i
\(309\) 0 0
\(310\) 17.7014i 0.0571012i
\(311\) 95.4488 0.306909 0.153455 0.988156i \(-0.450960\pi\)
0.153455 + 0.988156i \(0.450960\pi\)
\(312\) 0 0
\(313\) 65.9274 0.210631 0.105315 0.994439i \(-0.466415\pi\)
0.105315 + 0.994439i \(0.466415\pi\)
\(314\) 168.900i 0.537898i
\(315\) 0 0
\(316\) 176.874i 0.559728i
\(317\) −277.442 −0.875211 −0.437605 0.899167i \(-0.644173\pi\)
−0.437605 + 0.899167i \(0.644173\pi\)
\(318\) 0 0
\(319\) −21.0055 113.024i −0.0658481 0.354306i
\(320\) 68.5695 0.214280
\(321\) 0 0
\(322\) 434.568 1.34959
\(323\) −2.12227 −0.00657049
\(324\) 0 0
\(325\) 18.7491i 0.0576897i
\(326\) 252.116i 0.773361i
\(327\) 0 0
\(328\) −378.514 −1.15401
\(329\) 797.154i 2.42296i
\(330\) 0 0
\(331\) 277.559 0.838546 0.419273 0.907860i \(-0.362285\pi\)
0.419273 + 0.907860i \(0.362285\pi\)
\(332\) 271.005i 0.816281i
\(333\) 0 0
\(334\) 126.132 0.377640
\(335\) −98.6030 −0.294337
\(336\) 0 0
\(337\) 7.58975i 0.0225215i 0.999937 + 0.0112608i \(0.00358449\pi\)
−0.999937 + 0.0112608i \(0.996416\pi\)
\(338\) 178.699i 0.528695i
\(339\) 0 0
\(340\) 0.601893i 0.00177027i
\(341\) −74.2300 + 13.7957i −0.217683 + 0.0404567i
\(342\) 0 0
\(343\) 732.273i 2.13491i
\(344\) −588.341 −1.71029
\(345\) 0 0
\(346\) −99.2991 −0.286992
\(347\) 114.576i 0.330190i 0.986278 + 0.165095i \(0.0527930\pi\)
−0.986278 + 0.165095i \(0.947207\pi\)
\(348\) 0 0
\(349\) 559.957i 1.60446i −0.597015 0.802230i \(-0.703647\pi\)
0.597015 0.802230i \(-0.296353\pi\)
\(350\) −72.1489 −0.206140
\(351\) 0 0
\(352\) 66.0354 + 355.313i 0.187601 + 1.00941i
\(353\) −99.8950 −0.282989 −0.141494 0.989939i \(-0.545191\pi\)
−0.141494 + 0.989939i \(0.545191\pi\)
\(354\) 0 0
\(355\) 98.6382 0.277854
\(356\) 154.360 0.433595
\(357\) 0 0
\(358\) 292.667i 0.817506i
\(359\) 326.583i 0.909702i −0.890568 0.454851i \(-0.849693\pi\)
0.890568 0.454851i \(-0.150307\pi\)
\(360\) 0 0
\(361\) −82.0805 −0.227370
\(362\) 221.303i 0.611335i
\(363\) 0 0
\(364\) −125.252 −0.344099
\(365\) 301.654i 0.826448i
\(366\) 0 0
\(367\) 29.5143 0.0804203 0.0402102 0.999191i \(-0.487197\pi\)
0.0402102 + 0.999191i \(0.487197\pi\)
\(368\) −54.4150 −0.147867
\(369\) 0 0
\(370\) 149.997i 0.405398i
\(371\) 105.720i 0.284960i
\(372\) 0 0
\(373\) 589.241i 1.57973i 0.613279 + 0.789867i \(0.289850\pi\)
−0.613279 + 0.789867i \(0.710150\pi\)
\(374\) −1.25759 + 0.233725i −0.00336255 + 0.000624933i
\(375\) 0 0
\(376\) 490.137i 1.30356i
\(377\) 39.1887 0.103949
\(378\) 0 0
\(379\) −307.718 −0.811921 −0.405961 0.913891i \(-0.633063\pi\)
−0.405961 + 0.913891i \(0.633063\pi\)
\(380\) 125.661i 0.330688i
\(381\) 0 0
\(382\) 121.462i 0.317964i
\(383\) −8.26040 −0.0215676 −0.0107838 0.999942i \(-0.503433\pi\)
−0.0107838 + 0.999942i \(0.503433\pi\)
\(384\) 0 0
\(385\) −56.2299 302.553i −0.146052 0.785853i
\(386\) 160.826 0.416648
\(387\) 0 0
\(388\) −118.767 −0.306099
\(389\) 335.772 0.863166 0.431583 0.902073i \(-0.357955\pi\)
0.431583 + 0.902073i \(0.357955\pi\)
\(390\) 0 0
\(391\) 3.03639i 0.00776570i
\(392\) 827.182i 2.11016i
\(393\) 0 0
\(394\) −152.975 −0.388261
\(395\) 148.140i 0.375039i
\(396\) 0 0
\(397\) 43.7968 0.110319 0.0551596 0.998478i \(-0.482433\pi\)
0.0551596 + 0.998478i \(0.482433\pi\)
\(398\) 43.3578i 0.108939i
\(399\) 0 0
\(400\) 9.03421 0.0225855
\(401\) −510.351 −1.27269 −0.636347 0.771403i \(-0.719555\pi\)
−0.636347 + 0.771403i \(0.719555\pi\)
\(402\) 0 0
\(403\) 25.7378i 0.0638655i
\(404\) 67.9824i 0.168273i
\(405\) 0 0
\(406\) 150.803i 0.371436i
\(407\) 629.007 116.902i 1.54547 0.287228i
\(408\) 0 0
\(409\) 332.673i 0.813382i −0.913566 0.406691i \(-0.866683\pi\)
0.913566 0.406691i \(-0.133317\pi\)
\(410\) 126.898 0.309508
\(411\) 0 0
\(412\) 141.675 0.343872
\(413\) 256.812i 0.621820i
\(414\) 0 0
\(415\) 226.980i 0.546939i
\(416\) −123.198 −0.296149
\(417\) 0 0
\(418\) −262.556 + 48.7963i −0.628125 + 0.116738i
\(419\) 303.619 0.724628 0.362314 0.932056i \(-0.381987\pi\)
0.362314 + 0.932056i \(0.381987\pi\)
\(420\) 0 0
\(421\) 4.25383 0.0101041 0.00505206 0.999987i \(-0.498392\pi\)
0.00505206 + 0.999987i \(0.498392\pi\)
\(422\) −345.213 −0.818040
\(423\) 0 0
\(424\) 65.0029i 0.153309i
\(425\) 0.504114i 0.00118615i
\(426\) 0 0
\(427\) −1019.04 −2.38650
\(428\) 259.185i 0.605573i
\(429\) 0 0
\(430\) 197.244 0.458706
\(431\) 783.951i 1.81891i 0.415800 + 0.909456i \(0.363502\pi\)
−0.415800 + 0.909456i \(0.636498\pi\)
\(432\) 0 0
\(433\) −767.681 −1.77294 −0.886468 0.462790i \(-0.846848\pi\)
−0.886468 + 0.462790i \(0.846848\pi\)
\(434\) −99.0422 −0.228208
\(435\) 0 0
\(436\) 171.375i 0.393062i
\(437\) 633.927i 1.45063i
\(438\) 0 0
\(439\) 221.039i 0.503506i −0.967792 0.251753i \(-0.918993\pi\)
0.967792 0.251753i \(-0.0810070\pi\)
\(440\) −34.5734 186.028i −0.0785759 0.422790i
\(441\) 0 0
\(442\) 0.436046i 0.000986529i
\(443\) −334.048 −0.754058 −0.377029 0.926201i \(-0.623054\pi\)
−0.377029 + 0.926201i \(0.623054\pi\)
\(444\) 0 0
\(445\) −129.284 −0.290525
\(446\) 429.909i 0.963921i
\(447\) 0 0
\(448\) 383.658i 0.856380i
\(449\) −382.507 −0.851909 −0.425954 0.904745i \(-0.640062\pi\)
−0.425954 + 0.904745i \(0.640062\pi\)
\(450\) 0 0
\(451\) 98.8993 + 532.143i 0.219289 + 1.17992i
\(452\) 432.294 0.956402
\(453\) 0 0
\(454\) −163.974 −0.361177
\(455\) 104.905 0.230559
\(456\) 0 0
\(457\) 683.546i 1.49573i −0.663854 0.747863i \(-0.731080\pi\)
0.663854 0.747863i \(-0.268920\pi\)
\(458\) 274.587i 0.599536i
\(459\) 0 0
\(460\) 179.787 0.390842
\(461\) 343.807i 0.745785i 0.927874 + 0.372893i \(0.121634\pi\)
−0.927874 + 0.372893i \(0.878366\pi\)
\(462\) 0 0
\(463\) 90.9035 0.196336 0.0981679 0.995170i \(-0.468702\pi\)
0.0981679 + 0.995170i \(0.468702\pi\)
\(464\) 18.8830i 0.0406960i
\(465\) 0 0
\(466\) −272.689 −0.585170
\(467\) 605.618 1.29683 0.648413 0.761289i \(-0.275433\pi\)
0.648413 + 0.761289i \(0.275433\pi\)
\(468\) 0 0
\(469\) 551.700i 1.17633i
\(470\) 164.320i 0.349617i
\(471\) 0 0
\(472\) 157.903i 0.334540i
\(473\) 153.723 + 827.132i 0.324997 + 1.74869i
\(474\) 0 0
\(475\) 105.247i 0.221573i
\(476\) 3.36769 0.00707499
\(477\) 0 0
\(478\) 412.820 0.863639
\(479\) 218.798i 0.456781i 0.973570 + 0.228390i \(0.0733463\pi\)
−0.973570 + 0.228390i \(0.926654\pi\)
\(480\) 0 0
\(481\) 218.096i 0.453422i
\(482\) 146.445 0.303828
\(483\) 0 0
\(484\) 301.472 116.067i 0.622876 0.239808i
\(485\) 99.4727 0.205098
\(486\) 0 0
\(487\) 944.923 1.94029 0.970147 0.242519i \(-0.0779736\pi\)
0.970147 + 0.242519i \(0.0779736\pi\)
\(488\) −626.564 −1.28394
\(489\) 0 0
\(490\) 277.316i 0.565950i
\(491\) 367.168i 0.747797i 0.927470 + 0.373898i \(0.121979\pi\)
−0.927470 + 0.373898i \(0.878021\pi\)
\(492\) 0 0
\(493\) −1.05368 −0.00213728
\(494\) 91.0363i 0.184284i
\(495\) 0 0
\(496\) 12.4017 0.0250034
\(497\) 551.897i 1.11046i
\(498\) 0 0
\(499\) −345.580 −0.692545 −0.346272 0.938134i \(-0.612553\pi\)
−0.346272 + 0.938134i \(0.612553\pi\)
\(500\) −29.8490 −0.0596981
\(501\) 0 0
\(502\) 253.399i 0.504779i
\(503\) 118.948i 0.236477i −0.992985 0.118238i \(-0.962275\pi\)
0.992985 0.118238i \(-0.0377247\pi\)
\(504\) 0 0
\(505\) 56.9385i 0.112750i
\(506\) −69.8142 375.646i −0.137973 0.742383i
\(507\) 0 0
\(508\) 126.511i 0.249037i
\(509\) −479.729 −0.942493 −0.471246 0.882002i \(-0.656196\pi\)
−0.471246 + 0.882002i \(0.656196\pi\)
\(510\) 0 0
\(511\) 1687.80 3.30294
\(512\) 114.960i 0.224531i
\(513\) 0 0
\(514\) 494.415i 0.961897i
\(515\) −118.660 −0.230408
\(516\) 0 0
\(517\) −689.070 + 128.064i −1.33282 + 0.247707i
\(518\) 839.260 1.62019
\(519\) 0 0
\(520\) 64.5015 0.124041
\(521\) 653.167 1.25368 0.626840 0.779148i \(-0.284348\pi\)
0.626840 + 0.779148i \(0.284348\pi\)
\(522\) 0 0
\(523\) 587.477i 1.12328i −0.827381 0.561641i \(-0.810170\pi\)
0.827381 0.561641i \(-0.189830\pi\)
\(524\) 582.649i 1.11193i
\(525\) 0 0
\(526\) 291.154 0.553525
\(527\) 0.692021i 0.00131313i
\(528\) 0 0
\(529\) 377.977 0.714512
\(530\) 21.7925i 0.0411179i
\(531\) 0 0
\(532\) 703.096 1.32161
\(533\) −184.510 −0.346173
\(534\) 0 0
\(535\) 217.080i 0.405757i
\(536\) 339.217i 0.632868i
\(537\) 0 0
\(538\) 203.098i 0.377506i
\(539\) 1162.91 216.128i 2.15753 0.400980i
\(540\) 0 0
\(541\) 633.500i 1.17098i 0.810680 + 0.585490i \(0.199098\pi\)
−0.810680 + 0.585490i \(0.800902\pi\)
\(542\) 347.733 0.641573
\(543\) 0 0
\(544\) 3.31247 0.00608910
\(545\) 143.535i 0.263367i
\(546\) 0 0
\(547\) 402.570i 0.735960i 0.929834 + 0.367980i \(0.119951\pi\)
−0.929834 + 0.367980i \(0.880049\pi\)
\(548\) 209.721 0.382703
\(549\) 0 0
\(550\) 11.5909 + 62.3664i 0.0210743 + 0.113393i
\(551\) −219.984 −0.399245
\(552\) 0 0
\(553\) 828.871 1.49886
\(554\) 116.074 0.209519
\(555\) 0 0
\(556\) 161.153i 0.289844i
\(557\) 889.872i 1.59762i −0.601586 0.798808i \(-0.705464\pi\)
0.601586 0.798808i \(-0.294536\pi\)
\(558\) 0 0
\(559\) −286.792 −0.513045
\(560\) 50.5479i 0.0902642i
\(561\) 0 0
\(562\) −188.045 −0.334600
\(563\) 486.498i 0.864117i −0.901846 0.432058i \(-0.857787\pi\)
0.901846 0.432058i \(-0.142213\pi\)
\(564\) 0 0
\(565\) −362.067 −0.640826
\(566\) −640.317 −1.13130
\(567\) 0 0
\(568\) 339.339i 0.597427i
\(569\) 270.054i 0.474611i 0.971435 + 0.237306i \(0.0762643\pi\)
−0.971435 + 0.237306i \(0.923736\pi\)
\(570\) 0 0
\(571\) 632.947i 1.10849i −0.832354 0.554244i \(-0.813007\pi\)
0.832354 0.554244i \(-0.186993\pi\)
\(572\) 20.1220 + 108.269i 0.0351783 + 0.189282i
\(573\) 0 0
\(574\) 710.018i 1.23696i
\(575\) −150.580 −0.261879
\(576\) 0 0
\(577\) −787.637 −1.36505 −0.682527 0.730860i \(-0.739119\pi\)
−0.682527 + 0.730860i \(0.739119\pi\)
\(578\) 333.307i 0.576656i
\(579\) 0 0
\(580\) 62.3893i 0.107568i
\(581\) −1269.99 −2.18587
\(582\) 0 0
\(583\) −91.3858 + 16.9841i −0.156751 + 0.0291323i
\(584\) 1037.76 1.77699
\(585\) 0 0
\(586\) 466.794 0.796577
\(587\) 279.624 0.476361 0.238180 0.971221i \(-0.423449\pi\)
0.238180 + 0.971221i \(0.423449\pi\)
\(588\) 0 0
\(589\) 144.478i 0.245294i
\(590\) 52.9375i 0.0897245i
\(591\) 0 0
\(592\) −105.089 −0.177515
\(593\) 221.094i 0.372840i 0.982470 + 0.186420i \(0.0596886\pi\)
−0.982470 + 0.186420i \(0.940311\pi\)
\(594\) 0 0
\(595\) −2.82060 −0.00474051
\(596\) 585.114i 0.981734i
\(597\) 0 0
\(598\) 130.248 0.217806
\(599\) 119.880 0.200133 0.100066 0.994981i \(-0.468094\pi\)
0.100066 + 0.994981i \(0.468094\pi\)
\(600\) 0 0
\(601\) 435.414i 0.724483i 0.932084 + 0.362242i \(0.117988\pi\)
−0.932084 + 0.362242i \(0.882012\pi\)
\(602\) 1103.61i 1.83324i
\(603\) 0 0
\(604\) 97.1569i 0.160856i
\(605\) −252.497 + 97.2116i −0.417351 + 0.160680i
\(606\) 0 0
\(607\) 470.310i 0.774811i −0.921909 0.387406i \(-0.873371\pi\)
0.921909 0.387406i \(-0.126629\pi\)
\(608\) 691.567 1.13745
\(609\) 0 0
\(610\) 210.058 0.344357
\(611\) 238.922i 0.391034i
\(612\) 0 0
\(613\) 376.345i 0.613940i −0.951719 0.306970i \(-0.900685\pi\)
0.951719 0.306970i \(-0.0993151\pi\)
\(614\) −260.363 −0.424043
\(615\) 0 0
\(616\) 1040.86 193.444i 1.68970 0.314033i
\(617\) −266.016 −0.431145 −0.215572 0.976488i \(-0.569162\pi\)
−0.215572 + 0.976488i \(0.569162\pi\)
\(618\) 0 0
\(619\) 988.237 1.59651 0.798253 0.602322i \(-0.205758\pi\)
0.798253 + 0.602322i \(0.205758\pi\)
\(620\) −40.9752 −0.0660890
\(621\) 0 0
\(622\) 110.086i 0.176987i
\(623\) 723.364i 1.16110i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 76.0375i 0.121466i
\(627\) 0 0
\(628\) −390.970 −0.622564
\(629\) 5.86403i 0.00932278i
\(630\) 0 0
\(631\) 102.951 0.163155 0.0815774 0.996667i \(-0.474004\pi\)
0.0815774 + 0.996667i \(0.474004\pi\)
\(632\) 509.638 0.806390
\(633\) 0 0
\(634\) 319.988i 0.504713i
\(635\) 105.959i 0.166864i
\(636\) 0 0
\(637\) 403.217i 0.632994i
\(638\) −130.356 + 24.2268i −0.204320 + 0.0379730i
\(639\) 0 0
\(640\) 214.773i 0.335583i
\(641\) 704.065 1.09839 0.549193 0.835696i \(-0.314935\pi\)
0.549193 + 0.835696i \(0.314935\pi\)
\(642\) 0 0
\(643\) −899.353 −1.39868 −0.699341 0.714788i \(-0.746523\pi\)
−0.699341 + 0.714788i \(0.746523\pi\)
\(644\) 1005.94i 1.56202i
\(645\) 0 0
\(646\) 2.44772i 0.00378904i
\(647\) 166.435 0.257241 0.128621 0.991694i \(-0.458945\pi\)
0.128621 + 0.991694i \(0.458945\pi\)
\(648\) 0 0
\(649\) −221.991 + 41.2573i −0.342051 + 0.0635705i
\(650\) −21.6243 −0.0332682
\(651\) 0 0
\(652\) 583.598 0.895089
\(653\) −709.328 −1.08626 −0.543130 0.839648i \(-0.682761\pi\)
−0.543130 + 0.839648i \(0.682761\pi\)
\(654\) 0 0
\(655\) 487.996i 0.745033i
\(656\) 88.9057i 0.135527i
\(657\) 0 0
\(658\) −919.399 −1.39726
\(659\) 1058.83i 1.60672i 0.595494 + 0.803360i \(0.296956\pi\)
−0.595494 + 0.803360i \(0.703044\pi\)
\(660\) 0 0
\(661\) −679.552 −1.02807 −0.514033 0.857770i \(-0.671849\pi\)
−0.514033 + 0.857770i \(0.671849\pi\)
\(662\) 320.123i 0.483569i
\(663\) 0 0
\(664\) −780.864 −1.17600
\(665\) −588.877 −0.885529
\(666\) 0 0
\(667\) 314.737i 0.471870i
\(668\) 291.970i 0.437081i
\(669\) 0 0
\(670\) 113.724i 0.169737i
\(671\) 163.710 + 880.868i 0.243980 + 1.31277i
\(672\) 0 0
\(673\) 183.626i 0.272846i 0.990651 + 0.136423i \(0.0435607\pi\)
−0.990651 + 0.136423i \(0.956439\pi\)
\(674\) 8.75365 0.0129876
\(675\) 0 0
\(676\) 413.652 0.611912
\(677\) 369.554i 0.545870i −0.962032 0.272935i \(-0.912006\pi\)
0.962032 0.272935i \(-0.0879945\pi\)
\(678\) 0 0
\(679\) 556.566i 0.819685i
\(680\) −1.73427 −0.00255040
\(681\) 0 0
\(682\) 15.9113 + 85.6133i 0.0233304 + 0.125533i
\(683\) 1234.02 1.80677 0.903385 0.428831i \(-0.141074\pi\)
0.903385 + 0.428831i \(0.141074\pi\)
\(684\) 0 0
\(685\) −175.651 −0.256426
\(686\) 844.568 1.23115
\(687\) 0 0
\(688\) 138.190i 0.200857i
\(689\) 31.6863i 0.0459888i
\(690\) 0 0
\(691\) 176.079 0.254818 0.127409 0.991850i \(-0.459334\pi\)
0.127409 + 0.991850i \(0.459334\pi\)
\(692\) 229.858i 0.332164i
\(693\) 0 0
\(694\) 132.146 0.190412
\(695\) 134.974i 0.194207i
\(696\) 0 0
\(697\) 4.96099 0.00711763
\(698\) −645.827 −0.925254
\(699\) 0 0
\(700\) 167.010i 0.238586i
\(701\) 622.951i 0.888660i −0.895863 0.444330i \(-0.853442\pi\)
0.895863 0.444330i \(-0.146558\pi\)
\(702\) 0 0
\(703\) 1224.27i 1.74150i
\(704\) 331.639 61.6354i 0.471078 0.0875503i
\(705\) 0 0
\(706\) 115.214i 0.163193i
\(707\) −318.581 −0.450609
\(708\) 0 0
\(709\) 639.807 0.902408 0.451204 0.892421i \(-0.350995\pi\)
0.451204 + 0.892421i \(0.350995\pi\)
\(710\) 113.765i 0.160232i
\(711\) 0 0
\(712\) 444.767i 0.624672i
\(713\) −206.709 −0.289914
\(714\) 0 0
\(715\) −16.8531 90.6808i −0.0235708 0.126826i
\(716\) 677.466 0.946182
\(717\) 0 0
\(718\) −376.665 −0.524603
\(719\) −659.212 −0.916846 −0.458423 0.888734i \(-0.651586\pi\)
−0.458423 + 0.888734i \(0.651586\pi\)
\(720\) 0 0
\(721\) 663.922i 0.920835i
\(722\) 94.6677i 0.131119i
\(723\) 0 0
\(724\) −512.273 −0.707559
\(725\) 52.2540i 0.0720745i
\(726\) 0 0
\(727\) −778.488 −1.07082 −0.535411 0.844592i \(-0.679843\pi\)
−0.535411 + 0.844592i \(0.679843\pi\)
\(728\) 360.896i 0.495737i
\(729\) 0 0
\(730\) −347.913 −0.476593
\(731\) 7.71108 0.0105487
\(732\) 0 0
\(733\) 449.200i 0.612825i −0.951899 0.306412i \(-0.900871\pi\)
0.951899 0.306412i \(-0.0991286\pi\)
\(734\) 34.0403i 0.0463764i
\(735\) 0 0
\(736\) 989.443i 1.34435i
\(737\) −476.896 + 88.6317i −0.647078 + 0.120260i
\(738\) 0 0
\(739\) 577.184i 0.781034i −0.920596 0.390517i \(-0.872296\pi\)
0.920596 0.390517i \(-0.127704\pi\)
\(740\) 347.214 0.469208
\(741\) 0 0
\(742\) −121.933 −0.164330
\(743\) 435.120i 0.585626i 0.956170 + 0.292813i \(0.0945913\pi\)
−0.956170 + 0.292813i \(0.905409\pi\)
\(744\) 0 0
\(745\) 490.061i 0.657799i
\(746\) 679.602 0.910994
\(747\) 0 0
\(748\) −0.541027 2.91108i −0.000723298 0.00389181i
\(749\) −1214.60 −1.62163
\(750\) 0 0
\(751\) 335.814 0.447155 0.223578 0.974686i \(-0.428226\pi\)
0.223578 + 0.974686i \(0.428226\pi\)
\(752\) 115.124 0.153090
\(753\) 0 0
\(754\) 45.1984i 0.0599448i
\(755\) 81.3736i 0.107780i
\(756\) 0 0
\(757\) 105.328 0.139139 0.0695696 0.997577i \(-0.477837\pi\)
0.0695696 + 0.997577i \(0.477837\pi\)
\(758\) 354.907i 0.468215i
\(759\) 0 0
\(760\) −362.076 −0.476416
\(761\) 702.618i 0.923283i −0.887067 0.461641i \(-0.847261\pi\)
0.887067 0.461641i \(-0.152739\pi\)
\(762\) 0 0
\(763\) −803.102 −1.05256
\(764\) 281.161 0.368012
\(765\) 0 0
\(766\) 9.52715i 0.0124375i
\(767\) 76.9711i 0.100353i
\(768\) 0 0
\(769\) 1401.93i 1.82305i 0.411241 + 0.911527i \(0.365095\pi\)
−0.411241 + 0.911527i \(0.634905\pi\)
\(770\) −348.950 + 64.8528i −0.453182 + 0.0842245i
\(771\) 0 0
\(772\) 372.280i 0.482228i
\(773\) −1172.25 −1.51649 −0.758247 0.651967i \(-0.773944\pi\)
−0.758247 + 0.651967i \(0.773944\pi\)
\(774\) 0 0
\(775\) 34.3187 0.0442822
\(776\) 342.210i 0.440992i
\(777\) 0 0
\(778\) 387.263i 0.497767i
\(779\) 1035.74 1.32958
\(780\) 0 0
\(781\) 477.067 88.6634i 0.610841 0.113525i
\(782\) −3.50202 −0.00447829
\(783\) 0 0
\(784\) −194.289 −0.247817
\(785\) 327.456 0.417142
\(786\) 0 0
\(787\) 684.107i 0.869259i 0.900609 + 0.434629i \(0.143121\pi\)
−0.900609 + 0.434629i \(0.856879\pi\)
\(788\) 354.107i 0.449374i
\(789\) 0 0
\(790\) −170.858 −0.216276
\(791\) 2025.82i 2.56109i
\(792\) 0 0
\(793\) −305.424 −0.385150
\(794\) 50.5131i 0.0636185i
\(795\) 0 0
\(796\) 100.365 0.126086
\(797\) 307.869 0.386285 0.193142 0.981171i \(-0.438132\pi\)
0.193142 + 0.981171i \(0.438132\pi\)
\(798\) 0 0
\(799\) 6.42397i 0.00804001i
\(800\) 164.272i 0.205340i
\(801\) 0 0
\(802\) 588.614i 0.733932i
\(803\) −271.149 1458.96i −0.337670 1.81688i
\(804\) 0 0
\(805\) 842.522i 1.04661i
\(806\) −29.6848 −0.0368297
\(807\) 0 0
\(808\) −195.882 −0.242428
\(809\) 447.140i 0.552707i −0.961056 0.276353i \(-0.910874\pi\)
0.961056 0.276353i \(-0.0891260\pi\)
\(810\) 0 0
\(811\) 502.360i 0.619433i 0.950829 + 0.309716i \(0.100234\pi\)
−0.950829 + 0.309716i \(0.899766\pi\)
\(812\) 349.079 0.429900
\(813\) 0 0
\(814\) −134.829 725.467i −0.165637 0.891237i
\(815\) −488.791 −0.599744
\(816\) 0 0
\(817\) 1609.89 1.97049
\(818\) −383.689 −0.469058
\(819\) 0 0
\(820\) 293.744i 0.358225i
\(821\) 65.1337i 0.0793346i 0.999213 + 0.0396673i \(0.0126298\pi\)
−0.999213 + 0.0396673i \(0.987370\pi\)
\(822\) 0 0
\(823\) −198.188 −0.240812 −0.120406 0.992725i \(-0.538420\pi\)
−0.120406 + 0.992725i \(0.538420\pi\)
\(824\) 408.218i 0.495410i
\(825\) 0 0
\(826\) −296.194 −0.358588
\(827\) 294.941i 0.356640i 0.983973 + 0.178320i \(0.0570662\pi\)
−0.983973 + 0.178320i \(0.942934\pi\)
\(828\) 0 0
\(829\) 332.089 0.400589 0.200295 0.979736i \(-0.435810\pi\)
0.200295 + 0.979736i \(0.435810\pi\)
\(830\) 261.788 0.315407
\(831\) 0 0
\(832\) 114.989i 0.138208i
\(833\) 10.8414i 0.0130149i
\(834\) 0 0
\(835\) 244.539i 0.292861i
\(836\) −112.954 607.765i −0.135112 0.726992i
\(837\) 0 0
\(838\) 350.179i 0.417875i
\(839\) −316.736 −0.377516 −0.188758 0.982024i \(-0.560446\pi\)
−0.188758 + 0.982024i \(0.560446\pi\)
\(840\) 0 0
\(841\) 731.781 0.870132
\(842\) 4.90617i 0.00582680i
\(843\) 0 0
\(844\) 799.100i 0.946800i
\(845\) −346.454 −0.410004
\(846\) 0 0
\(847\) −543.915 1412.77i −0.642166 1.66796i
\(848\) 15.2679 0.0180046
\(849\) 0 0
\(850\) 0.581421 0.000684025
\(851\) 1751.60 2.05828
\(852\) 0 0
\(853\) 190.690i 0.223553i 0.993733 + 0.111776i \(0.0356540\pi\)
−0.993733 + 0.111776i \(0.964346\pi\)
\(854\) 1175.31i 1.37624i
\(855\) 0 0
\(856\) −746.807 −0.872438
\(857\) 1037.09i 1.21014i 0.796173 + 0.605070i \(0.206855\pi\)
−0.796173 + 0.605070i \(0.793145\pi\)
\(858\) 0 0
\(859\) 1537.20 1.78953 0.894764 0.446539i \(-0.147344\pi\)
0.894764 + 0.446539i \(0.147344\pi\)
\(860\) 456.580i 0.530906i
\(861\) 0 0
\(862\) 904.172 1.04892
\(863\) −915.241 −1.06053 −0.530267 0.847831i \(-0.677908\pi\)
−0.530267 + 0.847831i \(0.677908\pi\)
\(864\) 0 0
\(865\) 192.517i 0.222563i
\(866\) 885.406i 1.02241i
\(867\) 0 0
\(868\) 229.263i 0.264128i
\(869\) −133.160 716.486i −0.153233 0.824495i
\(870\) 0 0
\(871\) 165.355i 0.189845i
\(872\) −493.794 −0.566278
\(873\) 0 0
\(874\) −731.141 −0.836546
\(875\) 139.879i 0.159862i
\(876\) 0 0
\(877\) 979.084i 1.11640i 0.829706 + 0.558201i \(0.188508\pi\)
−0.829706 + 0.558201i \(0.811492\pi\)
\(878\) −254.936 −0.290360
\(879\) 0 0
\(880\) 43.6942 8.12062i 0.0496525 0.00922798i
\(881\) −461.922 −0.524315 −0.262158 0.965025i \(-0.584434\pi\)
−0.262158 + 0.965025i \(0.584434\pi\)
\(882\) 0 0
\(883\) −388.559 −0.440045 −0.220022 0.975495i \(-0.570613\pi\)
−0.220022 + 0.975495i \(0.570613\pi\)
\(884\) 1.00936 0.00114181
\(885\) 0 0
\(886\) 385.274i 0.434847i
\(887\) 353.901i 0.398987i −0.979899 0.199493i \(-0.936070\pi\)
0.979899 0.199493i \(-0.0639297\pi\)
\(888\) 0 0
\(889\) 592.858 0.666882
\(890\) 149.110i 0.167539i
\(891\) 0 0
\(892\) 995.153 1.11564
\(893\) 1341.18i 1.50188i
\(894\) 0 0
\(895\) −567.410 −0.633978
\(896\) −1201.69 −1.34117
\(897\) 0 0
\(898\) 441.165i 0.491275i
\(899\) 71.7316i 0.0797904i
\(900\) 0 0
\(901\) 0.851959i 0.000945571i
\(902\) 613.748 114.066i 0.680430 0.126459i
\(903\) 0 0
\(904\) 1245.59i 1.37787i
\(905\) 429.053 0.474092
\(906\) 0 0
\(907\) −1653.76 −1.82333 −0.911663 0.410939i \(-0.865201\pi\)
−0.911663 + 0.410939i \(0.865201\pi\)
\(908\) 379.568i 0.418027i
\(909\) 0 0
\(910\) 120.992i 0.132958i
\(911\) −1437.18 −1.57759 −0.788793 0.614659i \(-0.789294\pi\)
−0.788793 + 0.614659i \(0.789294\pi\)
\(912\) 0 0
\(913\) 204.026 + 1097.79i 0.223468 + 1.20240i
\(914\) −788.370 −0.862549
\(915\) 0 0
\(916\) −635.615 −0.693903
\(917\) −2730.42 −2.97756
\(918\) 0 0
\(919\) 528.097i 0.574643i 0.957834 + 0.287321i \(0.0927647\pi\)
−0.957834 + 0.287321i \(0.907235\pi\)
\(920\) 518.032i 0.563078i
\(921\) 0 0
\(922\) 396.531 0.430076
\(923\) 165.414i 0.179213i
\(924\) 0 0
\(925\) −290.808 −0.314387
\(926\) 104.844i 0.113222i
\(927\) 0 0
\(928\) 343.354 0.369994
\(929\) −1229.53 −1.32350 −0.661751 0.749724i \(-0.730186\pi\)
−0.661751 + 0.749724i \(0.730186\pi\)
\(930\) 0 0
\(931\) 2263.44i 2.43119i
\(932\) 631.221i 0.677276i
\(933\) 0 0
\(934\) 698.491i 0.747849i
\(935\) 0.453136 + 2.43816i 0.000484637 + 0.00260766i
\(936\) 0 0
\(937\) 403.452i 0.430579i −0.976550 0.215289i \(-0.930931\pi\)
0.976550 0.215289i \(-0.0690695\pi\)
\(938\) −636.304 −0.678363
\(939\) 0 0
\(940\) −380.369 −0.404647
\(941\) 1599.00i 1.69925i 0.527386 + 0.849626i \(0.323172\pi\)
−0.527386 + 0.849626i \(0.676828\pi\)
\(942\) 0 0
\(943\) 1481.86i 1.57143i
\(944\) 37.0883 0.0392884
\(945\) 0 0
\(946\) 953.974 177.297i 1.00843 0.187418i
\(947\) −518.387 −0.547399 −0.273700 0.961815i \(-0.588247\pi\)
−0.273700 + 0.961815i \(0.588247\pi\)
\(948\) 0 0
\(949\) 505.865 0.533051
\(950\) 121.387 0.127776
\(951\) 0 0
\(952\) 9.70355i 0.0101928i
\(953\) 1463.22i 1.53539i −0.640817 0.767693i \(-0.721404\pi\)
0.640817 0.767693i \(-0.278596\pi\)
\(954\) 0 0
\(955\) −235.486 −0.246582
\(956\) 955.595i 0.999576i
\(957\) 0 0
\(958\) 252.351 0.263414
\(959\) 982.800i 1.02482i
\(960\) 0 0
\(961\) −913.889 −0.950977
\(962\) 251.542 0.261478
\(963\) 0 0
\(964\) 338.991i 0.351650i
\(965\) 311.802i 0.323111i
\(966\) 0 0
\(967\) 804.879i 0.832346i 0.909285 + 0.416173i \(0.136629\pi\)
−0.909285 + 0.416173i \(0.863371\pi\)
\(968\) −334.431 868.651i −0.345486 0.897366i
\(969\) 0 0
\(970\) 114.727i 0.118275i
\(971\) 1459.59 1.50318 0.751590 0.659631i \(-0.229287\pi\)
0.751590 + 0.659631i \(0.229287\pi\)
\(972\) 0 0
\(973\) −755.201 −0.776157
\(974\) 1089.83i 1.11892i
\(975\) 0 0
\(976\) 147.168i 0.150786i
\(977\) −1227.01 −1.25589 −0.627947 0.778256i \(-0.716105\pi\)
−0.627947 + 0.778256i \(0.716105\pi\)
\(978\) 0 0
\(979\) −625.285 + 116.210i −0.638697 + 0.118703i
\(980\) 641.931 0.655031
\(981\) 0 0
\(982\) 423.474 0.431236
\(983\) −566.797 −0.576599 −0.288300 0.957540i \(-0.593090\pi\)
−0.288300 + 0.957540i \(0.593090\pi\)
\(984\) 0 0
\(985\) 296.581i 0.301098i
\(986\) 1.21526i 0.00123252i
\(987\) 0 0
\(988\) 210.731 0.213290
\(989\) 2303.32i 2.32894i
\(990\) 0 0
\(991\) −289.458 −0.292087 −0.146043 0.989278i \(-0.546654\pi\)
−0.146043 + 0.989278i \(0.546654\pi\)
\(992\) 225.503i 0.227322i
\(993\) 0 0
\(994\) 636.532 0.640374
\(995\) −84.0603 −0.0844827
\(996\) 0 0
\(997\) 488.824i 0.490294i −0.969486 0.245147i \(-0.921164\pi\)
0.969486 0.245147i \(-0.0788363\pi\)
\(998\) 398.575i 0.399374i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.b.c.406.5 16
3.2 odd 2 165.3.b.a.76.12 yes 16
11.10 odd 2 inner 495.3.b.c.406.12 16
12.11 even 2 2640.3.c.c.241.16 16
15.2 even 4 825.3.h.b.274.10 32
15.8 even 4 825.3.h.b.274.24 32
15.14 odd 2 825.3.b.d.76.5 16
33.32 even 2 165.3.b.a.76.5 16
132.131 odd 2 2640.3.c.c.241.13 16
165.32 odd 4 825.3.h.b.274.23 32
165.98 odd 4 825.3.h.b.274.9 32
165.164 even 2 825.3.b.d.76.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.3.b.a.76.5 16 33.32 even 2
165.3.b.a.76.12 yes 16 3.2 odd 2
495.3.b.c.406.5 16 1.1 even 1 trivial
495.3.b.c.406.12 16 11.10 odd 2 inner
825.3.b.d.76.5 16 15.14 odd 2
825.3.b.d.76.12 16 165.164 even 2
825.3.h.b.274.9 32 165.98 odd 4
825.3.h.b.274.10 32 15.2 even 4
825.3.h.b.274.23 32 165.32 odd 4
825.3.h.b.274.24 32 15.8 even 4
2640.3.c.c.241.13 16 132.131 odd 2
2640.3.c.c.241.16 16 12.11 even 2