Properties

Label 495.2.a.b
Level $495$
Weight $2$
Character orbit 495.a
Self dual yes
Analytic conductor $3.953$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [495,2,Mod(1,495)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(495, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("495.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.95259490005\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{2} + ( - 2 \beta + 1) q^{4} + q^{5} - 2 q^{7} + (\beta - 3) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta - 1) q^{2} + ( - 2 \beta + 1) q^{4} + q^{5} - 2 q^{7} + (\beta - 3) q^{8} + (\beta - 1) q^{10} - q^{11} + ( - 2 \beta - 4) q^{13} + ( - 2 \beta + 2) q^{14} + 3 q^{16} + (2 \beta - 4) q^{17} + ( - 2 \beta + 1) q^{20} + ( - \beta + 1) q^{22} - 2 \beta q^{23} + q^{25} - 2 \beta q^{26} + (4 \beta - 2) q^{28} + ( - 4 \beta - 2) q^{29} + (\beta + 3) q^{32} + ( - 6 \beta + 8) q^{34} - 2 q^{35} + (4 \beta - 2) q^{37} + (\beta - 3) q^{40} - 6 q^{41} - 6 q^{43} + (2 \beta - 1) q^{44} + (2 \beta - 4) q^{46} + 2 \beta q^{47} - 3 q^{49} + (\beta - 1) q^{50} + (6 \beta + 4) q^{52} + (4 \beta - 6) q^{53} - q^{55} + ( - 2 \beta + 6) q^{56} + (2 \beta - 6) q^{58} + (4 \beta + 4) q^{59} + (8 \beta + 2) q^{61} + (2 \beta - 7) q^{64} + ( - 2 \beta - 4) q^{65} + ( - 6 \beta + 4) q^{67} + (10 \beta - 12) q^{68} + ( - 2 \beta + 2) q^{70} + 8 \beta q^{71} + ( - 2 \beta - 4) q^{73} + ( - 6 \beta + 10) q^{74} + 2 q^{77} + 4 q^{79} + 3 q^{80} + ( - 6 \beta + 6) q^{82} + 6 q^{83} + (2 \beta - 4) q^{85} + ( - 6 \beta + 6) q^{86} + ( - \beta + 3) q^{88} + ( - 8 \beta + 2) q^{89} + (4 \beta + 8) q^{91} + ( - 2 \beta + 8) q^{92} + ( - 2 \beta + 4) q^{94} + ( - 4 \beta - 2) q^{97} + ( - 3 \beta + 3) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 2 q^{5} - 4 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{4} + 2 q^{5} - 4 q^{7} - 6 q^{8} - 2 q^{10} - 2 q^{11} - 8 q^{13} + 4 q^{14} + 6 q^{16} - 8 q^{17} + 2 q^{20} + 2 q^{22} + 2 q^{25} - 4 q^{28} - 4 q^{29} + 6 q^{32} + 16 q^{34} - 4 q^{35} - 4 q^{37} - 6 q^{40} - 12 q^{41} - 12 q^{43} - 2 q^{44} - 8 q^{46} - 6 q^{49} - 2 q^{50} + 8 q^{52} - 12 q^{53} - 2 q^{55} + 12 q^{56} - 12 q^{58} + 8 q^{59} + 4 q^{61} - 14 q^{64} - 8 q^{65} + 8 q^{67} - 24 q^{68} + 4 q^{70} - 8 q^{73} + 20 q^{74} + 4 q^{77} + 8 q^{79} + 6 q^{80} + 12 q^{82} + 12 q^{83} - 8 q^{85} + 12 q^{86} + 6 q^{88} + 4 q^{89} + 16 q^{91} + 16 q^{92} + 8 q^{94} - 4 q^{97} + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−2.41421 0 3.82843 1.00000 0 −2.00000 −4.41421 0 −2.41421
1.2 0.414214 0 −1.82843 1.00000 0 −2.00000 −1.58579 0 0.414214
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 495.2.a.b 2
3.b odd 2 1 55.2.a.b 2
4.b odd 2 1 7920.2.a.ch 2
5.b even 2 1 2475.2.a.x 2
5.c odd 4 2 2475.2.c.l 4
11.b odd 2 1 5445.2.a.y 2
12.b even 2 1 880.2.a.m 2
15.d odd 2 1 275.2.a.c 2
15.e even 4 2 275.2.b.d 4
21.c even 2 1 2695.2.a.f 2
24.f even 2 1 3520.2.a.bo 2
24.h odd 2 1 3520.2.a.bn 2
33.d even 2 1 605.2.a.d 2
33.f even 10 4 605.2.g.l 8
33.h odd 10 4 605.2.g.f 8
39.d odd 2 1 9295.2.a.g 2
60.h even 2 1 4400.2.a.bn 2
60.l odd 4 2 4400.2.b.q 4
132.d odd 2 1 9680.2.a.bn 2
165.d even 2 1 3025.2.a.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.a.b 2 3.b odd 2 1
275.2.a.c 2 15.d odd 2 1
275.2.b.d 4 15.e even 4 2
495.2.a.b 2 1.a even 1 1 trivial
605.2.a.d 2 33.d even 2 1
605.2.g.f 8 33.h odd 10 4
605.2.g.l 8 33.f even 10 4
880.2.a.m 2 12.b even 2 1
2475.2.a.x 2 5.b even 2 1
2475.2.c.l 4 5.c odd 4 2
2695.2.a.f 2 21.c even 2 1
3025.2.a.o 2 165.d even 2 1
3520.2.a.bn 2 24.h odd 2 1
3520.2.a.bo 2 24.f even 2 1
4400.2.a.bn 2 60.h even 2 1
4400.2.b.q 4 60.l odd 4 2
5445.2.a.y 2 11.b odd 2 1
7920.2.a.ch 2 4.b odd 2 1
9295.2.a.g 2 39.d odd 2 1
9680.2.a.bn 2 132.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 2T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(495))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T - 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( (T + 2)^{2} \) Copy content Toggle raw display
$11$ \( (T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 8T + 8 \) Copy content Toggle raw display
$17$ \( T^{2} + 8T + 8 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 8 \) Copy content Toggle raw display
$29$ \( T^{2} + 4T - 28 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4T - 28 \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( (T + 6)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 8 \) Copy content Toggle raw display
$53$ \( T^{2} + 12T + 4 \) Copy content Toggle raw display
$59$ \( T^{2} - 8T - 16 \) Copy content Toggle raw display
$61$ \( T^{2} - 4T - 124 \) Copy content Toggle raw display
$67$ \( T^{2} - 8T - 56 \) Copy content Toggle raw display
$71$ \( T^{2} - 128 \) Copy content Toggle raw display
$73$ \( T^{2} + 8T + 8 \) Copy content Toggle raw display
$79$ \( (T - 4)^{2} \) Copy content Toggle raw display
$83$ \( (T - 6)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 4T - 124 \) Copy content Toggle raw display
$97$ \( T^{2} + 4T - 28 \) Copy content Toggle raw display
show more
show less