Properties

Label 4925.2.a.s.1.20
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $0$
Dimension $49$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4925,2,Mod(1,4925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [49,5,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(0\)
Dimension: \(49\)
Twist minimal: no (minimal twist has level 985)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.20
Character \(\chi\) \(=\) 4925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.420000 q^{2} -2.34519 q^{3} -1.82360 q^{4} +0.984980 q^{6} -1.96792 q^{7} +1.60591 q^{8} +2.49993 q^{9} +0.262244 q^{11} +4.27670 q^{12} +2.92808 q^{13} +0.826524 q^{14} +2.97272 q^{16} +3.46686 q^{17} -1.04997 q^{18} -0.910577 q^{19} +4.61515 q^{21} -0.110142 q^{22} +7.34742 q^{23} -3.76617 q^{24} -1.22979 q^{26} +1.17275 q^{27} +3.58869 q^{28} -3.55449 q^{29} -0.825867 q^{31} -4.46036 q^{32} -0.615014 q^{33} -1.45608 q^{34} -4.55888 q^{36} -5.87223 q^{37} +0.382442 q^{38} -6.86692 q^{39} +1.30619 q^{41} -1.93836 q^{42} +2.19557 q^{43} -0.478229 q^{44} -3.08591 q^{46} +11.4591 q^{47} -6.97160 q^{48} -3.12730 q^{49} -8.13047 q^{51} -5.33965 q^{52} -5.05298 q^{53} -0.492555 q^{54} -3.16030 q^{56} +2.13548 q^{57} +1.49288 q^{58} +3.30214 q^{59} +0.697567 q^{61} +0.346864 q^{62} -4.91966 q^{63} -4.07209 q^{64} +0.258305 q^{66} +12.7645 q^{67} -6.32217 q^{68} -17.2311 q^{69} -6.26113 q^{71} +4.01467 q^{72} -0.840670 q^{73} +2.46633 q^{74} +1.66053 q^{76} -0.516075 q^{77} +2.88410 q^{78} -16.5084 q^{79} -10.2501 q^{81} -0.548601 q^{82} -15.9653 q^{83} -8.41618 q^{84} -0.922138 q^{86} +8.33596 q^{87} +0.421141 q^{88} +3.78639 q^{89} -5.76222 q^{91} -13.3988 q^{92} +1.93682 q^{93} -4.81283 q^{94} +10.4604 q^{96} -7.17625 q^{97} +1.31347 q^{98} +0.655593 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 49 q + 5 q^{2} + 22 q^{3} + 49 q^{4} + 2 q^{6} + 32 q^{7} + 15 q^{8} + 51 q^{9} - 2 q^{11} + 44 q^{12} + 32 q^{13} - 8 q^{14} + 49 q^{16} + 14 q^{17} + 25 q^{18} + 4 q^{19} + 10 q^{21} + 38 q^{22} + 24 q^{23}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.420000 −0.296985 −0.148492 0.988914i \(-0.547442\pi\)
−0.148492 + 0.988914i \(0.547442\pi\)
\(3\) −2.34519 −1.35400 −0.676999 0.735984i \(-0.736720\pi\)
−0.676999 + 0.735984i \(0.736720\pi\)
\(4\) −1.82360 −0.911800
\(5\) 0 0
\(6\) 0.984980 0.402117
\(7\) −1.96792 −0.743803 −0.371901 0.928272i \(-0.621294\pi\)
−0.371901 + 0.928272i \(0.621294\pi\)
\(8\) 1.60591 0.567775
\(9\) 2.49993 0.833311
\(10\) 0 0
\(11\) 0.262244 0.0790696 0.0395348 0.999218i \(-0.487412\pi\)
0.0395348 + 0.999218i \(0.487412\pi\)
\(12\) 4.27670 1.23458
\(13\) 2.92808 0.812104 0.406052 0.913850i \(-0.366905\pi\)
0.406052 + 0.913850i \(0.366905\pi\)
\(14\) 0.826524 0.220898
\(15\) 0 0
\(16\) 2.97272 0.743180
\(17\) 3.46686 0.840838 0.420419 0.907330i \(-0.361883\pi\)
0.420419 + 0.907330i \(0.361883\pi\)
\(18\) −1.04997 −0.247481
\(19\) −0.910577 −0.208901 −0.104450 0.994530i \(-0.533308\pi\)
−0.104450 + 0.994530i \(0.533308\pi\)
\(20\) 0 0
\(21\) 4.61515 1.00711
\(22\) −0.110142 −0.0234825
\(23\) 7.34742 1.53204 0.766021 0.642815i \(-0.222234\pi\)
0.766021 + 0.642815i \(0.222234\pi\)
\(24\) −3.76617 −0.768767
\(25\) 0 0
\(26\) −1.22979 −0.241182
\(27\) 1.17275 0.225696
\(28\) 3.58869 0.678199
\(29\) −3.55449 −0.660051 −0.330026 0.943972i \(-0.607057\pi\)
−0.330026 + 0.943972i \(0.607057\pi\)
\(30\) 0 0
\(31\) −0.825867 −0.148330 −0.0741651 0.997246i \(-0.523629\pi\)
−0.0741651 + 0.997246i \(0.523629\pi\)
\(32\) −4.46036 −0.788488
\(33\) −0.615014 −0.107060
\(34\) −1.45608 −0.249716
\(35\) 0 0
\(36\) −4.55888 −0.759814
\(37\) −5.87223 −0.965388 −0.482694 0.875789i \(-0.660342\pi\)
−0.482694 + 0.875789i \(0.660342\pi\)
\(38\) 0.382442 0.0620403
\(39\) −6.86692 −1.09959
\(40\) 0 0
\(41\) 1.30619 0.203993 0.101997 0.994785i \(-0.467477\pi\)
0.101997 + 0.994785i \(0.467477\pi\)
\(42\) −1.93836 −0.299095
\(43\) 2.19557 0.334821 0.167411 0.985887i \(-0.446459\pi\)
0.167411 + 0.985887i \(0.446459\pi\)
\(44\) −0.478229 −0.0720957
\(45\) 0 0
\(46\) −3.08591 −0.454993
\(47\) 11.4591 1.67149 0.835743 0.549120i \(-0.185037\pi\)
0.835743 + 0.549120i \(0.185037\pi\)
\(48\) −6.97160 −1.00626
\(49\) −3.12730 −0.446758
\(50\) 0 0
\(51\) −8.13047 −1.13849
\(52\) −5.33965 −0.740476
\(53\) −5.05298 −0.694081 −0.347040 0.937850i \(-0.612813\pi\)
−0.347040 + 0.937850i \(0.612813\pi\)
\(54\) −0.492555 −0.0670282
\(55\) 0 0
\(56\) −3.16030 −0.422313
\(57\) 2.13548 0.282851
\(58\) 1.49288 0.196025
\(59\) 3.30214 0.429902 0.214951 0.976625i \(-0.431041\pi\)
0.214951 + 0.976625i \(0.431041\pi\)
\(60\) 0 0
\(61\) 0.697567 0.0893143 0.0446572 0.999002i \(-0.485780\pi\)
0.0446572 + 0.999002i \(0.485780\pi\)
\(62\) 0.346864 0.0440518
\(63\) −4.91966 −0.619819
\(64\) −4.07209 −0.509011
\(65\) 0 0
\(66\) 0.258305 0.0317952
\(67\) 12.7645 1.55943 0.779717 0.626132i \(-0.215363\pi\)
0.779717 + 0.626132i \(0.215363\pi\)
\(68\) −6.32217 −0.766676
\(69\) −17.2311 −2.07438
\(70\) 0 0
\(71\) −6.26113 −0.743060 −0.371530 0.928421i \(-0.621167\pi\)
−0.371530 + 0.928421i \(0.621167\pi\)
\(72\) 4.01467 0.473134
\(73\) −0.840670 −0.0983929 −0.0491965 0.998789i \(-0.515666\pi\)
−0.0491965 + 0.998789i \(0.515666\pi\)
\(74\) 2.46633 0.286705
\(75\) 0 0
\(76\) 1.66053 0.190476
\(77\) −0.516075 −0.0588122
\(78\) 2.88410 0.326560
\(79\) −16.5084 −1.85734 −0.928672 0.370903i \(-0.879048\pi\)
−0.928672 + 0.370903i \(0.879048\pi\)
\(80\) 0 0
\(81\) −10.2501 −1.13890
\(82\) −0.548601 −0.0605829
\(83\) −15.9653 −1.75241 −0.876207 0.481934i \(-0.839934\pi\)
−0.876207 + 0.481934i \(0.839934\pi\)
\(84\) −8.41618 −0.918281
\(85\) 0 0
\(86\) −0.922138 −0.0994367
\(87\) 8.33596 0.893709
\(88\) 0.421141 0.0448938
\(89\) 3.78639 0.401357 0.200678 0.979657i \(-0.435685\pi\)
0.200678 + 0.979657i \(0.435685\pi\)
\(90\) 0 0
\(91\) −5.76222 −0.604045
\(92\) −13.3988 −1.39692
\(93\) 1.93682 0.200839
\(94\) −4.81283 −0.496406
\(95\) 0 0
\(96\) 10.4604 1.06761
\(97\) −7.17625 −0.728638 −0.364319 0.931274i \(-0.618698\pi\)
−0.364319 + 0.931274i \(0.618698\pi\)
\(98\) 1.31347 0.132680
\(99\) 0.655593 0.0658896
\(100\) 0 0
\(101\) 5.69799 0.566971 0.283485 0.958977i \(-0.408509\pi\)
0.283485 + 0.958977i \(0.408509\pi\)
\(102\) 3.41479 0.338115
\(103\) −0.871010 −0.0858231 −0.0429116 0.999079i \(-0.513663\pi\)
−0.0429116 + 0.999079i \(0.513663\pi\)
\(104\) 4.70224 0.461092
\(105\) 0 0
\(106\) 2.12225 0.206131
\(107\) 0.969497 0.0937248 0.0468624 0.998901i \(-0.485078\pi\)
0.0468624 + 0.998901i \(0.485078\pi\)
\(108\) −2.13863 −0.205790
\(109\) 6.03685 0.578225 0.289113 0.957295i \(-0.406640\pi\)
0.289113 + 0.957295i \(0.406640\pi\)
\(110\) 0 0
\(111\) 13.7715 1.30713
\(112\) −5.85006 −0.552779
\(113\) 3.66113 0.344411 0.172205 0.985061i \(-0.444911\pi\)
0.172205 + 0.985061i \(0.444911\pi\)
\(114\) −0.896900 −0.0840024
\(115\) 0 0
\(116\) 6.48196 0.601835
\(117\) 7.32001 0.676735
\(118\) −1.38690 −0.127674
\(119\) −6.82250 −0.625417
\(120\) 0 0
\(121\) −10.9312 −0.993748
\(122\) −0.292978 −0.0265250
\(123\) −3.06328 −0.276207
\(124\) 1.50605 0.135247
\(125\) 0 0
\(126\) 2.06626 0.184077
\(127\) 15.1110 1.34088 0.670442 0.741962i \(-0.266105\pi\)
0.670442 + 0.741962i \(0.266105\pi\)
\(128\) 10.6310 0.939656
\(129\) −5.14903 −0.453347
\(130\) 0 0
\(131\) 1.19923 0.104778 0.0523888 0.998627i \(-0.483316\pi\)
0.0523888 + 0.998627i \(0.483316\pi\)
\(132\) 1.12154 0.0976174
\(133\) 1.79194 0.155381
\(134\) −5.36109 −0.463128
\(135\) 0 0
\(136\) 5.56747 0.477407
\(137\) 16.0952 1.37510 0.687552 0.726135i \(-0.258685\pi\)
0.687552 + 0.726135i \(0.258685\pi\)
\(138\) 7.23706 0.616060
\(139\) −4.77889 −0.405340 −0.202670 0.979247i \(-0.564962\pi\)
−0.202670 + 0.979247i \(0.564962\pi\)
\(140\) 0 0
\(141\) −26.8739 −2.26319
\(142\) 2.62967 0.220677
\(143\) 0.767873 0.0642127
\(144\) 7.43160 0.619300
\(145\) 0 0
\(146\) 0.353081 0.0292212
\(147\) 7.33414 0.604909
\(148\) 10.7086 0.880241
\(149\) 22.8959 1.87571 0.937853 0.347033i \(-0.112811\pi\)
0.937853 + 0.347033i \(0.112811\pi\)
\(150\) 0 0
\(151\) −7.97484 −0.648983 −0.324492 0.945889i \(-0.605193\pi\)
−0.324492 + 0.945889i \(0.605193\pi\)
\(152\) −1.46230 −0.118609
\(153\) 8.66693 0.700680
\(154\) 0.216751 0.0174663
\(155\) 0 0
\(156\) 12.5225 1.00260
\(157\) −22.5524 −1.79988 −0.899938 0.436018i \(-0.856389\pi\)
−0.899938 + 0.436018i \(0.856389\pi\)
\(158\) 6.93353 0.551602
\(159\) 11.8502 0.939784
\(160\) 0 0
\(161\) −14.4591 −1.13954
\(162\) 4.30505 0.338237
\(163\) 20.6248 1.61546 0.807729 0.589554i \(-0.200696\pi\)
0.807729 + 0.589554i \(0.200696\pi\)
\(164\) −2.38198 −0.186001
\(165\) 0 0
\(166\) 6.70540 0.520440
\(167\) 4.14740 0.320935 0.160468 0.987041i \(-0.448700\pi\)
0.160468 + 0.987041i \(0.448700\pi\)
\(168\) 7.41151 0.571810
\(169\) −4.42634 −0.340487
\(170\) 0 0
\(171\) −2.27638 −0.174079
\(172\) −4.00384 −0.305290
\(173\) −21.7783 −1.65577 −0.827886 0.560896i \(-0.810457\pi\)
−0.827886 + 0.560896i \(0.810457\pi\)
\(174\) −3.50110 −0.265418
\(175\) 0 0
\(176\) 0.779578 0.0587629
\(177\) −7.74415 −0.582086
\(178\) −1.59028 −0.119197
\(179\) 11.5992 0.866962 0.433481 0.901163i \(-0.357285\pi\)
0.433481 + 0.901163i \(0.357285\pi\)
\(180\) 0 0
\(181\) 3.95030 0.293623 0.146812 0.989164i \(-0.453099\pi\)
0.146812 + 0.989164i \(0.453099\pi\)
\(182\) 2.42013 0.179392
\(183\) −1.63593 −0.120931
\(184\) 11.7993 0.869856
\(185\) 0 0
\(186\) −0.813463 −0.0596460
\(187\) 0.909165 0.0664847
\(188\) −20.8969 −1.52406
\(189\) −2.30788 −0.167873
\(190\) 0 0
\(191\) 8.53415 0.617509 0.308755 0.951142i \(-0.400088\pi\)
0.308755 + 0.951142i \(0.400088\pi\)
\(192\) 9.54984 0.689200
\(193\) 1.18802 0.0855158 0.0427579 0.999085i \(-0.486386\pi\)
0.0427579 + 0.999085i \(0.486386\pi\)
\(194\) 3.01402 0.216394
\(195\) 0 0
\(196\) 5.70295 0.407354
\(197\) −1.00000 −0.0712470
\(198\) −0.275349 −0.0195682
\(199\) −6.78813 −0.481198 −0.240599 0.970625i \(-0.577344\pi\)
−0.240599 + 0.970625i \(0.577344\pi\)
\(200\) 0 0
\(201\) −29.9353 −2.11147
\(202\) −2.39315 −0.168382
\(203\) 6.99493 0.490948
\(204\) 14.8267 1.03808
\(205\) 0 0
\(206\) 0.365824 0.0254881
\(207\) 18.3681 1.27667
\(208\) 8.70436 0.603539
\(209\) −0.238794 −0.0165177
\(210\) 0 0
\(211\) 0.358423 0.0246749 0.0123374 0.999924i \(-0.496073\pi\)
0.0123374 + 0.999924i \(0.496073\pi\)
\(212\) 9.21462 0.632863
\(213\) 14.6836 1.00610
\(214\) −0.407188 −0.0278348
\(215\) 0 0
\(216\) 1.88333 0.128145
\(217\) 1.62524 0.110328
\(218\) −2.53547 −0.171724
\(219\) 1.97153 0.133224
\(220\) 0 0
\(221\) 10.1513 0.682847
\(222\) −5.78403 −0.388198
\(223\) −8.87146 −0.594077 −0.297039 0.954866i \(-0.595999\pi\)
−0.297039 + 0.954866i \(0.595999\pi\)
\(224\) 8.77762 0.586479
\(225\) 0 0
\(226\) −1.53768 −0.102285
\(227\) 13.5773 0.901158 0.450579 0.892736i \(-0.351217\pi\)
0.450579 + 0.892736i \(0.351217\pi\)
\(228\) −3.89426 −0.257904
\(229\) 15.2717 1.00918 0.504592 0.863358i \(-0.331643\pi\)
0.504592 + 0.863358i \(0.331643\pi\)
\(230\) 0 0
\(231\) 1.21030 0.0796316
\(232\) −5.70819 −0.374761
\(233\) 7.70343 0.504668 0.252334 0.967640i \(-0.418802\pi\)
0.252334 + 0.967640i \(0.418802\pi\)
\(234\) −3.07440 −0.200980
\(235\) 0 0
\(236\) −6.02178 −0.391984
\(237\) 38.7155 2.51484
\(238\) 2.86545 0.185739
\(239\) −15.2106 −0.983891 −0.491945 0.870626i \(-0.663714\pi\)
−0.491945 + 0.870626i \(0.663714\pi\)
\(240\) 0 0
\(241\) −3.27032 −0.210660 −0.105330 0.994437i \(-0.533590\pi\)
−0.105330 + 0.994437i \(0.533590\pi\)
\(242\) 4.59111 0.295128
\(243\) 20.5203 1.31638
\(244\) −1.27208 −0.0814368
\(245\) 0 0
\(246\) 1.28658 0.0820291
\(247\) −2.66624 −0.169649
\(248\) −1.32627 −0.0842181
\(249\) 37.4416 2.37277
\(250\) 0 0
\(251\) 2.02590 0.127874 0.0639368 0.997954i \(-0.479634\pi\)
0.0639368 + 0.997954i \(0.479634\pi\)
\(252\) 8.97150 0.565151
\(253\) 1.92682 0.121138
\(254\) −6.34661 −0.398222
\(255\) 0 0
\(256\) 3.67916 0.229948
\(257\) −21.2352 −1.32461 −0.662307 0.749232i \(-0.730423\pi\)
−0.662307 + 0.749232i \(0.730423\pi\)
\(258\) 2.16259 0.134637
\(259\) 11.5560 0.718058
\(260\) 0 0
\(261\) −8.88598 −0.550028
\(262\) −0.503678 −0.0311173
\(263\) 12.3719 0.762886 0.381443 0.924392i \(-0.375427\pi\)
0.381443 + 0.924392i \(0.375427\pi\)
\(264\) −0.987657 −0.0607861
\(265\) 0 0
\(266\) −0.752614 −0.0461457
\(267\) −8.87982 −0.543436
\(268\) −23.2774 −1.42189
\(269\) 11.7818 0.718351 0.359176 0.933270i \(-0.383058\pi\)
0.359176 + 0.933270i \(0.383058\pi\)
\(270\) 0 0
\(271\) −5.95586 −0.361793 −0.180896 0.983502i \(-0.557900\pi\)
−0.180896 + 0.983502i \(0.557900\pi\)
\(272\) 10.3060 0.624894
\(273\) 13.5135 0.817876
\(274\) −6.75997 −0.408385
\(275\) 0 0
\(276\) 31.4227 1.89142
\(277\) 6.02860 0.362224 0.181112 0.983463i \(-0.442030\pi\)
0.181112 + 0.983463i \(0.442030\pi\)
\(278\) 2.00713 0.120380
\(279\) −2.06461 −0.123605
\(280\) 0 0
\(281\) −32.6704 −1.94895 −0.974477 0.224486i \(-0.927930\pi\)
−0.974477 + 0.224486i \(0.927930\pi\)
\(282\) 11.2870 0.672132
\(283\) −0.300454 −0.0178601 −0.00893006 0.999960i \(-0.502843\pi\)
−0.00893006 + 0.999960i \(0.502843\pi\)
\(284\) 11.4178 0.677522
\(285\) 0 0
\(286\) −0.322506 −0.0190702
\(287\) −2.57048 −0.151731
\(288\) −11.1506 −0.657056
\(289\) −4.98086 −0.292992
\(290\) 0 0
\(291\) 16.8297 0.986574
\(292\) 1.53305 0.0897147
\(293\) 5.15837 0.301355 0.150678 0.988583i \(-0.451854\pi\)
0.150678 + 0.988583i \(0.451854\pi\)
\(294\) −3.08033 −0.179649
\(295\) 0 0
\(296\) −9.43027 −0.548123
\(297\) 0.307547 0.0178457
\(298\) −9.61627 −0.557056
\(299\) 21.5138 1.24418
\(300\) 0 0
\(301\) −4.32070 −0.249041
\(302\) 3.34943 0.192738
\(303\) −13.3629 −0.767678
\(304\) −2.70689 −0.155251
\(305\) 0 0
\(306\) −3.64011 −0.208091
\(307\) 7.48717 0.427315 0.213658 0.976909i \(-0.431462\pi\)
0.213658 + 0.976909i \(0.431462\pi\)
\(308\) 0.941114 0.0536250
\(309\) 2.04269 0.116204
\(310\) 0 0
\(311\) 3.16816 0.179650 0.0898248 0.995958i \(-0.471369\pi\)
0.0898248 + 0.995958i \(0.471369\pi\)
\(312\) −11.0277 −0.624318
\(313\) 15.3688 0.868697 0.434349 0.900745i \(-0.356979\pi\)
0.434349 + 0.900745i \(0.356979\pi\)
\(314\) 9.47199 0.534535
\(315\) 0 0
\(316\) 30.1048 1.69353
\(317\) 20.4252 1.14719 0.573597 0.819138i \(-0.305548\pi\)
0.573597 + 0.819138i \(0.305548\pi\)
\(318\) −4.97709 −0.279101
\(319\) −0.932143 −0.0521900
\(320\) 0 0
\(321\) −2.27366 −0.126903
\(322\) 6.07282 0.338425
\(323\) −3.15684 −0.175652
\(324\) 18.6921 1.03845
\(325\) 0 0
\(326\) −8.66240 −0.479766
\(327\) −14.1576 −0.782916
\(328\) 2.09763 0.115822
\(329\) −22.5506 −1.24326
\(330\) 0 0
\(331\) 24.7462 1.36017 0.680087 0.733132i \(-0.261942\pi\)
0.680087 + 0.733132i \(0.261942\pi\)
\(332\) 29.1142 1.59785
\(333\) −14.6802 −0.804469
\(334\) −1.74190 −0.0953128
\(335\) 0 0
\(336\) 13.7195 0.748462
\(337\) 17.0879 0.930838 0.465419 0.885090i \(-0.345904\pi\)
0.465419 + 0.885090i \(0.345904\pi\)
\(338\) 1.85906 0.101120
\(339\) −8.58607 −0.466331
\(340\) 0 0
\(341\) −0.216579 −0.0117284
\(342\) 0.956080 0.0516989
\(343\) 19.9297 1.07610
\(344\) 3.52589 0.190103
\(345\) 0 0
\(346\) 9.14687 0.491739
\(347\) 15.7104 0.843379 0.421690 0.906740i \(-0.361437\pi\)
0.421690 + 0.906740i \(0.361437\pi\)
\(348\) −15.2015 −0.814884
\(349\) −23.9876 −1.28402 −0.642012 0.766694i \(-0.721900\pi\)
−0.642012 + 0.766694i \(0.721900\pi\)
\(350\) 0 0
\(351\) 3.43391 0.183289
\(352\) −1.16970 −0.0623454
\(353\) −13.9456 −0.742247 −0.371123 0.928584i \(-0.621027\pi\)
−0.371123 + 0.928584i \(0.621027\pi\)
\(354\) 3.25254 0.172871
\(355\) 0 0
\(356\) −6.90487 −0.365957
\(357\) 16.0001 0.846814
\(358\) −4.87164 −0.257474
\(359\) 14.1822 0.748509 0.374255 0.927326i \(-0.377899\pi\)
0.374255 + 0.927326i \(0.377899\pi\)
\(360\) 0 0
\(361\) −18.1709 −0.956361
\(362\) −1.65912 −0.0872016
\(363\) 25.6358 1.34553
\(364\) 10.5080 0.550768
\(365\) 0 0
\(366\) 0.687090 0.0359148
\(367\) 17.0353 0.889234 0.444617 0.895721i \(-0.353340\pi\)
0.444617 + 0.895721i \(0.353340\pi\)
\(368\) 21.8418 1.13858
\(369\) 3.26540 0.169990
\(370\) 0 0
\(371\) 9.94385 0.516259
\(372\) −3.53198 −0.183125
\(373\) 7.40378 0.383353 0.191677 0.981458i \(-0.438608\pi\)
0.191677 + 0.981458i \(0.438608\pi\)
\(374\) −0.381849 −0.0197449
\(375\) 0 0
\(376\) 18.4023 0.949028
\(377\) −10.4078 −0.536030
\(378\) 0.969307 0.0498558
\(379\) 27.5227 1.41375 0.706873 0.707340i \(-0.250105\pi\)
0.706873 + 0.707340i \(0.250105\pi\)
\(380\) 0 0
\(381\) −35.4382 −1.81555
\(382\) −3.58434 −0.183391
\(383\) −11.0860 −0.566470 −0.283235 0.959051i \(-0.591408\pi\)
−0.283235 + 0.959051i \(0.591408\pi\)
\(384\) −24.9318 −1.27229
\(385\) 0 0
\(386\) −0.498969 −0.0253969
\(387\) 5.48878 0.279010
\(388\) 13.0866 0.664372
\(389\) −17.3331 −0.878824 −0.439412 0.898286i \(-0.644813\pi\)
−0.439412 + 0.898286i \(0.644813\pi\)
\(390\) 0 0
\(391\) 25.4725 1.28820
\(392\) −5.02217 −0.253658
\(393\) −2.81244 −0.141869
\(394\) 0.420000 0.0211593
\(395\) 0 0
\(396\) −1.19554 −0.0600782
\(397\) −24.5591 −1.23259 −0.616293 0.787517i \(-0.711366\pi\)
−0.616293 + 0.787517i \(0.711366\pi\)
\(398\) 2.85101 0.142908
\(399\) −4.20244 −0.210385
\(400\) 0 0
\(401\) −23.2354 −1.16032 −0.580160 0.814503i \(-0.697010\pi\)
−0.580160 + 0.814503i \(0.697010\pi\)
\(402\) 12.5728 0.627074
\(403\) −2.41821 −0.120459
\(404\) −10.3909 −0.516964
\(405\) 0 0
\(406\) −2.93787 −0.145804
\(407\) −1.53996 −0.0763329
\(408\) −13.0568 −0.646408
\(409\) 20.1188 0.994811 0.497406 0.867518i \(-0.334286\pi\)
0.497406 + 0.867518i \(0.334286\pi\)
\(410\) 0 0
\(411\) −37.7463 −1.86189
\(412\) 1.58837 0.0782536
\(413\) −6.49833 −0.319762
\(414\) −7.71458 −0.379151
\(415\) 0 0
\(416\) −13.0603 −0.640334
\(417\) 11.2074 0.548830
\(418\) 0.100293 0.00490550
\(419\) 24.7359 1.20843 0.604215 0.796822i \(-0.293487\pi\)
0.604215 + 0.796822i \(0.293487\pi\)
\(420\) 0 0
\(421\) 11.5880 0.564766 0.282383 0.959302i \(-0.408875\pi\)
0.282383 + 0.959302i \(0.408875\pi\)
\(422\) −0.150537 −0.00732805
\(423\) 28.6471 1.39287
\(424\) −8.11464 −0.394082
\(425\) 0 0
\(426\) −6.16709 −0.298797
\(427\) −1.37275 −0.0664322
\(428\) −1.76797 −0.0854583
\(429\) −1.80081 −0.0869439
\(430\) 0 0
\(431\) 33.7897 1.62759 0.813795 0.581152i \(-0.197398\pi\)
0.813795 + 0.581152i \(0.197398\pi\)
\(432\) 3.48626 0.167733
\(433\) 7.75068 0.372474 0.186237 0.982505i \(-0.440371\pi\)
0.186237 + 0.982505i \(0.440371\pi\)
\(434\) −0.682599 −0.0327658
\(435\) 0 0
\(436\) −11.0088 −0.527226
\(437\) −6.69039 −0.320045
\(438\) −0.828043 −0.0395654
\(439\) −26.5377 −1.26657 −0.633287 0.773917i \(-0.718295\pi\)
−0.633287 + 0.773917i \(0.718295\pi\)
\(440\) 0 0
\(441\) −7.81806 −0.372288
\(442\) −4.26352 −0.202795
\(443\) 35.7523 1.69864 0.849321 0.527877i \(-0.177012\pi\)
0.849321 + 0.527877i \(0.177012\pi\)
\(444\) −25.1137 −1.19184
\(445\) 0 0
\(446\) 3.72601 0.176432
\(447\) −53.6953 −2.53970
\(448\) 8.01353 0.378604
\(449\) 20.5021 0.967554 0.483777 0.875191i \(-0.339265\pi\)
0.483777 + 0.875191i \(0.339265\pi\)
\(450\) 0 0
\(451\) 0.342542 0.0161297
\(452\) −6.67645 −0.314034
\(453\) 18.7025 0.878722
\(454\) −5.70247 −0.267630
\(455\) 0 0
\(456\) 3.42939 0.160596
\(457\) −32.4132 −1.51623 −0.758113 0.652123i \(-0.773878\pi\)
−0.758113 + 0.652123i \(0.773878\pi\)
\(458\) −6.41412 −0.299712
\(459\) 4.06577 0.189774
\(460\) 0 0
\(461\) 2.71036 0.126234 0.0631170 0.998006i \(-0.479896\pi\)
0.0631170 + 0.998006i \(0.479896\pi\)
\(462\) −0.508324 −0.0236494
\(463\) −4.15267 −0.192991 −0.0964955 0.995333i \(-0.530763\pi\)
−0.0964955 + 0.995333i \(0.530763\pi\)
\(464\) −10.5665 −0.490537
\(465\) 0 0
\(466\) −3.23544 −0.149879
\(467\) 2.12695 0.0984235 0.0492117 0.998788i \(-0.484329\pi\)
0.0492117 + 0.998788i \(0.484329\pi\)
\(468\) −13.3488 −0.617047
\(469\) −25.1195 −1.15991
\(470\) 0 0
\(471\) 52.8897 2.43703
\(472\) 5.30294 0.244087
\(473\) 0.575775 0.0264742
\(474\) −16.2605 −0.746869
\(475\) 0 0
\(476\) 12.4415 0.570256
\(477\) −12.6321 −0.578385
\(478\) 6.38844 0.292200
\(479\) 35.4058 1.61773 0.808867 0.587992i \(-0.200081\pi\)
0.808867 + 0.587992i \(0.200081\pi\)
\(480\) 0 0
\(481\) −17.1944 −0.783995
\(482\) 1.37353 0.0625628
\(483\) 33.9094 1.54293
\(484\) 19.9342 0.906100
\(485\) 0 0
\(486\) −8.61851 −0.390944
\(487\) −8.17380 −0.370390 −0.185195 0.982702i \(-0.559292\pi\)
−0.185195 + 0.982702i \(0.559292\pi\)
\(488\) 1.12023 0.0507105
\(489\) −48.3691 −2.18733
\(490\) 0 0
\(491\) 3.31109 0.149427 0.0747137 0.997205i \(-0.476196\pi\)
0.0747137 + 0.997205i \(0.476196\pi\)
\(492\) 5.58620 0.251845
\(493\) −12.3229 −0.554996
\(494\) 1.11982 0.0503831
\(495\) 0 0
\(496\) −2.45507 −0.110236
\(497\) 12.3214 0.552690
\(498\) −15.7255 −0.704675
\(499\) −5.86660 −0.262625 −0.131313 0.991341i \(-0.541919\pi\)
−0.131313 + 0.991341i \(0.541919\pi\)
\(500\) 0 0
\(501\) −9.72645 −0.434546
\(502\) −0.850877 −0.0379765
\(503\) 4.94195 0.220351 0.110175 0.993912i \(-0.464859\pi\)
0.110175 + 0.993912i \(0.464859\pi\)
\(504\) −7.90054 −0.351918
\(505\) 0 0
\(506\) −0.809263 −0.0359761
\(507\) 10.3806 0.461019
\(508\) −27.5564 −1.22262
\(509\) 15.5285 0.688287 0.344143 0.938917i \(-0.388169\pi\)
0.344143 + 0.938917i \(0.388169\pi\)
\(510\) 0 0
\(511\) 1.65437 0.0731849
\(512\) −22.8072 −1.00795
\(513\) −1.06788 −0.0471480
\(514\) 8.91877 0.393390
\(515\) 0 0
\(516\) 9.38978 0.413362
\(517\) 3.00509 0.132164
\(518\) −4.85354 −0.213252
\(519\) 51.0743 2.24191
\(520\) 0 0
\(521\) 41.3705 1.81247 0.906237 0.422771i \(-0.138943\pi\)
0.906237 + 0.422771i \(0.138943\pi\)
\(522\) 3.73211 0.163350
\(523\) −14.0581 −0.614720 −0.307360 0.951593i \(-0.599445\pi\)
−0.307360 + 0.951593i \(0.599445\pi\)
\(524\) −2.18692 −0.0955362
\(525\) 0 0
\(526\) −5.19621 −0.226565
\(527\) −2.86317 −0.124722
\(528\) −1.82826 −0.0795649
\(529\) 30.9845 1.34715
\(530\) 0 0
\(531\) 8.25512 0.358242
\(532\) −3.26778 −0.141676
\(533\) 3.82465 0.165664
\(534\) 3.72952 0.161392
\(535\) 0 0
\(536\) 20.4987 0.885408
\(537\) −27.2023 −1.17387
\(538\) −4.94837 −0.213339
\(539\) −0.820118 −0.0353250
\(540\) 0 0
\(541\) 3.81284 0.163927 0.0819635 0.996635i \(-0.473881\pi\)
0.0819635 + 0.996635i \(0.473881\pi\)
\(542\) 2.50146 0.107447
\(543\) −9.26422 −0.397566
\(544\) −15.4635 −0.662990
\(545\) 0 0
\(546\) −5.67567 −0.242896
\(547\) 28.7668 1.22998 0.614989 0.788536i \(-0.289160\pi\)
0.614989 + 0.788536i \(0.289160\pi\)
\(548\) −29.3512 −1.25382
\(549\) 1.74387 0.0744267
\(550\) 0 0
\(551\) 3.23663 0.137885
\(552\) −27.6716 −1.17778
\(553\) 32.4872 1.38150
\(554\) −2.53201 −0.107575
\(555\) 0 0
\(556\) 8.71478 0.369589
\(557\) −31.6837 −1.34248 −0.671241 0.741239i \(-0.734238\pi\)
−0.671241 + 0.741239i \(0.734238\pi\)
\(558\) 0.867137 0.0367088
\(559\) 6.42881 0.271909
\(560\) 0 0
\(561\) −2.13217 −0.0900202
\(562\) 13.7216 0.578809
\(563\) −18.7588 −0.790590 −0.395295 0.918554i \(-0.629358\pi\)
−0.395295 + 0.918554i \(0.629358\pi\)
\(564\) 49.0072 2.06358
\(565\) 0 0
\(566\) 0.126190 0.00530418
\(567\) 20.1714 0.847119
\(568\) −10.0548 −0.421891
\(569\) −34.9409 −1.46480 −0.732400 0.680875i \(-0.761600\pi\)
−0.732400 + 0.680875i \(0.761600\pi\)
\(570\) 0 0
\(571\) 9.46910 0.396270 0.198135 0.980175i \(-0.436512\pi\)
0.198135 + 0.980175i \(0.436512\pi\)
\(572\) −1.40029 −0.0585492
\(573\) −20.0142 −0.836106
\(574\) 1.07960 0.0450617
\(575\) 0 0
\(576\) −10.1800 −0.424165
\(577\) 20.1885 0.840457 0.420229 0.907418i \(-0.361950\pi\)
0.420229 + 0.907418i \(0.361950\pi\)
\(578\) 2.09196 0.0870141
\(579\) −2.78614 −0.115788
\(580\) 0 0
\(581\) 31.4183 1.30345
\(582\) −7.06846 −0.292997
\(583\) −1.32512 −0.0548807
\(584\) −1.35004 −0.0558651
\(585\) 0 0
\(586\) −2.16651 −0.0894979
\(587\) −14.2199 −0.586919 −0.293460 0.955971i \(-0.594807\pi\)
−0.293460 + 0.955971i \(0.594807\pi\)
\(588\) −13.3745 −0.551556
\(589\) 0.752015 0.0309863
\(590\) 0 0
\(591\) 2.34519 0.0964684
\(592\) −17.4565 −0.717457
\(593\) 16.1285 0.662316 0.331158 0.943575i \(-0.392561\pi\)
0.331158 + 0.943575i \(0.392561\pi\)
\(594\) −0.129170 −0.00529989
\(595\) 0 0
\(596\) −41.7530 −1.71027
\(597\) 15.9195 0.651541
\(598\) −9.03580 −0.369501
\(599\) 15.7943 0.645338 0.322669 0.946512i \(-0.395420\pi\)
0.322669 + 0.946512i \(0.395420\pi\)
\(600\) 0 0
\(601\) 15.5607 0.634735 0.317367 0.948303i \(-0.397201\pi\)
0.317367 + 0.948303i \(0.397201\pi\)
\(602\) 1.81469 0.0739613
\(603\) 31.9105 1.29949
\(604\) 14.5429 0.591743
\(605\) 0 0
\(606\) 5.61241 0.227988
\(607\) 24.4933 0.994150 0.497075 0.867707i \(-0.334407\pi\)
0.497075 + 0.867707i \(0.334407\pi\)
\(608\) 4.06150 0.164716
\(609\) −16.4045 −0.664743
\(610\) 0 0
\(611\) 33.5533 1.35742
\(612\) −15.8050 −0.638880
\(613\) −47.3208 −1.91127 −0.955635 0.294554i \(-0.904829\pi\)
−0.955635 + 0.294554i \(0.904829\pi\)
\(614\) −3.14461 −0.126906
\(615\) 0 0
\(616\) −0.828770 −0.0333921
\(617\) 7.63310 0.307297 0.153649 0.988126i \(-0.450898\pi\)
0.153649 + 0.988126i \(0.450898\pi\)
\(618\) −0.857927 −0.0345109
\(619\) −18.9280 −0.760779 −0.380389 0.924826i \(-0.624210\pi\)
−0.380389 + 0.924826i \(0.624210\pi\)
\(620\) 0 0
\(621\) 8.61669 0.345776
\(622\) −1.33062 −0.0533532
\(623\) −7.45130 −0.298530
\(624\) −20.4134 −0.817191
\(625\) 0 0
\(626\) −6.45490 −0.257990
\(627\) 0.560017 0.0223649
\(628\) 41.1265 1.64113
\(629\) −20.3582 −0.811735
\(630\) 0 0
\(631\) −19.3273 −0.769410 −0.384705 0.923040i \(-0.625697\pi\)
−0.384705 + 0.923040i \(0.625697\pi\)
\(632\) −26.5111 −1.05455
\(633\) −0.840571 −0.0334097
\(634\) −8.57858 −0.340699
\(635\) 0 0
\(636\) −21.6101 −0.856895
\(637\) −9.15700 −0.362814
\(638\) 0.391500 0.0154996
\(639\) −15.6524 −0.619200
\(640\) 0 0
\(641\) 41.3956 1.63503 0.817515 0.575908i \(-0.195351\pi\)
0.817515 + 0.575908i \(0.195351\pi\)
\(642\) 0.954935 0.0376883
\(643\) −35.3492 −1.39404 −0.697018 0.717054i \(-0.745490\pi\)
−0.697018 + 0.717054i \(0.745490\pi\)
\(644\) 26.3676 1.03903
\(645\) 0 0
\(646\) 1.32587 0.0521658
\(647\) 46.1951 1.81612 0.908058 0.418845i \(-0.137565\pi\)
0.908058 + 0.418845i \(0.137565\pi\)
\(648\) −16.4608 −0.646641
\(649\) 0.865966 0.0339921
\(650\) 0 0
\(651\) −3.81150 −0.149384
\(652\) −37.6114 −1.47298
\(653\) −13.3163 −0.521107 −0.260554 0.965459i \(-0.583905\pi\)
−0.260554 + 0.965459i \(0.583905\pi\)
\(654\) 5.94618 0.232514
\(655\) 0 0
\(656\) 3.88295 0.151604
\(657\) −2.10162 −0.0819920
\(658\) 9.47125 0.369228
\(659\) −16.3368 −0.636392 −0.318196 0.948025i \(-0.603077\pi\)
−0.318196 + 0.948025i \(0.603077\pi\)
\(660\) 0 0
\(661\) 34.0019 1.32252 0.661261 0.750156i \(-0.270022\pi\)
0.661261 + 0.750156i \(0.270022\pi\)
\(662\) −10.3934 −0.403951
\(663\) −23.8067 −0.924574
\(664\) −25.6388 −0.994977
\(665\) 0 0
\(666\) 6.16567 0.238915
\(667\) −26.1163 −1.01123
\(668\) −7.56319 −0.292629
\(669\) 20.8053 0.804379
\(670\) 0 0
\(671\) 0.182933 0.00706205
\(672\) −20.5852 −0.794092
\(673\) 10.2926 0.396749 0.198375 0.980126i \(-0.436434\pi\)
0.198375 + 0.980126i \(0.436434\pi\)
\(674\) −7.17692 −0.276445
\(675\) 0 0
\(676\) 8.07187 0.310457
\(677\) 13.6379 0.524147 0.262074 0.965048i \(-0.415594\pi\)
0.262074 + 0.965048i \(0.415594\pi\)
\(678\) 3.60615 0.138493
\(679\) 14.1223 0.541962
\(680\) 0 0
\(681\) −31.8415 −1.22017
\(682\) 0.0909630 0.00348315
\(683\) −47.5466 −1.81932 −0.909660 0.415354i \(-0.863658\pi\)
−0.909660 + 0.415354i \(0.863658\pi\)
\(684\) 4.15121 0.158726
\(685\) 0 0
\(686\) −8.37046 −0.319586
\(687\) −35.8152 −1.36643
\(688\) 6.52681 0.248832
\(689\) −14.7955 −0.563666
\(690\) 0 0
\(691\) 45.0219 1.71271 0.856356 0.516386i \(-0.172723\pi\)
0.856356 + 0.516386i \(0.172723\pi\)
\(692\) 39.7149 1.50973
\(693\) −1.29015 −0.0490089
\(694\) −6.59837 −0.250471
\(695\) 0 0
\(696\) 13.3868 0.507425
\(697\) 4.52840 0.171525
\(698\) 10.0748 0.381335
\(699\) −18.0660 −0.683320
\(700\) 0 0
\(701\) −1.11005 −0.0419259 −0.0209630 0.999780i \(-0.506673\pi\)
−0.0209630 + 0.999780i \(0.506673\pi\)
\(702\) −1.44224 −0.0544339
\(703\) 5.34711 0.201670
\(704\) −1.06788 −0.0402473
\(705\) 0 0
\(706\) 5.85713 0.220436
\(707\) −11.2132 −0.421714
\(708\) 14.1222 0.530746
\(709\) 0.820090 0.0307991 0.0153996 0.999881i \(-0.495098\pi\)
0.0153996 + 0.999881i \(0.495098\pi\)
\(710\) 0 0
\(711\) −41.2700 −1.54775
\(712\) 6.08061 0.227880
\(713\) −6.06799 −0.227248
\(714\) −6.72003 −0.251491
\(715\) 0 0
\(716\) −21.1522 −0.790496
\(717\) 35.6718 1.33219
\(718\) −5.95653 −0.222296
\(719\) −29.2278 −1.09001 −0.545007 0.838431i \(-0.683473\pi\)
−0.545007 + 0.838431i \(0.683473\pi\)
\(720\) 0 0
\(721\) 1.71407 0.0638355
\(722\) 7.63175 0.284024
\(723\) 7.66954 0.285233
\(724\) −7.20377 −0.267726
\(725\) 0 0
\(726\) −10.7670 −0.399603
\(727\) 8.61722 0.319595 0.159797 0.987150i \(-0.448916\pi\)
0.159797 + 0.987150i \(0.448916\pi\)
\(728\) −9.25361 −0.342962
\(729\) −17.3737 −0.643469
\(730\) 0 0
\(731\) 7.61174 0.281530
\(732\) 2.98328 0.110265
\(733\) −14.6933 −0.542708 −0.271354 0.962480i \(-0.587471\pi\)
−0.271354 + 0.962480i \(0.587471\pi\)
\(734\) −7.15481 −0.264089
\(735\) 0 0
\(736\) −32.7721 −1.20800
\(737\) 3.34742 0.123304
\(738\) −1.37147 −0.0504844
\(739\) −34.7113 −1.27688 −0.638439 0.769673i \(-0.720419\pi\)
−0.638439 + 0.769673i \(0.720419\pi\)
\(740\) 0 0
\(741\) 6.25286 0.229704
\(742\) −4.17641 −0.153321
\(743\) −45.4630 −1.66788 −0.833938 0.551857i \(-0.813919\pi\)
−0.833938 + 0.551857i \(0.813919\pi\)
\(744\) 3.11036 0.114031
\(745\) 0 0
\(746\) −3.10958 −0.113850
\(747\) −39.9121 −1.46031
\(748\) −1.65795 −0.0606208
\(749\) −1.90789 −0.0697127
\(750\) 0 0
\(751\) −20.2715 −0.739718 −0.369859 0.929088i \(-0.620594\pi\)
−0.369859 + 0.929088i \(0.620594\pi\)
\(752\) 34.0648 1.24221
\(753\) −4.75113 −0.173141
\(754\) 4.37128 0.159193
\(755\) 0 0
\(756\) 4.20864 0.153067
\(757\) −32.5233 −1.18208 −0.591040 0.806642i \(-0.701283\pi\)
−0.591040 + 0.806642i \(0.701283\pi\)
\(758\) −11.5595 −0.419861
\(759\) −4.51876 −0.164021
\(760\) 0 0
\(761\) −25.5381 −0.925757 −0.462878 0.886422i \(-0.653183\pi\)
−0.462878 + 0.886422i \(0.653183\pi\)
\(762\) 14.8840 0.539192
\(763\) −11.8800 −0.430085
\(764\) −15.5629 −0.563045
\(765\) 0 0
\(766\) 4.65613 0.168233
\(767\) 9.66893 0.349125
\(768\) −8.62835 −0.311349
\(769\) 20.9064 0.753903 0.376951 0.926233i \(-0.376972\pi\)
0.376951 + 0.926233i \(0.376972\pi\)
\(770\) 0 0
\(771\) 49.8006 1.79353
\(772\) −2.16648 −0.0779733
\(773\) 31.9157 1.14793 0.573965 0.818880i \(-0.305405\pi\)
0.573965 + 0.818880i \(0.305405\pi\)
\(774\) −2.30528 −0.0828617
\(775\) 0 0
\(776\) −11.5244 −0.413702
\(777\) −27.1012 −0.972249
\(778\) 7.27990 0.260997
\(779\) −1.18939 −0.0426143
\(780\) 0 0
\(781\) −1.64195 −0.0587534
\(782\) −10.6984 −0.382575
\(783\) −4.16853 −0.148971
\(784\) −9.29660 −0.332021
\(785\) 0 0
\(786\) 1.18122 0.0421328
\(787\) 12.6006 0.449163 0.224582 0.974455i \(-0.427898\pi\)
0.224582 + 0.974455i \(0.427898\pi\)
\(788\) 1.82360 0.0649631
\(789\) −29.0146 −1.03295
\(790\) 0 0
\(791\) −7.20481 −0.256173
\(792\) 1.05282 0.0374105
\(793\) 2.04253 0.0725325
\(794\) 10.3148 0.366059
\(795\) 0 0
\(796\) 12.3788 0.438757
\(797\) −16.9438 −0.600179 −0.300090 0.953911i \(-0.597017\pi\)
−0.300090 + 0.953911i \(0.597017\pi\)
\(798\) 1.76502 0.0624812
\(799\) 39.7272 1.40545
\(800\) 0 0
\(801\) 9.46573 0.334455
\(802\) 9.75885 0.344597
\(803\) −0.220461 −0.00777989
\(804\) 54.5900 1.92524
\(805\) 0 0
\(806\) 1.01565 0.0357746
\(807\) −27.6307 −0.972647
\(808\) 9.15046 0.321912
\(809\) 3.28050 0.115336 0.0576681 0.998336i \(-0.481633\pi\)
0.0576681 + 0.998336i \(0.481633\pi\)
\(810\) 0 0
\(811\) 18.5865 0.652662 0.326331 0.945256i \(-0.394188\pi\)
0.326331 + 0.945256i \(0.394188\pi\)
\(812\) −12.7560 −0.447646
\(813\) 13.9676 0.489867
\(814\) 0.646781 0.0226697
\(815\) 0 0
\(816\) −24.1696 −0.846105
\(817\) −1.99923 −0.0699443
\(818\) −8.44989 −0.295444
\(819\) −14.4052 −0.503357
\(820\) 0 0
\(821\) −34.5854 −1.20704 −0.603520 0.797348i \(-0.706236\pi\)
−0.603520 + 0.797348i \(0.706236\pi\)
\(822\) 15.8534 0.552952
\(823\) 32.6063 1.13658 0.568292 0.822827i \(-0.307604\pi\)
0.568292 + 0.822827i \(0.307604\pi\)
\(824\) −1.39876 −0.0487282
\(825\) 0 0
\(826\) 2.72930 0.0949643
\(827\) −37.5683 −1.30638 −0.653190 0.757194i \(-0.726570\pi\)
−0.653190 + 0.757194i \(0.726570\pi\)
\(828\) −33.4960 −1.16407
\(829\) −47.2387 −1.64067 −0.820334 0.571885i \(-0.806212\pi\)
−0.820334 + 0.571885i \(0.806212\pi\)
\(830\) 0 0
\(831\) −14.1382 −0.490450
\(832\) −11.9234 −0.413370
\(833\) −10.8419 −0.375651
\(834\) −4.70711 −0.162994
\(835\) 0 0
\(836\) 0.435464 0.0150608
\(837\) −0.968536 −0.0334775
\(838\) −10.3891 −0.358885
\(839\) −24.5739 −0.848384 −0.424192 0.905572i \(-0.639442\pi\)
−0.424192 + 0.905572i \(0.639442\pi\)
\(840\) 0 0
\(841\) −16.3656 −0.564332
\(842\) −4.86697 −0.167727
\(843\) 76.6185 2.63888
\(844\) −0.653620 −0.0224985
\(845\) 0 0
\(846\) −12.0318 −0.413661
\(847\) 21.5117 0.739152
\(848\) −15.0211 −0.515827
\(849\) 0.704622 0.0241826
\(850\) 0 0
\(851\) −43.1457 −1.47902
\(852\) −26.7770 −0.917364
\(853\) −24.9986 −0.855936 −0.427968 0.903794i \(-0.640770\pi\)
−0.427968 + 0.903794i \(0.640770\pi\)
\(854\) 0.576556 0.0197293
\(855\) 0 0
\(856\) 1.55693 0.0532146
\(857\) 15.2814 0.522002 0.261001 0.965339i \(-0.415947\pi\)
0.261001 + 0.965339i \(0.415947\pi\)
\(858\) 0.756339 0.0258210
\(859\) 38.0633 1.29870 0.649351 0.760489i \(-0.275041\pi\)
0.649351 + 0.760489i \(0.275041\pi\)
\(860\) 0 0
\(861\) 6.02828 0.205443
\(862\) −14.1916 −0.483369
\(863\) 32.8868 1.11948 0.559741 0.828668i \(-0.310901\pi\)
0.559741 + 0.828668i \(0.310901\pi\)
\(864\) −5.23089 −0.177959
\(865\) 0 0
\(866\) −3.25528 −0.110619
\(867\) 11.6811 0.396711
\(868\) −2.96378 −0.100597
\(869\) −4.32924 −0.146859
\(870\) 0 0
\(871\) 37.3756 1.26642
\(872\) 9.69464 0.328302
\(873\) −17.9402 −0.607182
\(874\) 2.80996 0.0950483
\(875\) 0 0
\(876\) −3.59529 −0.121474
\(877\) 56.8070 1.91824 0.959118 0.283007i \(-0.0913321\pi\)
0.959118 + 0.283007i \(0.0913321\pi\)
\(878\) 11.1458 0.376153
\(879\) −12.0974 −0.408035
\(880\) 0 0
\(881\) −16.2674 −0.548063 −0.274031 0.961721i \(-0.588357\pi\)
−0.274031 + 0.961721i \(0.588357\pi\)
\(882\) 3.28358 0.110564
\(883\) 53.4665 1.79929 0.899645 0.436622i \(-0.143825\pi\)
0.899645 + 0.436622i \(0.143825\pi\)
\(884\) −18.5118 −0.622620
\(885\) 0 0
\(886\) −15.0159 −0.504470
\(887\) −23.9495 −0.804147 −0.402073 0.915608i \(-0.631710\pi\)
−0.402073 + 0.915608i \(0.631710\pi\)
\(888\) 22.1158 0.742158
\(889\) −29.7372 −0.997353
\(890\) 0 0
\(891\) −2.68804 −0.0900527
\(892\) 16.1780 0.541680
\(893\) −10.4344 −0.349175
\(894\) 22.5520 0.754252
\(895\) 0 0
\(896\) −20.9209 −0.698919
\(897\) −50.4541 −1.68461
\(898\) −8.61087 −0.287349
\(899\) 2.93553 0.0979055
\(900\) 0 0
\(901\) −17.5180 −0.583609
\(902\) −0.143868 −0.00479026
\(903\) 10.1329 0.337201
\(904\) 5.87946 0.195548
\(905\) 0 0
\(906\) −7.85506 −0.260967
\(907\) 5.11615 0.169879 0.0849395 0.996386i \(-0.472930\pi\)
0.0849395 + 0.996386i \(0.472930\pi\)
\(908\) −24.7596 −0.821676
\(909\) 14.2446 0.472463
\(910\) 0 0
\(911\) −19.9395 −0.660624 −0.330312 0.943872i \(-0.607154\pi\)
−0.330312 + 0.943872i \(0.607154\pi\)
\(912\) 6.34818 0.210209
\(913\) −4.18680 −0.138563
\(914\) 13.6135 0.450296
\(915\) 0 0
\(916\) −27.8495 −0.920174
\(917\) −2.35999 −0.0779338
\(918\) −1.70762 −0.0563598
\(919\) 45.7518 1.50921 0.754607 0.656177i \(-0.227827\pi\)
0.754607 + 0.656177i \(0.227827\pi\)
\(920\) 0 0
\(921\) −17.5589 −0.578584
\(922\) −1.13835 −0.0374896
\(923\) −18.3331 −0.603442
\(924\) −2.20710 −0.0726081
\(925\) 0 0
\(926\) 1.74412 0.0573153
\(927\) −2.17747 −0.0715174
\(928\) 15.8543 0.520443
\(929\) 16.6626 0.546681 0.273340 0.961917i \(-0.411871\pi\)
0.273340 + 0.961917i \(0.411871\pi\)
\(930\) 0 0
\(931\) 2.84765 0.0933280
\(932\) −14.0480 −0.460157
\(933\) −7.42994 −0.243245
\(934\) −0.893318 −0.0292302
\(935\) 0 0
\(936\) 11.7553 0.384234
\(937\) −28.4480 −0.929355 −0.464678 0.885480i \(-0.653830\pi\)
−0.464678 + 0.885480i \(0.653830\pi\)
\(938\) 10.5502 0.344476
\(939\) −36.0429 −1.17621
\(940\) 0 0
\(941\) 43.6163 1.42185 0.710926 0.703267i \(-0.248276\pi\)
0.710926 + 0.703267i \(0.248276\pi\)
\(942\) −22.2137 −0.723760
\(943\) 9.59716 0.312526
\(944\) 9.81632 0.319494
\(945\) 0 0
\(946\) −0.241825 −0.00786242
\(947\) −21.4876 −0.698253 −0.349127 0.937076i \(-0.613522\pi\)
−0.349127 + 0.937076i \(0.613522\pi\)
\(948\) −70.6015 −2.29303
\(949\) −2.46155 −0.0799053
\(950\) 0 0
\(951\) −47.9011 −1.55330
\(952\) −10.9563 −0.355096
\(953\) −1.44451 −0.0467924 −0.0233962 0.999726i \(-0.507448\pi\)
−0.0233962 + 0.999726i \(0.507448\pi\)
\(954\) 5.30549 0.171772
\(955\) 0 0
\(956\) 27.7380 0.897112
\(957\) 2.18606 0.0706652
\(958\) −14.8704 −0.480442
\(959\) −31.6740 −1.02281
\(960\) 0 0
\(961\) −30.3179 −0.977998
\(962\) 7.22162 0.232834
\(963\) 2.42368 0.0781019
\(964\) 5.96376 0.192080
\(965\) 0 0
\(966\) −14.2419 −0.458227
\(967\) −51.3114 −1.65006 −0.825031 0.565087i \(-0.808843\pi\)
−0.825031 + 0.565087i \(0.808843\pi\)
\(968\) −17.5546 −0.564225
\(969\) 7.40341 0.237832
\(970\) 0 0
\(971\) −34.4880 −1.10677 −0.553387 0.832924i \(-0.686665\pi\)
−0.553387 + 0.832924i \(0.686665\pi\)
\(972\) −37.4208 −1.20027
\(973\) 9.40445 0.301493
\(974\) 3.43299 0.110000
\(975\) 0 0
\(976\) 2.07367 0.0663766
\(977\) −5.16874 −0.165363 −0.0826814 0.996576i \(-0.526348\pi\)
−0.0826814 + 0.996576i \(0.526348\pi\)
\(978\) 20.3150 0.649603
\(979\) 0.992960 0.0317351
\(980\) 0 0
\(981\) 15.0917 0.481842
\(982\) −1.39066 −0.0443776
\(983\) 37.3896 1.19254 0.596271 0.802783i \(-0.296648\pi\)
0.596271 + 0.802783i \(0.296648\pi\)
\(984\) −4.91935 −0.156823
\(985\) 0 0
\(986\) 5.17562 0.164825
\(987\) 52.8856 1.68337
\(988\) 4.86216 0.154686
\(989\) 16.1318 0.512960
\(990\) 0 0
\(991\) 14.6919 0.466705 0.233352 0.972392i \(-0.425030\pi\)
0.233352 + 0.972392i \(0.425030\pi\)
\(992\) 3.68367 0.116957
\(993\) −58.0346 −1.84167
\(994\) −5.17498 −0.164140
\(995\) 0 0
\(996\) −68.2786 −2.16349
\(997\) 55.0907 1.74474 0.872371 0.488845i \(-0.162582\pi\)
0.872371 + 0.488845i \(0.162582\pi\)
\(998\) 2.46397 0.0779957
\(999\) −6.88666 −0.217884
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.s.1.20 49
5.2 odd 4 985.2.b.a.789.42 98
5.3 odd 4 985.2.b.a.789.57 yes 98
5.4 even 2 4925.2.a.r.1.30 49
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.b.a.789.42 98 5.2 odd 4
985.2.b.a.789.57 yes 98 5.3 odd 4
4925.2.a.r.1.30 49 5.4 even 2
4925.2.a.s.1.20 49 1.1 even 1 trivial