gp: [N,k,chi] = [4925,2,Mod(1,4925)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4925.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4925, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [49,5,22]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(5\)
\( -1 \)
\(197\)
\( +1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4925))\):
\( T_{2}^{49} - 5 T_{2}^{48} - 61 T_{2}^{47} + 335 T_{2}^{46} + 1683 T_{2}^{45} - 10421 T_{2}^{44} + \cdots - 16732 \)
T2^49 - 5*T2^48 - 61*T2^47 + 335*T2^46 + 1683*T2^45 - 10421*T2^44 - 27530*T2^43 + 199926*T2^42 + 291562*T2^41 - 2650186*T2^40 - 1999482*T2^39 + 25772894*T2^38 + 7483980*T2^37 - 190560398*T2^36 + 6996817*T2^35 + 1095523715*T2^34 - 304872539*T2^33 - 4966664655*T2^32 + 2299497699*T2^31 + 17905773473*T2^30 - 10887831387*T2^29 - 51537681463*T2^28 + 37342099278*T2^27 + 118461588490*T2^26 - 97124601638*T2^25 - 216774530490*T2^24 + 194916370100*T2^23 + 313789069564*T2^22 - 303115492494*T2^21 - 355788959452*T2^20 + 363844979950*T2^19 + 311749321690*T2^18 - 333585165259*T2^17 - 207476676965*T2^16 + 229658028561*T2^15 + 102743948773*T2^14 - 115875004883*T2^13 - 37048436523*T2^12 + 41462023291*T2^11 + 9557961341*T2^10 - 10076555659*T2^9 - 1749116603*T2^8 + 1572910531*T2^7 + 224140277*T2^6 - 146053447*T2^5 - 18916539*T2^4 + 7074062*T2^3 + 897490*T2^2 - 130512*T2 - 16732
\( T_{3}^{49} - 22 T_{3}^{48} + 143 T_{3}^{47} + 330 T_{3}^{46} - 8029 T_{3}^{45} + 21618 T_{3}^{44} + \cdots + 54784 \)
T3^49 - 22*T3^48 + 143*T3^47 + 330*T3^46 - 8029*T3^45 + 21618*T3^44 + 146654*T3^43 - 896630*T3^42 - 615830*T3^41 + 15708362*T3^40 - 20223249*T3^39 - 156702740*T3^38 + 440725113*T3^37 + 885744096*T3^36 - 4667594473*T3^35 - 1531455800*T3^34 + 31861013662*T3^33 - 18888528366*T3^32 - 150444865517*T3^31 + 196112462254*T3^30 + 497167041095*T3^29 - 1025282777180*T3^28 - 1105417849748*T3^27 + 3592880548476*T3^26 + 1377114431314*T3^25 - 9079991849382*T3^24 + 230746759257*T3^23 + 17027129844278*T3^22 - 4912741239733*T3^21 - 24006194966876*T3^20 + 11003804520989*T3^19 + 25630609485096*T3^18 - 14163704556803*T3^17 - 20812197807002*T3^16 + 11908088852685*T3^15 + 12834780533252*T3^14 - 6611457319736*T3^13 - 5901315903232*T3^12 + 2325429689109*T3^11 + 1916299824612*T3^10 - 472462740732*T3^9 - 395326102752*T3^8 + 49521632036*T3^7 + 44852735448*T3^6 - 3273674768*T3^5 - 2608290384*T3^4 + 182019200*T3^3 + 61930752*T3^2 - 6033152*T3 + 54784