Properties

Label 4925.2.a.s.1.18
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $0$
Dimension $49$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4925,2,Mod(1,4925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [49,5,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(0\)
Dimension: \(49\)
Twist minimal: no (minimal twist has level 985)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Character \(\chi\) \(=\) 4925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.870537 q^{2} +1.92866 q^{3} -1.24217 q^{4} -1.67897 q^{6} +4.43166 q^{7} +2.82242 q^{8} +0.719722 q^{9} +1.70316 q^{11} -2.39571 q^{12} -0.123746 q^{13} -3.85792 q^{14} +0.0273066 q^{16} +1.14261 q^{17} -0.626545 q^{18} +8.45775 q^{19} +8.54715 q^{21} -1.48266 q^{22} +4.49103 q^{23} +5.44349 q^{24} +0.107725 q^{26} -4.39788 q^{27} -5.50485 q^{28} -3.89888 q^{29} +10.9216 q^{31} -5.66862 q^{32} +3.28481 q^{33} -0.994687 q^{34} -0.894014 q^{36} +3.64436 q^{37} -7.36279 q^{38} -0.238663 q^{39} +0.728472 q^{41} -7.44061 q^{42} +5.84768 q^{43} -2.11560 q^{44} -3.90961 q^{46} -11.6020 q^{47} +0.0526651 q^{48} +12.6396 q^{49} +2.20371 q^{51} +0.153713 q^{52} -12.1066 q^{53} +3.82851 q^{54} +12.5080 q^{56} +16.3121 q^{57} +3.39412 q^{58} -7.96100 q^{59} -12.8875 q^{61} -9.50769 q^{62} +3.18956 q^{63} +4.88013 q^{64} -2.85955 q^{66} +12.2474 q^{67} -1.41932 q^{68} +8.66166 q^{69} -10.6231 q^{71} +2.03136 q^{72} -6.59861 q^{73} -3.17255 q^{74} -10.5059 q^{76} +7.54781 q^{77} +0.207765 q^{78} +9.80240 q^{79} -10.6412 q^{81} -0.634162 q^{82} +2.94971 q^{83} -10.6170 q^{84} -5.09062 q^{86} -7.51960 q^{87} +4.80703 q^{88} +10.4622 q^{89} -0.548398 q^{91} -5.57860 q^{92} +21.0641 q^{93} +10.0999 q^{94} -10.9328 q^{96} +3.31388 q^{97} -11.0032 q^{98} +1.22580 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 49 q + 5 q^{2} + 22 q^{3} + 49 q^{4} + 2 q^{6} + 32 q^{7} + 15 q^{8} + 51 q^{9} - 2 q^{11} + 44 q^{12} + 32 q^{13} - 8 q^{14} + 49 q^{16} + 14 q^{17} + 25 q^{18} + 4 q^{19} + 10 q^{21} + 38 q^{22} + 24 q^{23}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.870537 −0.615563 −0.307781 0.951457i \(-0.599586\pi\)
−0.307781 + 0.951457i \(0.599586\pi\)
\(3\) 1.92866 1.11351 0.556756 0.830676i \(-0.312046\pi\)
0.556756 + 0.830676i \(0.312046\pi\)
\(4\) −1.24217 −0.621083
\(5\) 0 0
\(6\) −1.67897 −0.685436
\(7\) 4.43166 1.67501 0.837505 0.546430i \(-0.184014\pi\)
0.837505 + 0.546430i \(0.184014\pi\)
\(8\) 2.82242 0.997878
\(9\) 0.719722 0.239907
\(10\) 0 0
\(11\) 1.70316 0.513521 0.256761 0.966475i \(-0.417345\pi\)
0.256761 + 0.966475i \(0.417345\pi\)
\(12\) −2.39571 −0.691583
\(13\) −0.123746 −0.0343209 −0.0171604 0.999853i \(-0.505463\pi\)
−0.0171604 + 0.999853i \(0.505463\pi\)
\(14\) −3.85792 −1.03107
\(15\) 0 0
\(16\) 0.0273066 0.00682665
\(17\) 1.14261 0.277124 0.138562 0.990354i \(-0.455752\pi\)
0.138562 + 0.990354i \(0.455752\pi\)
\(18\) −0.626545 −0.147678
\(19\) 8.45775 1.94034 0.970171 0.242422i \(-0.0779417\pi\)
0.970171 + 0.242422i \(0.0779417\pi\)
\(20\) 0 0
\(21\) 8.54715 1.86514
\(22\) −1.48266 −0.316104
\(23\) 4.49103 0.936445 0.468222 0.883611i \(-0.344895\pi\)
0.468222 + 0.883611i \(0.344895\pi\)
\(24\) 5.44349 1.11115
\(25\) 0 0
\(26\) 0.107725 0.0211266
\(27\) −4.39788 −0.846372
\(28\) −5.50485 −1.04032
\(29\) −3.89888 −0.724004 −0.362002 0.932177i \(-0.617907\pi\)
−0.362002 + 0.932177i \(0.617907\pi\)
\(30\) 0 0
\(31\) 10.9216 1.96158 0.980792 0.195056i \(-0.0624888\pi\)
0.980792 + 0.195056i \(0.0624888\pi\)
\(32\) −5.66862 −1.00208
\(33\) 3.28481 0.571812
\(34\) −0.994687 −0.170587
\(35\) 0 0
\(36\) −0.894014 −0.149002
\(37\) 3.64436 0.599128 0.299564 0.954076i \(-0.403159\pi\)
0.299564 + 0.954076i \(0.403159\pi\)
\(38\) −7.36279 −1.19440
\(39\) −0.238663 −0.0382167
\(40\) 0 0
\(41\) 0.728472 0.113768 0.0568841 0.998381i \(-0.481883\pi\)
0.0568841 + 0.998381i \(0.481883\pi\)
\(42\) −7.44061 −1.14811
\(43\) 5.84768 0.891763 0.445881 0.895092i \(-0.352890\pi\)
0.445881 + 0.895092i \(0.352890\pi\)
\(44\) −2.11560 −0.318939
\(45\) 0 0
\(46\) −3.90961 −0.576440
\(47\) −11.6020 −1.69232 −0.846160 0.532929i \(-0.821091\pi\)
−0.846160 + 0.532929i \(0.821091\pi\)
\(48\) 0.0526651 0.00760155
\(49\) 12.6396 1.80566
\(50\) 0 0
\(51\) 2.20371 0.308581
\(52\) 0.153713 0.0213161
\(53\) −12.1066 −1.66297 −0.831485 0.555547i \(-0.812509\pi\)
−0.831485 + 0.555547i \(0.812509\pi\)
\(54\) 3.82851 0.520995
\(55\) 0 0
\(56\) 12.5080 1.67145
\(57\) 16.3121 2.16059
\(58\) 3.39412 0.445669
\(59\) −7.96100 −1.03643 −0.518217 0.855249i \(-0.673404\pi\)
−0.518217 + 0.855249i \(0.673404\pi\)
\(60\) 0 0
\(61\) −12.8875 −1.65008 −0.825038 0.565077i \(-0.808846\pi\)
−0.825038 + 0.565077i \(0.808846\pi\)
\(62\) −9.50769 −1.20748
\(63\) 3.18956 0.401847
\(64\) 4.88013 0.610016
\(65\) 0 0
\(66\) −2.85955 −0.351986
\(67\) 12.2474 1.49626 0.748129 0.663553i \(-0.230952\pi\)
0.748129 + 0.663553i \(0.230952\pi\)
\(68\) −1.41932 −0.172117
\(69\) 8.66166 1.04274
\(70\) 0 0
\(71\) −10.6231 −1.26073 −0.630367 0.776297i \(-0.717096\pi\)
−0.630367 + 0.776297i \(0.717096\pi\)
\(72\) 2.03136 0.239398
\(73\) −6.59861 −0.772309 −0.386155 0.922434i \(-0.626197\pi\)
−0.386155 + 0.922434i \(0.626197\pi\)
\(74\) −3.17255 −0.368801
\(75\) 0 0
\(76\) −10.5059 −1.20511
\(77\) 7.54781 0.860153
\(78\) 0.207765 0.0235248
\(79\) 9.80240 1.10286 0.551428 0.834222i \(-0.314083\pi\)
0.551428 + 0.834222i \(0.314083\pi\)
\(80\) 0 0
\(81\) −10.6412 −1.18235
\(82\) −0.634162 −0.0700315
\(83\) 2.94971 0.323773 0.161887 0.986809i \(-0.448242\pi\)
0.161887 + 0.986809i \(0.448242\pi\)
\(84\) −10.6170 −1.15841
\(85\) 0 0
\(86\) −5.09062 −0.548936
\(87\) −7.51960 −0.806186
\(88\) 4.80703 0.512431
\(89\) 10.4622 1.10899 0.554496 0.832186i \(-0.312911\pi\)
0.554496 + 0.832186i \(0.312911\pi\)
\(90\) 0 0
\(91\) −0.548398 −0.0574878
\(92\) −5.57860 −0.581610
\(93\) 21.0641 2.18425
\(94\) 10.0999 1.04173
\(95\) 0 0
\(96\) −10.9328 −1.11583
\(97\) 3.31388 0.336474 0.168237 0.985747i \(-0.446193\pi\)
0.168237 + 0.985747i \(0.446193\pi\)
\(98\) −11.0032 −1.11149
\(99\) 1.22580 0.123198
\(100\) 0 0
\(101\) 12.2480 1.21872 0.609362 0.792892i \(-0.291426\pi\)
0.609362 + 0.792892i \(0.291426\pi\)
\(102\) −1.91841 −0.189951
\(103\) −1.25200 −0.123363 −0.0616815 0.998096i \(-0.519646\pi\)
−0.0616815 + 0.998096i \(0.519646\pi\)
\(104\) −0.349263 −0.0342480
\(105\) 0 0
\(106\) 10.5392 1.02366
\(107\) 10.1858 0.984702 0.492351 0.870397i \(-0.336138\pi\)
0.492351 + 0.870397i \(0.336138\pi\)
\(108\) 5.46289 0.525667
\(109\) −0.528072 −0.0505801 −0.0252900 0.999680i \(-0.508051\pi\)
−0.0252900 + 0.999680i \(0.508051\pi\)
\(110\) 0 0
\(111\) 7.02872 0.667136
\(112\) 0.121014 0.0114347
\(113\) −3.75605 −0.353339 −0.176670 0.984270i \(-0.556532\pi\)
−0.176670 + 0.984270i \(0.556532\pi\)
\(114\) −14.2003 −1.32998
\(115\) 0 0
\(116\) 4.84305 0.449666
\(117\) −0.0890625 −0.00823383
\(118\) 6.93034 0.637990
\(119\) 5.06367 0.464186
\(120\) 0 0
\(121\) −8.09926 −0.736296
\(122\) 11.2190 1.01573
\(123\) 1.40497 0.126682
\(124\) −13.5665 −1.21831
\(125\) 0 0
\(126\) −2.77663 −0.247362
\(127\) −4.51202 −0.400377 −0.200188 0.979757i \(-0.564155\pi\)
−0.200188 + 0.979757i \(0.564155\pi\)
\(128\) 7.08891 0.626577
\(129\) 11.2782 0.992988
\(130\) 0 0
\(131\) −6.74933 −0.589692 −0.294846 0.955545i \(-0.595268\pi\)
−0.294846 + 0.955545i \(0.595268\pi\)
\(132\) −4.08028 −0.355142
\(133\) 37.4819 3.25009
\(134\) −10.6618 −0.921041
\(135\) 0 0
\(136\) 3.22494 0.276536
\(137\) 14.4330 1.23309 0.616546 0.787319i \(-0.288532\pi\)
0.616546 + 0.787319i \(0.288532\pi\)
\(138\) −7.54030 −0.641873
\(139\) −7.31604 −0.620538 −0.310269 0.950649i \(-0.600419\pi\)
−0.310269 + 0.950649i \(0.600419\pi\)
\(140\) 0 0
\(141\) −22.3762 −1.88442
\(142\) 9.24784 0.776061
\(143\) −0.210758 −0.0176245
\(144\) 0.0196532 0.00163776
\(145\) 0 0
\(146\) 5.74434 0.475405
\(147\) 24.3774 2.01062
\(148\) −4.52689 −0.372108
\(149\) 4.10236 0.336079 0.168039 0.985780i \(-0.446256\pi\)
0.168039 + 0.985780i \(0.446256\pi\)
\(150\) 0 0
\(151\) −13.3414 −1.08570 −0.542852 0.839828i \(-0.682656\pi\)
−0.542852 + 0.839828i \(0.682656\pi\)
\(152\) 23.8714 1.93622
\(153\) 0.822364 0.0664842
\(154\) −6.57065 −0.529478
\(155\) 0 0
\(156\) 0.296459 0.0237357
\(157\) −15.6461 −1.24870 −0.624349 0.781145i \(-0.714636\pi\)
−0.624349 + 0.781145i \(0.714636\pi\)
\(158\) −8.53335 −0.678877
\(159\) −23.3495 −1.85174
\(160\) 0 0
\(161\) 19.9027 1.56855
\(162\) 9.26353 0.727811
\(163\) −10.1824 −0.797543 −0.398772 0.917050i \(-0.630563\pi\)
−0.398772 + 0.917050i \(0.630563\pi\)
\(164\) −0.904883 −0.0706595
\(165\) 0 0
\(166\) −2.56783 −0.199303
\(167\) 11.4059 0.882619 0.441309 0.897355i \(-0.354514\pi\)
0.441309 + 0.897355i \(0.354514\pi\)
\(168\) 24.1237 1.86118
\(169\) −12.9847 −0.998822
\(170\) 0 0
\(171\) 6.08723 0.465502
\(172\) −7.26378 −0.553858
\(173\) −24.8344 −1.88812 −0.944061 0.329771i \(-0.893028\pi\)
−0.944061 + 0.329771i \(0.893028\pi\)
\(174\) 6.54609 0.496258
\(175\) 0 0
\(176\) 0.0465075 0.00350563
\(177\) −15.3540 −1.15408
\(178\) −9.10775 −0.682655
\(179\) 21.0550 1.57372 0.786861 0.617130i \(-0.211705\pi\)
0.786861 + 0.617130i \(0.211705\pi\)
\(180\) 0 0
\(181\) −4.58253 −0.340617 −0.170308 0.985391i \(-0.554476\pi\)
−0.170308 + 0.985391i \(0.554476\pi\)
\(182\) 0.477401 0.0353873
\(183\) −24.8556 −1.83738
\(184\) 12.6756 0.934457
\(185\) 0 0
\(186\) −18.3371 −1.34454
\(187\) 1.94605 0.142309
\(188\) 14.4116 1.05107
\(189\) −19.4899 −1.41768
\(190\) 0 0
\(191\) −12.9687 −0.938385 −0.469193 0.883096i \(-0.655455\pi\)
−0.469193 + 0.883096i \(0.655455\pi\)
\(192\) 9.41210 0.679260
\(193\) −4.21268 −0.303235 −0.151618 0.988439i \(-0.548448\pi\)
−0.151618 + 0.988439i \(0.548448\pi\)
\(194\) −2.88486 −0.207121
\(195\) 0 0
\(196\) −15.7005 −1.12146
\(197\) −1.00000 −0.0712470
\(198\) −1.06710 −0.0758358
\(199\) −9.85404 −0.698534 −0.349267 0.937023i \(-0.613569\pi\)
−0.349267 + 0.937023i \(0.613569\pi\)
\(200\) 0 0
\(201\) 23.6211 1.66610
\(202\) −10.6623 −0.750200
\(203\) −17.2785 −1.21271
\(204\) −2.73737 −0.191654
\(205\) 0 0
\(206\) 1.08991 0.0759376
\(207\) 3.23229 0.224660
\(208\) −0.00337907 −0.000234297 0
\(209\) 14.4049 0.996407
\(210\) 0 0
\(211\) −9.42984 −0.649177 −0.324588 0.945855i \(-0.605226\pi\)
−0.324588 + 0.945855i \(0.605226\pi\)
\(212\) 15.0384 1.03284
\(213\) −20.4884 −1.40384
\(214\) −8.86714 −0.606145
\(215\) 0 0
\(216\) −12.4127 −0.844576
\(217\) 48.4010 3.28567
\(218\) 0.459706 0.0311352
\(219\) −12.7265 −0.859975
\(220\) 0 0
\(221\) −0.141393 −0.00951115
\(222\) −6.11876 −0.410664
\(223\) 22.5192 1.50800 0.753999 0.656876i \(-0.228123\pi\)
0.753999 + 0.656876i \(0.228123\pi\)
\(224\) −25.1214 −1.67849
\(225\) 0 0
\(226\) 3.26978 0.217502
\(227\) −0.372248 −0.0247070 −0.0123535 0.999924i \(-0.503932\pi\)
−0.0123535 + 0.999924i \(0.503932\pi\)
\(228\) −20.2624 −1.34191
\(229\) 16.0618 1.06139 0.530696 0.847562i \(-0.321930\pi\)
0.530696 + 0.847562i \(0.321930\pi\)
\(230\) 0 0
\(231\) 14.5571 0.957790
\(232\) −11.0043 −0.722467
\(233\) −3.23653 −0.212032 −0.106016 0.994364i \(-0.533810\pi\)
−0.106016 + 0.994364i \(0.533810\pi\)
\(234\) 0.0775322 0.00506844
\(235\) 0 0
\(236\) 9.88888 0.643711
\(237\) 18.9055 1.22804
\(238\) −4.40811 −0.285736
\(239\) −23.8140 −1.54040 −0.770200 0.637802i \(-0.779844\pi\)
−0.770200 + 0.637802i \(0.779844\pi\)
\(240\) 0 0
\(241\) 22.1911 1.42945 0.714727 0.699403i \(-0.246551\pi\)
0.714727 + 0.699403i \(0.246551\pi\)
\(242\) 7.05070 0.453236
\(243\) −7.32954 −0.470190
\(244\) 16.0084 1.02483
\(245\) 0 0
\(246\) −1.22308 −0.0779808
\(247\) −1.04661 −0.0665942
\(248\) 30.8255 1.95742
\(249\) 5.68899 0.360525
\(250\) 0 0
\(251\) −2.15167 −0.135812 −0.0679062 0.997692i \(-0.521632\pi\)
−0.0679062 + 0.997692i \(0.521632\pi\)
\(252\) −3.96196 −0.249580
\(253\) 7.64893 0.480884
\(254\) 3.92788 0.246457
\(255\) 0 0
\(256\) −15.9314 −0.995713
\(257\) −10.9521 −0.683176 −0.341588 0.939850i \(-0.610965\pi\)
−0.341588 + 0.939850i \(0.610965\pi\)
\(258\) −9.81806 −0.611246
\(259\) 16.1505 1.00355
\(260\) 0 0
\(261\) −2.80611 −0.173694
\(262\) 5.87554 0.362992
\(263\) 8.66154 0.534093 0.267047 0.963684i \(-0.413952\pi\)
0.267047 + 0.963684i \(0.413952\pi\)
\(264\) 9.27112 0.570598
\(265\) 0 0
\(266\) −32.6294 −2.00063
\(267\) 20.1780 1.23488
\(268\) −15.2133 −0.929301
\(269\) 10.4447 0.636824 0.318412 0.947952i \(-0.396850\pi\)
0.318412 + 0.947952i \(0.396850\pi\)
\(270\) 0 0
\(271\) 4.55775 0.276864 0.138432 0.990372i \(-0.455794\pi\)
0.138432 + 0.990372i \(0.455794\pi\)
\(272\) 0.0312009 0.00189183
\(273\) −1.05767 −0.0640133
\(274\) −12.5644 −0.759045
\(275\) 0 0
\(276\) −10.7592 −0.647629
\(277\) 29.5789 1.77722 0.888612 0.458660i \(-0.151671\pi\)
0.888612 + 0.458660i \(0.151671\pi\)
\(278\) 6.36888 0.381980
\(279\) 7.86055 0.470599
\(280\) 0 0
\(281\) −5.02303 −0.299649 −0.149824 0.988713i \(-0.547871\pi\)
−0.149824 + 0.988713i \(0.547871\pi\)
\(282\) 19.4793 1.15998
\(283\) 7.53723 0.448042 0.224021 0.974584i \(-0.428082\pi\)
0.224021 + 0.974584i \(0.428082\pi\)
\(284\) 13.1957 0.783021
\(285\) 0 0
\(286\) 0.183473 0.0108490
\(287\) 3.22834 0.190563
\(288\) −4.07983 −0.240406
\(289\) −15.6944 −0.923202
\(290\) 0 0
\(291\) 6.39135 0.374668
\(292\) 8.19657 0.479668
\(293\) 5.84987 0.341753 0.170877 0.985292i \(-0.445340\pi\)
0.170877 + 0.985292i \(0.445340\pi\)
\(294\) −21.2215 −1.23766
\(295\) 0 0
\(296\) 10.2859 0.597857
\(297\) −7.49028 −0.434630
\(298\) −3.57126 −0.206877
\(299\) −0.555746 −0.0321396
\(300\) 0 0
\(301\) 25.9149 1.49371
\(302\) 11.6141 0.668319
\(303\) 23.6222 1.35706
\(304\) 0.230953 0.0132460
\(305\) 0 0
\(306\) −0.715898 −0.0409252
\(307\) −22.8530 −1.30429 −0.652146 0.758094i \(-0.726131\pi\)
−0.652146 + 0.758094i \(0.726131\pi\)
\(308\) −9.37563 −0.534226
\(309\) −2.41467 −0.137366
\(310\) 0 0
\(311\) 0.848574 0.0481182 0.0240591 0.999711i \(-0.492341\pi\)
0.0240591 + 0.999711i \(0.492341\pi\)
\(312\) −0.673609 −0.0381356
\(313\) 24.2552 1.37099 0.685494 0.728078i \(-0.259586\pi\)
0.685494 + 0.728078i \(0.259586\pi\)
\(314\) 13.6205 0.768652
\(315\) 0 0
\(316\) −12.1762 −0.684965
\(317\) −9.50882 −0.534069 −0.267034 0.963687i \(-0.586044\pi\)
−0.267034 + 0.963687i \(0.586044\pi\)
\(318\) 20.3266 1.13986
\(319\) −6.64040 −0.371791
\(320\) 0 0
\(321\) 19.6450 1.09648
\(322\) −17.3260 −0.965543
\(323\) 9.66394 0.537716
\(324\) 13.2181 0.734338
\(325\) 0 0
\(326\) 8.86411 0.490938
\(327\) −1.01847 −0.0563215
\(328\) 2.05606 0.113527
\(329\) −51.4159 −2.83465
\(330\) 0 0
\(331\) 2.55412 0.140387 0.0701936 0.997533i \(-0.477638\pi\)
0.0701936 + 0.997533i \(0.477638\pi\)
\(332\) −3.66403 −0.201090
\(333\) 2.62292 0.143735
\(334\) −9.92930 −0.543307
\(335\) 0 0
\(336\) 0.233394 0.0127327
\(337\) 7.54624 0.411070 0.205535 0.978650i \(-0.434107\pi\)
0.205535 + 0.978650i \(0.434107\pi\)
\(338\) 11.3036 0.614837
\(339\) −7.24413 −0.393447
\(340\) 0 0
\(341\) 18.6013 1.00732
\(342\) −5.29916 −0.286546
\(343\) 24.9927 1.34948
\(344\) 16.5046 0.889870
\(345\) 0 0
\(346\) 21.6192 1.16226
\(347\) 13.6684 0.733756 0.366878 0.930269i \(-0.380427\pi\)
0.366878 + 0.930269i \(0.380427\pi\)
\(348\) 9.34059 0.500708
\(349\) 30.5829 1.63706 0.818531 0.574462i \(-0.194789\pi\)
0.818531 + 0.574462i \(0.194789\pi\)
\(350\) 0 0
\(351\) 0.544218 0.0290482
\(352\) −9.65455 −0.514589
\(353\) 8.32483 0.443086 0.221543 0.975151i \(-0.428891\pi\)
0.221543 + 0.975151i \(0.428891\pi\)
\(354\) 13.3663 0.710409
\(355\) 0 0
\(356\) −12.9958 −0.688776
\(357\) 9.76609 0.516876
\(358\) −18.3291 −0.968725
\(359\) 12.4077 0.654855 0.327428 0.944876i \(-0.393818\pi\)
0.327428 + 0.944876i \(0.393818\pi\)
\(360\) 0 0
\(361\) 52.5336 2.76493
\(362\) 3.98926 0.209671
\(363\) −15.6207 −0.819874
\(364\) 0.681202 0.0357047
\(365\) 0 0
\(366\) 21.6377 1.13102
\(367\) −33.0594 −1.72569 −0.862843 0.505472i \(-0.831318\pi\)
−0.862843 + 0.505472i \(0.831318\pi\)
\(368\) 0.122635 0.00639278
\(369\) 0.524298 0.0272938
\(370\) 0 0
\(371\) −53.6523 −2.78549
\(372\) −26.1651 −1.35660
\(373\) 24.6346 1.27553 0.637765 0.770231i \(-0.279859\pi\)
0.637765 + 0.770231i \(0.279859\pi\)
\(374\) −1.69411 −0.0876003
\(375\) 0 0
\(376\) −32.7457 −1.68873
\(377\) 0.482469 0.0248484
\(378\) 16.9667 0.872671
\(379\) 2.30362 0.118329 0.0591645 0.998248i \(-0.481156\pi\)
0.0591645 + 0.998248i \(0.481156\pi\)
\(380\) 0 0
\(381\) −8.70214 −0.445824
\(382\) 11.2898 0.577635
\(383\) 22.6666 1.15821 0.579104 0.815253i \(-0.303402\pi\)
0.579104 + 0.815253i \(0.303402\pi\)
\(384\) 13.6721 0.697700
\(385\) 0 0
\(386\) 3.66729 0.186660
\(387\) 4.20870 0.213940
\(388\) −4.11639 −0.208978
\(389\) −10.8248 −0.548840 −0.274420 0.961610i \(-0.588486\pi\)
−0.274420 + 0.961610i \(0.588486\pi\)
\(390\) 0 0
\(391\) 5.13151 0.259512
\(392\) 35.6743 1.80182
\(393\) −13.0172 −0.656629
\(394\) 0.870537 0.0438570
\(395\) 0 0
\(396\) −1.52265 −0.0765159
\(397\) 14.2272 0.714040 0.357020 0.934097i \(-0.383793\pi\)
0.357020 + 0.934097i \(0.383793\pi\)
\(398\) 8.57830 0.429991
\(399\) 72.2897 3.61901
\(400\) 0 0
\(401\) 31.7277 1.58441 0.792203 0.610257i \(-0.208934\pi\)
0.792203 + 0.610257i \(0.208934\pi\)
\(402\) −20.5630 −1.02559
\(403\) −1.35151 −0.0673233
\(404\) −15.2141 −0.756928
\(405\) 0 0
\(406\) 15.0416 0.746500
\(407\) 6.20691 0.307665
\(408\) 6.21981 0.307926
\(409\) 23.4878 1.16140 0.580698 0.814119i \(-0.302780\pi\)
0.580698 + 0.814119i \(0.302780\pi\)
\(410\) 0 0
\(411\) 27.8362 1.37306
\(412\) 1.55519 0.0766186
\(413\) −35.2804 −1.73604
\(414\) −2.81383 −0.138292
\(415\) 0 0
\(416\) 0.701467 0.0343923
\(417\) −14.1101 −0.690976
\(418\) −12.5400 −0.613351
\(419\) 18.4285 0.900292 0.450146 0.892955i \(-0.351372\pi\)
0.450146 + 0.892955i \(0.351372\pi\)
\(420\) 0 0
\(421\) −12.9360 −0.630460 −0.315230 0.949015i \(-0.602082\pi\)
−0.315230 + 0.949015i \(0.602082\pi\)
\(422\) 8.20902 0.399609
\(423\) −8.35019 −0.406000
\(424\) −34.1700 −1.65944
\(425\) 0 0
\(426\) 17.8359 0.864153
\(427\) −57.1130 −2.76389
\(428\) −12.6525 −0.611581
\(429\) −0.406481 −0.0196251
\(430\) 0 0
\(431\) −17.2655 −0.831650 −0.415825 0.909445i \(-0.636507\pi\)
−0.415825 + 0.909445i \(0.636507\pi\)
\(432\) −0.120091 −0.00577789
\(433\) −24.0953 −1.15795 −0.578973 0.815347i \(-0.696546\pi\)
−0.578973 + 0.815347i \(0.696546\pi\)
\(434\) −42.1348 −2.02254
\(435\) 0 0
\(436\) 0.655953 0.0314144
\(437\) 37.9840 1.81702
\(438\) 11.0789 0.529368
\(439\) 0.725758 0.0346386 0.0173193 0.999850i \(-0.494487\pi\)
0.0173193 + 0.999850i \(0.494487\pi\)
\(440\) 0 0
\(441\) 9.09699 0.433190
\(442\) 0.123088 0.00585471
\(443\) 25.6666 1.21945 0.609727 0.792611i \(-0.291279\pi\)
0.609727 + 0.792611i \(0.291279\pi\)
\(444\) −8.73083 −0.414347
\(445\) 0 0
\(446\) −19.6038 −0.928266
\(447\) 7.91205 0.374227
\(448\) 21.6271 1.02178
\(449\) −30.2263 −1.42647 −0.713235 0.700925i \(-0.752771\pi\)
−0.713235 + 0.700925i \(0.752771\pi\)
\(450\) 0 0
\(451\) 1.24070 0.0584224
\(452\) 4.66563 0.219453
\(453\) −25.7309 −1.20894
\(454\) 0.324056 0.0152087
\(455\) 0 0
\(456\) 46.0397 2.15601
\(457\) −6.05210 −0.283105 −0.141553 0.989931i \(-0.545209\pi\)
−0.141553 + 0.989931i \(0.545209\pi\)
\(458\) −13.9824 −0.653354
\(459\) −5.02507 −0.234550
\(460\) 0 0
\(461\) −6.19623 −0.288587 −0.144293 0.989535i \(-0.546091\pi\)
−0.144293 + 0.989535i \(0.546091\pi\)
\(462\) −12.6725 −0.589580
\(463\) −17.4621 −0.811533 −0.405767 0.913977i \(-0.632995\pi\)
−0.405767 + 0.913977i \(0.632995\pi\)
\(464\) −0.106465 −0.00494252
\(465\) 0 0
\(466\) 2.81752 0.130519
\(467\) 26.8068 1.24047 0.620236 0.784416i \(-0.287037\pi\)
0.620236 + 0.784416i \(0.287037\pi\)
\(468\) 0.110630 0.00511389
\(469\) 54.2763 2.50625
\(470\) 0 0
\(471\) −30.1761 −1.39044
\(472\) −22.4693 −1.03423
\(473\) 9.95952 0.457939
\(474\) −16.4579 −0.755937
\(475\) 0 0
\(476\) −6.28992 −0.288298
\(477\) −8.71339 −0.398959
\(478\) 20.7310 0.948213
\(479\) −17.4704 −0.798244 −0.399122 0.916898i \(-0.630685\pi\)
−0.399122 + 0.916898i \(0.630685\pi\)
\(480\) 0 0
\(481\) −0.450973 −0.0205626
\(482\) −19.3182 −0.879919
\(483\) 38.3855 1.74660
\(484\) 10.0606 0.457301
\(485\) 0 0
\(486\) 6.38064 0.289432
\(487\) 13.3952 0.606996 0.303498 0.952832i \(-0.401845\pi\)
0.303498 + 0.952832i \(0.401845\pi\)
\(488\) −36.3740 −1.64657
\(489\) −19.6383 −0.888074
\(490\) 0 0
\(491\) 2.76836 0.124934 0.0624672 0.998047i \(-0.480103\pi\)
0.0624672 + 0.998047i \(0.480103\pi\)
\(492\) −1.74521 −0.0786802
\(493\) −4.45491 −0.200639
\(494\) 0.911113 0.0409929
\(495\) 0 0
\(496\) 0.298233 0.0133911
\(497\) −47.0781 −2.11174
\(498\) −4.95247 −0.221926
\(499\) −19.6857 −0.881253 −0.440627 0.897690i \(-0.645244\pi\)
−0.440627 + 0.897690i \(0.645244\pi\)
\(500\) 0 0
\(501\) 21.9982 0.982806
\(502\) 1.87311 0.0836010
\(503\) 9.61308 0.428626 0.214313 0.976765i \(-0.431249\pi\)
0.214313 + 0.976765i \(0.431249\pi\)
\(504\) 9.00230 0.400994
\(505\) 0 0
\(506\) −6.65868 −0.296014
\(507\) −25.0430 −1.11220
\(508\) 5.60467 0.248667
\(509\) −27.0505 −1.19899 −0.599496 0.800377i \(-0.704632\pi\)
−0.599496 + 0.800377i \(0.704632\pi\)
\(510\) 0 0
\(511\) −29.2428 −1.29363
\(512\) −0.308933 −0.0136530
\(513\) −37.1962 −1.64225
\(514\) 9.53425 0.420538
\(515\) 0 0
\(516\) −14.0094 −0.616728
\(517\) −19.7600 −0.869042
\(518\) −14.0596 −0.617745
\(519\) −47.8970 −2.10244
\(520\) 0 0
\(521\) −22.9932 −1.00735 −0.503676 0.863893i \(-0.668019\pi\)
−0.503676 + 0.863893i \(0.668019\pi\)
\(522\) 2.44282 0.106919
\(523\) 15.6933 0.686219 0.343110 0.939295i \(-0.388520\pi\)
0.343110 + 0.939295i \(0.388520\pi\)
\(524\) 8.38379 0.366248
\(525\) 0 0
\(526\) −7.54019 −0.328768
\(527\) 12.4792 0.543603
\(528\) 0.0896970 0.00390356
\(529\) −2.83064 −0.123071
\(530\) 0 0
\(531\) −5.72971 −0.248648
\(532\) −46.5587 −2.01858
\(533\) −0.0901453 −0.00390463
\(534\) −17.5657 −0.760143
\(535\) 0 0
\(536\) 34.5674 1.49308
\(537\) 40.6079 1.75236
\(538\) −9.09249 −0.392005
\(539\) 21.5272 0.927243
\(540\) 0 0
\(541\) 27.6492 1.18873 0.594366 0.804194i \(-0.297403\pi\)
0.594366 + 0.804194i \(0.297403\pi\)
\(542\) −3.96769 −0.170427
\(543\) −8.83814 −0.379281
\(544\) −6.47704 −0.277701
\(545\) 0 0
\(546\) 0.920743 0.0394042
\(547\) 27.9155 1.19358 0.596790 0.802397i \(-0.296442\pi\)
0.596790 + 0.802397i \(0.296442\pi\)
\(548\) −17.9281 −0.765852
\(549\) −9.27542 −0.395865
\(550\) 0 0
\(551\) −32.9758 −1.40481
\(552\) 24.4469 1.04053
\(553\) 43.4409 1.84729
\(554\) −25.7495 −1.09399
\(555\) 0 0
\(556\) 9.08773 0.385406
\(557\) −9.60825 −0.407115 −0.203557 0.979063i \(-0.565250\pi\)
−0.203557 + 0.979063i \(0.565250\pi\)
\(558\) −6.84289 −0.289683
\(559\) −0.723625 −0.0306061
\(560\) 0 0
\(561\) 3.75327 0.158463
\(562\) 4.37273 0.184452
\(563\) −22.1977 −0.935520 −0.467760 0.883855i \(-0.654939\pi\)
−0.467760 + 0.883855i \(0.654939\pi\)
\(564\) 27.7950 1.17038
\(565\) 0 0
\(566\) −6.56144 −0.275798
\(567\) −47.1580 −1.98045
\(568\) −29.9830 −1.25806
\(569\) −12.3835 −0.519145 −0.259573 0.965724i \(-0.583582\pi\)
−0.259573 + 0.965724i \(0.583582\pi\)
\(570\) 0 0
\(571\) −27.9621 −1.17018 −0.585090 0.810969i \(-0.698941\pi\)
−0.585090 + 0.810969i \(0.698941\pi\)
\(572\) 0.261797 0.0109463
\(573\) −25.0123 −1.04490
\(574\) −2.81039 −0.117303
\(575\) 0 0
\(576\) 3.51234 0.146347
\(577\) −34.3719 −1.43092 −0.715460 0.698654i \(-0.753783\pi\)
−0.715460 + 0.698654i \(0.753783\pi\)
\(578\) 13.6626 0.568289
\(579\) −8.12481 −0.337656
\(580\) 0 0
\(581\) 13.0721 0.542323
\(582\) −5.56391 −0.230631
\(583\) −20.6194 −0.853970
\(584\) −18.6241 −0.770670
\(585\) 0 0
\(586\) −5.09253 −0.210370
\(587\) −47.0526 −1.94207 −0.971033 0.238944i \(-0.923199\pi\)
−0.971033 + 0.238944i \(0.923199\pi\)
\(588\) −30.2808 −1.24876
\(589\) 92.3725 3.80614
\(590\) 0 0
\(591\) −1.92866 −0.0793344
\(592\) 0.0995150 0.00409004
\(593\) 10.0447 0.412486 0.206243 0.978501i \(-0.433876\pi\)
0.206243 + 0.978501i \(0.433876\pi\)
\(594\) 6.52056 0.267542
\(595\) 0 0
\(596\) −5.09581 −0.208733
\(597\) −19.0051 −0.777826
\(598\) 0.483797 0.0197839
\(599\) −29.0212 −1.18577 −0.592886 0.805286i \(-0.702012\pi\)
−0.592886 + 0.805286i \(0.702012\pi\)
\(600\) 0 0
\(601\) −0.756067 −0.0308406 −0.0154203 0.999881i \(-0.504909\pi\)
−0.0154203 + 0.999881i \(0.504909\pi\)
\(602\) −22.5599 −0.919472
\(603\) 8.81473 0.358964
\(604\) 16.5722 0.674313
\(605\) 0 0
\(606\) −20.5640 −0.835357
\(607\) 0.980632 0.0398026 0.0199013 0.999802i \(-0.493665\pi\)
0.0199013 + 0.999802i \(0.493665\pi\)
\(608\) −47.9438 −1.94438
\(609\) −33.3243 −1.35037
\(610\) 0 0
\(611\) 1.43569 0.0580819
\(612\) −1.02151 −0.0412922
\(613\) 32.3831 1.30794 0.653971 0.756520i \(-0.273102\pi\)
0.653971 + 0.756520i \(0.273102\pi\)
\(614\) 19.8944 0.802873
\(615\) 0 0
\(616\) 21.3031 0.858327
\(617\) −4.27331 −0.172037 −0.0860185 0.996294i \(-0.527414\pi\)
−0.0860185 + 0.996294i \(0.527414\pi\)
\(618\) 2.10206 0.0845574
\(619\) −23.6528 −0.950687 −0.475343 0.879800i \(-0.657676\pi\)
−0.475343 + 0.879800i \(0.657676\pi\)
\(620\) 0 0
\(621\) −19.7510 −0.792580
\(622\) −0.738715 −0.0296198
\(623\) 46.3650 1.85757
\(624\) −0.00651708 −0.000260892 0
\(625\) 0 0
\(626\) −21.1151 −0.843929
\(627\) 27.7821 1.10951
\(628\) 19.4351 0.775545
\(629\) 4.16409 0.166033
\(630\) 0 0
\(631\) −2.75054 −0.109497 −0.0547487 0.998500i \(-0.517436\pi\)
−0.0547487 + 0.998500i \(0.517436\pi\)
\(632\) 27.6665 1.10052
\(633\) −18.1869 −0.722866
\(634\) 8.27778 0.328753
\(635\) 0 0
\(636\) 29.0039 1.15008
\(637\) −1.56409 −0.0619717
\(638\) 5.78072 0.228861
\(639\) −7.64571 −0.302460
\(640\) 0 0
\(641\) −11.3606 −0.448719 −0.224359 0.974506i \(-0.572029\pi\)
−0.224359 + 0.974506i \(0.572029\pi\)
\(642\) −17.1017 −0.674950
\(643\) 33.8558 1.33514 0.667572 0.744545i \(-0.267334\pi\)
0.667572 + 0.744545i \(0.267334\pi\)
\(644\) −24.7225 −0.974202
\(645\) 0 0
\(646\) −8.41282 −0.330998
\(647\) 37.0829 1.45788 0.728939 0.684579i \(-0.240014\pi\)
0.728939 + 0.684579i \(0.240014\pi\)
\(648\) −30.0339 −1.17984
\(649\) −13.5588 −0.532231
\(650\) 0 0
\(651\) 93.3489 3.65863
\(652\) 12.6482 0.495340
\(653\) 28.2327 1.10483 0.552415 0.833569i \(-0.313706\pi\)
0.552415 + 0.833569i \(0.313706\pi\)
\(654\) 0.886615 0.0346694
\(655\) 0 0
\(656\) 0.0198921 0.000776656 0
\(657\) −4.74917 −0.185283
\(658\) 44.7594 1.74490
\(659\) 32.3003 1.25824 0.629120 0.777308i \(-0.283415\pi\)
0.629120 + 0.777308i \(0.283415\pi\)
\(660\) 0 0
\(661\) −11.4499 −0.445350 −0.222675 0.974893i \(-0.571479\pi\)
−0.222675 + 0.974893i \(0.571479\pi\)
\(662\) −2.22346 −0.0864171
\(663\) −0.272700 −0.0105908
\(664\) 8.32534 0.323086
\(665\) 0 0
\(666\) −2.28335 −0.0884781
\(667\) −17.5100 −0.677989
\(668\) −14.1681 −0.548179
\(669\) 43.4318 1.67917
\(670\) 0 0
\(671\) −21.9495 −0.847349
\(672\) −48.4506 −1.86902
\(673\) −15.0187 −0.578928 −0.289464 0.957189i \(-0.593477\pi\)
−0.289464 + 0.957189i \(0.593477\pi\)
\(674\) −6.56928 −0.253039
\(675\) 0 0
\(676\) 16.1291 0.620351
\(677\) 3.69635 0.142062 0.0710312 0.997474i \(-0.477371\pi\)
0.0710312 + 0.997474i \(0.477371\pi\)
\(678\) 6.30628 0.242191
\(679\) 14.6860 0.563597
\(680\) 0 0
\(681\) −0.717939 −0.0275115
\(682\) −16.1931 −0.620065
\(683\) −9.96233 −0.381198 −0.190599 0.981668i \(-0.561043\pi\)
−0.190599 + 0.981668i \(0.561043\pi\)
\(684\) −7.56135 −0.289116
\(685\) 0 0
\(686\) −21.7571 −0.830690
\(687\) 30.9777 1.18187
\(688\) 0.159680 0.00608775
\(689\) 1.49814 0.0570746
\(690\) 0 0
\(691\) −24.9722 −0.949986 −0.474993 0.879990i \(-0.657549\pi\)
−0.474993 + 0.879990i \(0.657549\pi\)
\(692\) 30.8484 1.17268
\(693\) 5.43233 0.206357
\(694\) −11.8988 −0.451673
\(695\) 0 0
\(696\) −21.2235 −0.804475
\(697\) 0.832362 0.0315280
\(698\) −26.6235 −1.00771
\(699\) −6.24217 −0.236100
\(700\) 0 0
\(701\) 26.1263 0.986777 0.493388 0.869809i \(-0.335758\pi\)
0.493388 + 0.869809i \(0.335758\pi\)
\(702\) −0.473762 −0.0178810
\(703\) 30.8231 1.16251
\(704\) 8.31163 0.313256
\(705\) 0 0
\(706\) −7.24707 −0.272747
\(707\) 54.2790 2.04137
\(708\) 19.0723 0.716780
\(709\) 0.447942 0.0168228 0.00841142 0.999965i \(-0.497323\pi\)
0.00841142 + 0.999965i \(0.497323\pi\)
\(710\) 0 0
\(711\) 7.05500 0.264583
\(712\) 29.5288 1.10664
\(713\) 49.0494 1.83692
\(714\) −8.50174 −0.318170
\(715\) 0 0
\(716\) −26.1538 −0.977412
\(717\) −45.9291 −1.71525
\(718\) −10.8014 −0.403104
\(719\) −22.7145 −0.847107 −0.423553 0.905871i \(-0.639217\pi\)
−0.423553 + 0.905871i \(0.639217\pi\)
\(720\) 0 0
\(721\) −5.54842 −0.206634
\(722\) −45.7324 −1.70199
\(723\) 42.7990 1.59171
\(724\) 5.69226 0.211551
\(725\) 0 0
\(726\) 13.5984 0.504684
\(727\) 25.7370 0.954534 0.477267 0.878758i \(-0.341627\pi\)
0.477267 + 0.878758i \(0.341627\pi\)
\(728\) −1.54781 −0.0573658
\(729\) 17.7873 0.658790
\(730\) 0 0
\(731\) 6.68164 0.247129
\(732\) 30.8748 1.14116
\(733\) −11.8624 −0.438147 −0.219074 0.975708i \(-0.570304\pi\)
−0.219074 + 0.975708i \(0.570304\pi\)
\(734\) 28.7794 1.06227
\(735\) 0 0
\(736\) −25.4580 −0.938393
\(737\) 20.8593 0.768361
\(738\) −0.456420 −0.0168011
\(739\) −38.0649 −1.40024 −0.700120 0.714026i \(-0.746870\pi\)
−0.700120 + 0.714026i \(0.746870\pi\)
\(740\) 0 0
\(741\) −2.01855 −0.0741534
\(742\) 46.7063 1.71464
\(743\) −8.55413 −0.313821 −0.156910 0.987613i \(-0.550153\pi\)
−0.156910 + 0.987613i \(0.550153\pi\)
\(744\) 59.4519 2.17961
\(745\) 0 0
\(746\) −21.4453 −0.785169
\(747\) 2.12297 0.0776756
\(748\) −2.41732 −0.0883859
\(749\) 45.1401 1.64938
\(750\) 0 0
\(751\) −29.4966 −1.07635 −0.538174 0.842834i \(-0.680886\pi\)
−0.538174 + 0.842834i \(0.680886\pi\)
\(752\) −0.316810 −0.0115529
\(753\) −4.14984 −0.151229
\(754\) −0.420007 −0.0152958
\(755\) 0 0
\(756\) 24.2097 0.880497
\(757\) −24.3569 −0.885265 −0.442633 0.896703i \(-0.645955\pi\)
−0.442633 + 0.896703i \(0.645955\pi\)
\(758\) −2.00539 −0.0728389
\(759\) 14.7522 0.535470
\(760\) 0 0
\(761\) 23.6562 0.857537 0.428768 0.903414i \(-0.358948\pi\)
0.428768 + 0.903414i \(0.358948\pi\)
\(762\) 7.57553 0.274433
\(763\) −2.34023 −0.0847221
\(764\) 16.1093 0.582815
\(765\) 0 0
\(766\) −19.7321 −0.712950
\(767\) 0.985139 0.0355713
\(768\) −30.7263 −1.10874
\(769\) 4.60006 0.165883 0.0829413 0.996554i \(-0.473569\pi\)
0.0829413 + 0.996554i \(0.473569\pi\)
\(770\) 0 0
\(771\) −21.1229 −0.760724
\(772\) 5.23284 0.188334
\(773\) −9.80949 −0.352823 −0.176411 0.984317i \(-0.556449\pi\)
−0.176411 + 0.984317i \(0.556449\pi\)
\(774\) −3.66383 −0.131694
\(775\) 0 0
\(776\) 9.35319 0.335760
\(777\) 31.1489 1.11746
\(778\) 9.42340 0.337845
\(779\) 6.16124 0.220749
\(780\) 0 0
\(781\) −18.0929 −0.647414
\(782\) −4.46717 −0.159746
\(783\) 17.1468 0.612776
\(784\) 0.345144 0.0123266
\(785\) 0 0
\(786\) 11.3319 0.404196
\(787\) 14.8242 0.528426 0.264213 0.964464i \(-0.414888\pi\)
0.264213 + 0.964464i \(0.414888\pi\)
\(788\) 1.24217 0.0442503
\(789\) 16.7051 0.594719
\(790\) 0 0
\(791\) −16.6455 −0.591846
\(792\) 3.45973 0.122936
\(793\) 1.59477 0.0566321
\(794\) −12.3853 −0.439536
\(795\) 0 0
\(796\) 12.2403 0.433848
\(797\) −8.53761 −0.302418 −0.151209 0.988502i \(-0.548317\pi\)
−0.151209 + 0.988502i \(0.548317\pi\)
\(798\) −62.9309 −2.22773
\(799\) −13.2566 −0.468983
\(800\) 0 0
\(801\) 7.52989 0.266056
\(802\) −27.6201 −0.975301
\(803\) −11.2385 −0.396597
\(804\) −29.3413 −1.03479
\(805\) 0 0
\(806\) 1.17654 0.0414417
\(807\) 20.1442 0.709111
\(808\) 34.5691 1.21614
\(809\) 17.6854 0.621786 0.310893 0.950445i \(-0.399372\pi\)
0.310893 + 0.950445i \(0.399372\pi\)
\(810\) 0 0
\(811\) −45.0258 −1.58107 −0.790534 0.612418i \(-0.790197\pi\)
−0.790534 + 0.612418i \(0.790197\pi\)
\(812\) 21.4628 0.753195
\(813\) 8.79035 0.308291
\(814\) −5.40334 −0.189387
\(815\) 0 0
\(816\) 0.0601759 0.00210658
\(817\) 49.4582 1.73032
\(818\) −20.4470 −0.714911
\(819\) −0.394695 −0.0137917
\(820\) 0 0
\(821\) 10.8106 0.377291 0.188646 0.982045i \(-0.439590\pi\)
0.188646 + 0.982045i \(0.439590\pi\)
\(822\) −24.2325 −0.845205
\(823\) −16.3476 −0.569841 −0.284921 0.958551i \(-0.591967\pi\)
−0.284921 + 0.958551i \(0.591967\pi\)
\(824\) −3.53367 −0.123101
\(825\) 0 0
\(826\) 30.7129 1.06864
\(827\) −27.1543 −0.944248 −0.472124 0.881532i \(-0.656513\pi\)
−0.472124 + 0.881532i \(0.656513\pi\)
\(828\) −4.01505 −0.139532
\(829\) 14.3838 0.499572 0.249786 0.968301i \(-0.419640\pi\)
0.249786 + 0.968301i \(0.419640\pi\)
\(830\) 0 0
\(831\) 57.0476 1.97896
\(832\) −0.603895 −0.0209363
\(833\) 14.4422 0.500391
\(834\) 12.2834 0.425339
\(835\) 0 0
\(836\) −17.8933 −0.618851
\(837\) −48.0320 −1.66023
\(838\) −16.0427 −0.554186
\(839\) −49.7122 −1.71626 −0.858128 0.513435i \(-0.828373\pi\)
−0.858128 + 0.513435i \(0.828373\pi\)
\(840\) 0 0
\(841\) −13.7987 −0.475819
\(842\) 11.2612 0.388088
\(843\) −9.68770 −0.333662
\(844\) 11.7134 0.403192
\(845\) 0 0
\(846\) 7.26915 0.249918
\(847\) −35.8931 −1.23330
\(848\) −0.330590 −0.0113525
\(849\) 14.5367 0.498900
\(850\) 0 0
\(851\) 16.3669 0.561051
\(852\) 25.4500 0.871903
\(853\) −0.189159 −0.00647668 −0.00323834 0.999995i \(-0.501031\pi\)
−0.00323834 + 0.999995i \(0.501031\pi\)
\(854\) 49.7190 1.70135
\(855\) 0 0
\(856\) 28.7487 0.982612
\(857\) 12.1359 0.414554 0.207277 0.978282i \(-0.433540\pi\)
0.207277 + 0.978282i \(0.433540\pi\)
\(858\) 0.353857 0.0120805
\(859\) −8.97076 −0.306078 −0.153039 0.988220i \(-0.548906\pi\)
−0.153039 + 0.988220i \(0.548906\pi\)
\(860\) 0 0
\(861\) 6.22636 0.212194
\(862\) 15.0303 0.511933
\(863\) −48.5734 −1.65346 −0.826729 0.562600i \(-0.809801\pi\)
−0.826729 + 0.562600i \(0.809801\pi\)
\(864\) 24.9299 0.848132
\(865\) 0 0
\(866\) 20.9758 0.712788
\(867\) −30.2692 −1.02800
\(868\) −60.1220 −2.04067
\(869\) 16.6950 0.566340
\(870\) 0 0
\(871\) −1.51556 −0.0513529
\(872\) −1.49044 −0.0504728
\(873\) 2.38508 0.0807226
\(874\) −33.0665 −1.11849
\(875\) 0 0
\(876\) 15.8084 0.534116
\(877\) −33.1053 −1.11789 −0.558944 0.829206i \(-0.688793\pi\)
−0.558944 + 0.829206i \(0.688793\pi\)
\(878\) −0.631799 −0.0213222
\(879\) 11.2824 0.380546
\(880\) 0 0
\(881\) 34.8931 1.17558 0.587790 0.809014i \(-0.299998\pi\)
0.587790 + 0.809014i \(0.299998\pi\)
\(882\) −7.91927 −0.266656
\(883\) −15.7765 −0.530921 −0.265461 0.964122i \(-0.585524\pi\)
−0.265461 + 0.964122i \(0.585524\pi\)
\(884\) 0.175634 0.00590721
\(885\) 0 0
\(886\) −22.3437 −0.750651
\(887\) −52.7863 −1.77239 −0.886196 0.463311i \(-0.846661\pi\)
−0.886196 + 0.463311i \(0.846661\pi\)
\(888\) 19.8380 0.665720
\(889\) −19.9957 −0.670635
\(890\) 0 0
\(891\) −18.1236 −0.607163
\(892\) −27.9726 −0.936591
\(893\) −98.1265 −3.28368
\(894\) −6.88773 −0.230360
\(895\) 0 0
\(896\) 31.4156 1.04952
\(897\) −1.07184 −0.0357878
\(898\) 26.3131 0.878081
\(899\) −42.5821 −1.42019
\(900\) 0 0
\(901\) −13.8332 −0.460850
\(902\) −1.08008 −0.0359627
\(903\) 49.9810 1.66326
\(904\) −10.6012 −0.352589
\(905\) 0 0
\(906\) 22.3997 0.744181
\(907\) 26.3884 0.876212 0.438106 0.898923i \(-0.355649\pi\)
0.438106 + 0.898923i \(0.355649\pi\)
\(908\) 0.462394 0.0153451
\(909\) 8.81517 0.292381
\(910\) 0 0
\(911\) 54.8309 1.81663 0.908314 0.418289i \(-0.137370\pi\)
0.908314 + 0.418289i \(0.137370\pi\)
\(912\) 0.445429 0.0147496
\(913\) 5.02383 0.166264
\(914\) 5.26858 0.174269
\(915\) 0 0
\(916\) −19.9514 −0.659213
\(917\) −29.9107 −0.987740
\(918\) 4.37451 0.144380
\(919\) −0.151198 −0.00498757 −0.00249378 0.999997i \(-0.500794\pi\)
−0.00249378 + 0.999997i \(0.500794\pi\)
\(920\) 0 0
\(921\) −44.0757 −1.45234
\(922\) 5.39404 0.177643
\(923\) 1.31457 0.0432695
\(924\) −18.0824 −0.594867
\(925\) 0 0
\(926\) 15.2014 0.499549
\(927\) −0.901090 −0.0295957
\(928\) 22.1013 0.725510
\(929\) −53.5301 −1.75627 −0.878134 0.478416i \(-0.841211\pi\)
−0.878134 + 0.478416i \(0.841211\pi\)
\(930\) 0 0
\(931\) 106.903 3.50359
\(932\) 4.02031 0.131690
\(933\) 1.63661 0.0535802
\(934\) −23.3363 −0.763587
\(935\) 0 0
\(936\) −0.251372 −0.00821636
\(937\) 35.9511 1.17447 0.587236 0.809416i \(-0.300216\pi\)
0.587236 + 0.809416i \(0.300216\pi\)
\(938\) −47.2495 −1.54275
\(939\) 46.7801 1.52661
\(940\) 0 0
\(941\) 11.7311 0.382423 0.191211 0.981549i \(-0.438758\pi\)
0.191211 + 0.981549i \(0.438758\pi\)
\(942\) 26.2694 0.855903
\(943\) 3.27159 0.106538
\(944\) −0.217388 −0.00707537
\(945\) 0 0
\(946\) −8.67012 −0.281890
\(947\) 41.2862 1.34162 0.670810 0.741629i \(-0.265947\pi\)
0.670810 + 0.741629i \(0.265947\pi\)
\(948\) −23.4837 −0.762716
\(949\) 0.816550 0.0265063
\(950\) 0 0
\(951\) −18.3393 −0.594691
\(952\) 14.2918 0.463201
\(953\) −25.0112 −0.810192 −0.405096 0.914274i \(-0.632762\pi\)
−0.405096 + 0.914274i \(0.632762\pi\)
\(954\) 7.58533 0.245584
\(955\) 0 0
\(956\) 29.5809 0.956716
\(957\) −12.8071 −0.413994
\(958\) 15.2086 0.491369
\(959\) 63.9619 2.06544
\(960\) 0 0
\(961\) 88.2822 2.84781
\(962\) 0.392589 0.0126576
\(963\) 7.33097 0.236237
\(964\) −27.5650 −0.887810
\(965\) 0 0
\(966\) −33.4160 −1.07514
\(967\) 9.45167 0.303945 0.151973 0.988385i \(-0.451437\pi\)
0.151973 + 0.988385i \(0.451437\pi\)
\(968\) −22.8595 −0.734733
\(969\) 18.6384 0.598753
\(970\) 0 0
\(971\) −19.0888 −0.612589 −0.306295 0.951937i \(-0.599089\pi\)
−0.306295 + 0.951937i \(0.599089\pi\)
\(972\) 9.10451 0.292027
\(973\) −32.4222 −1.03941
\(974\) −11.6610 −0.373644
\(975\) 0 0
\(976\) −0.351914 −0.0112645
\(977\) 6.91399 0.221198 0.110599 0.993865i \(-0.464723\pi\)
0.110599 + 0.993865i \(0.464723\pi\)
\(978\) 17.0958 0.546665
\(979\) 17.8188 0.569491
\(980\) 0 0
\(981\) −0.380065 −0.0121345
\(982\) −2.40996 −0.0769050
\(983\) −37.4654 −1.19496 −0.597481 0.801883i \(-0.703832\pi\)
−0.597481 + 0.801883i \(0.703832\pi\)
\(984\) 3.96543 0.126413
\(985\) 0 0
\(986\) 3.87816 0.123506
\(987\) −99.1637 −3.15642
\(988\) 1.30006 0.0413605
\(989\) 26.2621 0.835086
\(990\) 0 0
\(991\) −29.5473 −0.938601 −0.469300 0.883039i \(-0.655494\pi\)
−0.469300 + 0.883039i \(0.655494\pi\)
\(992\) −61.9106 −1.96566
\(993\) 4.92603 0.156323
\(994\) 40.9832 1.29991
\(995\) 0 0
\(996\) −7.06667 −0.223916
\(997\) −10.9241 −0.345970 −0.172985 0.984924i \(-0.555341\pi\)
−0.172985 + 0.984924i \(0.555341\pi\)
\(998\) 17.1371 0.542466
\(999\) −16.0274 −0.507085
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.s.1.18 49
5.2 odd 4 985.2.b.a.789.37 98
5.3 odd 4 985.2.b.a.789.62 yes 98
5.4 even 2 4925.2.a.r.1.32 49
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.b.a.789.37 98 5.2 odd 4
985.2.b.a.789.62 yes 98 5.3 odd 4
4925.2.a.r.1.32 49 5.4 even 2
4925.2.a.s.1.18 49 1.1 even 1 trivial