Properties

Label 4925.2.a.s.1.16
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $0$
Dimension $49$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4925,2,Mod(1,4925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [49,5,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(0\)
Dimension: \(49\)
Twist minimal: no (minimal twist has level 985)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.16
Character \(\chi\) \(=\) 4925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.18293 q^{2} +0.672647 q^{3} -0.600670 q^{4} -0.795696 q^{6} -3.32812 q^{7} +3.07642 q^{8} -2.54755 q^{9} -4.01450 q^{11} -0.404039 q^{12} +0.365360 q^{13} +3.93695 q^{14} -2.43785 q^{16} -5.21648 q^{17} +3.01358 q^{18} +2.16257 q^{19} -2.23865 q^{21} +4.74888 q^{22} -7.86503 q^{23} +2.06934 q^{24} -0.432196 q^{26} -3.73154 q^{27} +1.99911 q^{28} -7.24543 q^{29} -3.93707 q^{31} -3.26902 q^{32} -2.70034 q^{33} +6.17075 q^{34} +1.53023 q^{36} -3.21046 q^{37} -2.55817 q^{38} +0.245758 q^{39} +4.57854 q^{41} +2.64818 q^{42} +8.31813 q^{43} +2.41139 q^{44} +9.30380 q^{46} +3.03063 q^{47} -1.63982 q^{48} +4.07641 q^{49} -3.50885 q^{51} -0.219461 q^{52} -4.72562 q^{53} +4.41416 q^{54} -10.2387 q^{56} +1.45464 q^{57} +8.57085 q^{58} -5.78433 q^{59} -6.30248 q^{61} +4.65729 q^{62} +8.47855 q^{63} +8.74274 q^{64} +3.19432 q^{66} +11.0069 q^{67} +3.13339 q^{68} -5.29039 q^{69} -9.14673 q^{71} -7.83731 q^{72} +1.79241 q^{73} +3.79776 q^{74} -1.29899 q^{76} +13.3607 q^{77} -0.290716 q^{78} -14.4163 q^{79} +5.13263 q^{81} -5.41610 q^{82} -2.56116 q^{83} +1.34469 q^{84} -9.83978 q^{86} -4.87362 q^{87} -12.3503 q^{88} -13.7724 q^{89} -1.21596 q^{91} +4.72429 q^{92} -2.64826 q^{93} -3.58503 q^{94} -2.19890 q^{96} +4.69428 q^{97} -4.82212 q^{98} +10.2271 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 49 q + 5 q^{2} + 22 q^{3} + 49 q^{4} + 2 q^{6} + 32 q^{7} + 15 q^{8} + 51 q^{9} - 2 q^{11} + 44 q^{12} + 32 q^{13} - 8 q^{14} + 49 q^{16} + 14 q^{17} + 25 q^{18} + 4 q^{19} + 10 q^{21} + 38 q^{22} + 24 q^{23}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.18293 −0.836460 −0.418230 0.908341i \(-0.637349\pi\)
−0.418230 + 0.908341i \(0.637349\pi\)
\(3\) 0.672647 0.388353 0.194177 0.980967i \(-0.437797\pi\)
0.194177 + 0.980967i \(0.437797\pi\)
\(4\) −0.600670 −0.300335
\(5\) 0 0
\(6\) −0.795696 −0.324842
\(7\) −3.32812 −1.25791 −0.628956 0.777441i \(-0.716518\pi\)
−0.628956 + 0.777441i \(0.716518\pi\)
\(8\) 3.07642 1.08768
\(9\) −2.54755 −0.849182
\(10\) 0 0
\(11\) −4.01450 −1.21042 −0.605208 0.796067i \(-0.706910\pi\)
−0.605208 + 0.796067i \(0.706910\pi\)
\(12\) −0.404039 −0.116636
\(13\) 0.365360 0.101333 0.0506663 0.998716i \(-0.483865\pi\)
0.0506663 + 0.998716i \(0.483865\pi\)
\(14\) 3.93695 1.05219
\(15\) 0 0
\(16\) −2.43785 −0.609464
\(17\) −5.21648 −1.26518 −0.632591 0.774486i \(-0.718009\pi\)
−0.632591 + 0.774486i \(0.718009\pi\)
\(18\) 3.01358 0.710306
\(19\) 2.16257 0.496127 0.248063 0.968744i \(-0.420206\pi\)
0.248063 + 0.968744i \(0.420206\pi\)
\(20\) 0 0
\(21\) −2.23865 −0.488514
\(22\) 4.74888 1.01246
\(23\) −7.86503 −1.63997 −0.819986 0.572384i \(-0.806019\pi\)
−0.819986 + 0.572384i \(0.806019\pi\)
\(24\) 2.06934 0.422403
\(25\) 0 0
\(26\) −0.432196 −0.0847607
\(27\) −3.73154 −0.718136
\(28\) 1.99911 0.377795
\(29\) −7.24543 −1.34544 −0.672721 0.739896i \(-0.734875\pi\)
−0.672721 + 0.739896i \(0.734875\pi\)
\(30\) 0 0
\(31\) −3.93707 −0.707119 −0.353560 0.935412i \(-0.615029\pi\)
−0.353560 + 0.935412i \(0.615029\pi\)
\(32\) −3.26902 −0.577886
\(33\) −2.70034 −0.470069
\(34\) 6.17075 1.05827
\(35\) 0 0
\(36\) 1.53023 0.255039
\(37\) −3.21046 −0.527797 −0.263898 0.964551i \(-0.585008\pi\)
−0.263898 + 0.964551i \(0.585008\pi\)
\(38\) −2.55817 −0.414990
\(39\) 0.245758 0.0393529
\(40\) 0 0
\(41\) 4.57854 0.715048 0.357524 0.933904i \(-0.383621\pi\)
0.357524 + 0.933904i \(0.383621\pi\)
\(42\) 2.64818 0.408623
\(43\) 8.31813 1.26850 0.634251 0.773127i \(-0.281308\pi\)
0.634251 + 0.773127i \(0.281308\pi\)
\(44\) 2.41139 0.363530
\(45\) 0 0
\(46\) 9.30380 1.37177
\(47\) 3.03063 0.442063 0.221031 0.975267i \(-0.429058\pi\)
0.221031 + 0.975267i \(0.429058\pi\)
\(48\) −1.63982 −0.236687
\(49\) 4.07641 0.582345
\(50\) 0 0
\(51\) −3.50885 −0.491338
\(52\) −0.219461 −0.0304338
\(53\) −4.72562 −0.649113 −0.324557 0.945866i \(-0.605215\pi\)
−0.324557 + 0.945866i \(0.605215\pi\)
\(54\) 4.41416 0.600691
\(55\) 0 0
\(56\) −10.2387 −1.36820
\(57\) 1.45464 0.192672
\(58\) 8.57085 1.12541
\(59\) −5.78433 −0.753055 −0.376528 0.926405i \(-0.622882\pi\)
−0.376528 + 0.926405i \(0.622882\pi\)
\(60\) 0 0
\(61\) −6.30248 −0.806949 −0.403475 0.914991i \(-0.632198\pi\)
−0.403475 + 0.914991i \(0.632198\pi\)
\(62\) 4.65729 0.591477
\(63\) 8.47855 1.06820
\(64\) 8.74274 1.09284
\(65\) 0 0
\(66\) 3.19432 0.393194
\(67\) 11.0069 1.34470 0.672351 0.740232i \(-0.265285\pi\)
0.672351 + 0.740232i \(0.265285\pi\)
\(68\) 3.13339 0.379979
\(69\) −5.29039 −0.636888
\(70\) 0 0
\(71\) −9.14673 −1.08552 −0.542758 0.839889i \(-0.682620\pi\)
−0.542758 + 0.839889i \(0.682620\pi\)
\(72\) −7.83731 −0.923636
\(73\) 1.79241 0.209786 0.104893 0.994484i \(-0.466550\pi\)
0.104893 + 0.994484i \(0.466550\pi\)
\(74\) 3.79776 0.441481
\(75\) 0 0
\(76\) −1.29899 −0.149004
\(77\) 13.3607 1.52260
\(78\) −0.290716 −0.0329171
\(79\) −14.4163 −1.62196 −0.810982 0.585071i \(-0.801067\pi\)
−0.810982 + 0.585071i \(0.801067\pi\)
\(80\) 0 0
\(81\) 5.13263 0.570292
\(82\) −5.41610 −0.598108
\(83\) −2.56116 −0.281124 −0.140562 0.990072i \(-0.544891\pi\)
−0.140562 + 0.990072i \(0.544891\pi\)
\(84\) 1.34469 0.146718
\(85\) 0 0
\(86\) −9.83978 −1.06105
\(87\) −4.87362 −0.522507
\(88\) −12.3503 −1.31654
\(89\) −13.7724 −1.45987 −0.729937 0.683514i \(-0.760451\pi\)
−0.729937 + 0.683514i \(0.760451\pi\)
\(90\) 0 0
\(91\) −1.21596 −0.127468
\(92\) 4.72429 0.492541
\(93\) −2.64826 −0.274612
\(94\) −3.58503 −0.369768
\(95\) 0 0
\(96\) −2.19890 −0.224424
\(97\) 4.69428 0.476632 0.238316 0.971188i \(-0.423405\pi\)
0.238316 + 0.971188i \(0.423405\pi\)
\(98\) −4.82212 −0.487108
\(99\) 10.2271 1.02786
\(100\) 0 0
\(101\) −10.7288 −1.06756 −0.533779 0.845624i \(-0.679229\pi\)
−0.533779 + 0.845624i \(0.679229\pi\)
\(102\) 4.15074 0.410984
\(103\) −5.27161 −0.519427 −0.259713 0.965686i \(-0.583628\pi\)
−0.259713 + 0.965686i \(0.583628\pi\)
\(104\) 1.12400 0.110217
\(105\) 0 0
\(106\) 5.59009 0.542957
\(107\) −4.45979 −0.431144 −0.215572 0.976488i \(-0.569162\pi\)
−0.215572 + 0.976488i \(0.569162\pi\)
\(108\) 2.24143 0.215681
\(109\) 10.2412 0.980929 0.490465 0.871461i \(-0.336827\pi\)
0.490465 + 0.871461i \(0.336827\pi\)
\(110\) 0 0
\(111\) −2.15951 −0.204971
\(112\) 8.11348 0.766652
\(113\) 10.5620 0.993593 0.496796 0.867867i \(-0.334510\pi\)
0.496796 + 0.867867i \(0.334510\pi\)
\(114\) −1.72075 −0.161163
\(115\) 0 0
\(116\) 4.35211 0.404084
\(117\) −0.930772 −0.0860499
\(118\) 6.84247 0.629900
\(119\) 17.3611 1.59149
\(120\) 0 0
\(121\) 5.11618 0.465107
\(122\) 7.45541 0.674981
\(123\) 3.07974 0.277691
\(124\) 2.36488 0.212373
\(125\) 0 0
\(126\) −10.0296 −0.893504
\(127\) 13.5115 1.19895 0.599477 0.800392i \(-0.295375\pi\)
0.599477 + 0.800392i \(0.295375\pi\)
\(128\) −3.80403 −0.336232
\(129\) 5.59517 0.492627
\(130\) 0 0
\(131\) 11.8689 1.03699 0.518495 0.855081i \(-0.326492\pi\)
0.518495 + 0.855081i \(0.326492\pi\)
\(132\) 1.62201 0.141178
\(133\) −7.19729 −0.624084
\(134\) −13.0204 −1.12479
\(135\) 0 0
\(136\) −16.0481 −1.37611
\(137\) 18.3633 1.56888 0.784440 0.620205i \(-0.212950\pi\)
0.784440 + 0.620205i \(0.212950\pi\)
\(138\) 6.25818 0.532731
\(139\) 11.5674 0.981132 0.490566 0.871404i \(-0.336790\pi\)
0.490566 + 0.871404i \(0.336790\pi\)
\(140\) 0 0
\(141\) 2.03854 0.171676
\(142\) 10.8200 0.907991
\(143\) −1.46674 −0.122655
\(144\) 6.21055 0.517546
\(145\) 0 0
\(146\) −2.12030 −0.175477
\(147\) 2.74199 0.226155
\(148\) 1.92843 0.158516
\(149\) −16.3235 −1.33727 −0.668637 0.743589i \(-0.733122\pi\)
−0.668637 + 0.743589i \(0.733122\pi\)
\(150\) 0 0
\(151\) −15.6126 −1.27054 −0.635269 0.772291i \(-0.719111\pi\)
−0.635269 + 0.772291i \(0.719111\pi\)
\(152\) 6.65296 0.539626
\(153\) 13.2892 1.07437
\(154\) −15.8049 −1.27359
\(155\) 0 0
\(156\) −0.147620 −0.0118190
\(157\) −14.6540 −1.16951 −0.584757 0.811208i \(-0.698810\pi\)
−0.584757 + 0.811208i \(0.698810\pi\)
\(158\) 17.0535 1.35671
\(159\) −3.17867 −0.252085
\(160\) 0 0
\(161\) 26.1758 2.06294
\(162\) −6.07155 −0.477026
\(163\) −3.42042 −0.267908 −0.133954 0.990988i \(-0.542767\pi\)
−0.133954 + 0.990988i \(0.542767\pi\)
\(164\) −2.75019 −0.214754
\(165\) 0 0
\(166\) 3.02968 0.235149
\(167\) −0.265125 −0.0205160 −0.0102580 0.999947i \(-0.503265\pi\)
−0.0102580 + 0.999947i \(0.503265\pi\)
\(168\) −6.88703 −0.531346
\(169\) −12.8665 −0.989732
\(170\) 0 0
\(171\) −5.50924 −0.421302
\(172\) −4.99645 −0.380976
\(173\) 11.3576 0.863500 0.431750 0.901993i \(-0.357896\pi\)
0.431750 + 0.901993i \(0.357896\pi\)
\(174\) 5.76516 0.437056
\(175\) 0 0
\(176\) 9.78676 0.737705
\(177\) −3.89081 −0.292451
\(178\) 16.2918 1.22113
\(179\) −10.6177 −0.793606 −0.396803 0.917904i \(-0.629880\pi\)
−0.396803 + 0.917904i \(0.629880\pi\)
\(180\) 0 0
\(181\) 18.6295 1.38472 0.692360 0.721552i \(-0.256571\pi\)
0.692360 + 0.721552i \(0.256571\pi\)
\(182\) 1.43840 0.106622
\(183\) −4.23934 −0.313381
\(184\) −24.1961 −1.78376
\(185\) 0 0
\(186\) 3.13272 0.229702
\(187\) 20.9415 1.53140
\(188\) −1.82041 −0.132767
\(189\) 12.4190 0.903352
\(190\) 0 0
\(191\) 5.78207 0.418376 0.209188 0.977875i \(-0.432918\pi\)
0.209188 + 0.977875i \(0.432918\pi\)
\(192\) 5.88078 0.424409
\(193\) 0.502765 0.0361898 0.0180949 0.999836i \(-0.494240\pi\)
0.0180949 + 0.999836i \(0.494240\pi\)
\(194\) −5.55302 −0.398684
\(195\) 0 0
\(196\) −2.44858 −0.174899
\(197\) −1.00000 −0.0712470
\(198\) −12.0980 −0.859766
\(199\) 14.3755 1.01905 0.509527 0.860455i \(-0.329820\pi\)
0.509527 + 0.860455i \(0.329820\pi\)
\(200\) 0 0
\(201\) 7.40374 0.522219
\(202\) 12.6915 0.892970
\(203\) 24.1137 1.69245
\(204\) 2.10766 0.147566
\(205\) 0 0
\(206\) 6.23596 0.434480
\(207\) 20.0365 1.39263
\(208\) −0.890695 −0.0617586
\(209\) −8.68162 −0.600520
\(210\) 0 0
\(211\) −5.40187 −0.371880 −0.185940 0.982561i \(-0.559533\pi\)
−0.185940 + 0.982561i \(0.559533\pi\)
\(212\) 2.83854 0.194952
\(213\) −6.15252 −0.421564
\(214\) 5.27563 0.360634
\(215\) 0 0
\(216\) −11.4798 −0.781100
\(217\) 13.1031 0.889494
\(218\) −12.1147 −0.820508
\(219\) 1.20566 0.0814709
\(220\) 0 0
\(221\) −1.90589 −0.128204
\(222\) 2.55455 0.171450
\(223\) −16.1807 −1.08354 −0.541771 0.840526i \(-0.682246\pi\)
−0.541771 + 0.840526i \(0.682246\pi\)
\(224\) 10.8797 0.726930
\(225\) 0 0
\(226\) −12.4942 −0.831101
\(227\) 7.37366 0.489407 0.244704 0.969598i \(-0.421309\pi\)
0.244704 + 0.969598i \(0.421309\pi\)
\(228\) −0.873762 −0.0578663
\(229\) −19.8853 −1.31405 −0.657027 0.753867i \(-0.728186\pi\)
−0.657027 + 0.753867i \(0.728186\pi\)
\(230\) 0 0
\(231\) 8.98707 0.591306
\(232\) −22.2900 −1.46341
\(233\) −11.1333 −0.729369 −0.364684 0.931131i \(-0.618823\pi\)
−0.364684 + 0.931131i \(0.618823\pi\)
\(234\) 1.10104 0.0719772
\(235\) 0 0
\(236\) 3.47447 0.226169
\(237\) −9.69710 −0.629895
\(238\) −20.5370 −1.33122
\(239\) −5.92300 −0.383127 −0.191563 0.981480i \(-0.561356\pi\)
−0.191563 + 0.981480i \(0.561356\pi\)
\(240\) 0 0
\(241\) 11.3665 0.732183 0.366091 0.930579i \(-0.380696\pi\)
0.366091 + 0.930579i \(0.380696\pi\)
\(242\) −6.05209 −0.389043
\(243\) 14.6471 0.939610
\(244\) 3.78571 0.242355
\(245\) 0 0
\(246\) −3.64313 −0.232277
\(247\) 0.790116 0.0502739
\(248\) −12.1121 −0.769118
\(249\) −1.72276 −0.109175
\(250\) 0 0
\(251\) 27.7984 1.75462 0.877311 0.479923i \(-0.159335\pi\)
0.877311 + 0.479923i \(0.159335\pi\)
\(252\) −5.09281 −0.320817
\(253\) 31.5741 1.98505
\(254\) −15.9832 −1.00288
\(255\) 0 0
\(256\) −12.9856 −0.811597
\(257\) 12.6874 0.791418 0.395709 0.918376i \(-0.370499\pi\)
0.395709 + 0.918376i \(0.370499\pi\)
\(258\) −6.61870 −0.412063
\(259\) 10.6848 0.663922
\(260\) 0 0
\(261\) 18.4581 1.14253
\(262\) −14.0401 −0.867401
\(263\) −29.2878 −1.80596 −0.902982 0.429678i \(-0.858627\pi\)
−0.902982 + 0.429678i \(0.858627\pi\)
\(264\) −8.30737 −0.511283
\(265\) 0 0
\(266\) 8.51391 0.522021
\(267\) −9.26398 −0.566947
\(268\) −6.61149 −0.403861
\(269\) −6.77642 −0.413166 −0.206583 0.978429i \(-0.566234\pi\)
−0.206583 + 0.978429i \(0.566234\pi\)
\(270\) 0 0
\(271\) −24.4544 −1.48550 −0.742748 0.669571i \(-0.766478\pi\)
−0.742748 + 0.669571i \(0.766478\pi\)
\(272\) 12.7170 0.771083
\(273\) −0.817915 −0.0495025
\(274\) −21.7225 −1.31230
\(275\) 0 0
\(276\) 3.17778 0.191280
\(277\) −1.64895 −0.0990758 −0.0495379 0.998772i \(-0.515775\pi\)
−0.0495379 + 0.998772i \(0.515775\pi\)
\(278\) −13.6834 −0.820677
\(279\) 10.0299 0.600473
\(280\) 0 0
\(281\) −15.2800 −0.911530 −0.455765 0.890100i \(-0.650634\pi\)
−0.455765 + 0.890100i \(0.650634\pi\)
\(282\) −2.41146 −0.143600
\(283\) 14.2874 0.849300 0.424650 0.905358i \(-0.360397\pi\)
0.424650 + 0.905358i \(0.360397\pi\)
\(284\) 5.49417 0.326019
\(285\) 0 0
\(286\) 1.73505 0.102596
\(287\) −15.2379 −0.899467
\(288\) 8.32797 0.490730
\(289\) 10.2117 0.600688
\(290\) 0 0
\(291\) 3.15760 0.185102
\(292\) −1.07665 −0.0630060
\(293\) −9.81819 −0.573585 −0.286792 0.957993i \(-0.592589\pi\)
−0.286792 + 0.957993i \(0.592589\pi\)
\(294\) −3.24359 −0.189170
\(295\) 0 0
\(296\) −9.87672 −0.574073
\(297\) 14.9803 0.869243
\(298\) 19.3096 1.11858
\(299\) −2.87357 −0.166183
\(300\) 0 0
\(301\) −27.6838 −1.59567
\(302\) 18.4687 1.06275
\(303\) −7.21672 −0.414590
\(304\) −5.27202 −0.302371
\(305\) 0 0
\(306\) −15.7203 −0.898668
\(307\) 18.4502 1.05301 0.526505 0.850172i \(-0.323502\pi\)
0.526505 + 0.850172i \(0.323502\pi\)
\(308\) −8.02540 −0.457290
\(309\) −3.54593 −0.201721
\(310\) 0 0
\(311\) 34.6643 1.96563 0.982815 0.184593i \(-0.0590967\pi\)
0.982815 + 0.184593i \(0.0590967\pi\)
\(312\) 0.756056 0.0428032
\(313\) −12.3956 −0.700641 −0.350320 0.936630i \(-0.613927\pi\)
−0.350320 + 0.936630i \(0.613927\pi\)
\(314\) 17.3347 0.978252
\(315\) 0 0
\(316\) 8.65946 0.487133
\(317\) 22.1635 1.24482 0.622412 0.782690i \(-0.286153\pi\)
0.622412 + 0.782690i \(0.286153\pi\)
\(318\) 3.76016 0.210859
\(319\) 29.0867 1.62854
\(320\) 0 0
\(321\) −2.99986 −0.167436
\(322\) −30.9642 −1.72557
\(323\) −11.2810 −0.627691
\(324\) −3.08302 −0.171279
\(325\) 0 0
\(326\) 4.04613 0.224095
\(327\) 6.88872 0.380947
\(328\) 14.0855 0.777741
\(329\) −10.0863 −0.556076
\(330\) 0 0
\(331\) −27.4133 −1.50677 −0.753386 0.657578i \(-0.771581\pi\)
−0.753386 + 0.657578i \(0.771581\pi\)
\(332\) 1.53841 0.0844314
\(333\) 8.17880 0.448195
\(334\) 0.313624 0.0171608
\(335\) 0 0
\(336\) 5.45751 0.297732
\(337\) 6.31336 0.343910 0.171955 0.985105i \(-0.444992\pi\)
0.171955 + 0.985105i \(0.444992\pi\)
\(338\) 15.2202 0.827871
\(339\) 7.10453 0.385865
\(340\) 0 0
\(341\) 15.8054 0.855908
\(342\) 6.51706 0.352402
\(343\) 9.73006 0.525374
\(344\) 25.5900 1.37972
\(345\) 0 0
\(346\) −13.4352 −0.722283
\(347\) 14.9294 0.801451 0.400726 0.916198i \(-0.368758\pi\)
0.400726 + 0.916198i \(0.368758\pi\)
\(348\) 2.92744 0.156927
\(349\) 21.8095 1.16743 0.583717 0.811957i \(-0.301598\pi\)
0.583717 + 0.811957i \(0.301598\pi\)
\(350\) 0 0
\(351\) −1.36336 −0.0727706
\(352\) 13.1235 0.699483
\(353\) −9.32850 −0.496506 −0.248253 0.968695i \(-0.579856\pi\)
−0.248253 + 0.968695i \(0.579856\pi\)
\(354\) 4.60257 0.244624
\(355\) 0 0
\(356\) 8.27268 0.438451
\(357\) 11.6779 0.618060
\(358\) 12.5601 0.663819
\(359\) 14.1641 0.747554 0.373777 0.927519i \(-0.378063\pi\)
0.373777 + 0.927519i \(0.378063\pi\)
\(360\) 0 0
\(361\) −14.3233 −0.753858
\(362\) −22.0374 −1.15826
\(363\) 3.44138 0.180626
\(364\) 0.730393 0.0382830
\(365\) 0 0
\(366\) 5.01486 0.262131
\(367\) −7.47147 −0.390008 −0.195004 0.980802i \(-0.562472\pi\)
−0.195004 + 0.980802i \(0.562472\pi\)
\(368\) 19.1738 0.999503
\(369\) −11.6640 −0.607205
\(370\) 0 0
\(371\) 15.7274 0.816528
\(372\) 1.59073 0.0824756
\(373\) 28.3484 1.46782 0.733912 0.679245i \(-0.237693\pi\)
0.733912 + 0.679245i \(0.237693\pi\)
\(374\) −24.7724 −1.28095
\(375\) 0 0
\(376\) 9.32348 0.480822
\(377\) −2.64719 −0.136337
\(378\) −14.6909 −0.755617
\(379\) −24.3013 −1.24827 −0.624136 0.781316i \(-0.714549\pi\)
−0.624136 + 0.781316i \(0.714549\pi\)
\(380\) 0 0
\(381\) 9.08849 0.465617
\(382\) −6.83981 −0.349955
\(383\) 0.942323 0.0481505 0.0240752 0.999710i \(-0.492336\pi\)
0.0240752 + 0.999710i \(0.492336\pi\)
\(384\) −2.55877 −0.130577
\(385\) 0 0
\(386\) −0.594738 −0.0302713
\(387\) −21.1908 −1.07719
\(388\) −2.81972 −0.143149
\(389\) 4.36844 0.221489 0.110744 0.993849i \(-0.464677\pi\)
0.110744 + 0.993849i \(0.464677\pi\)
\(390\) 0 0
\(391\) 41.0278 2.07486
\(392\) 12.5407 0.633403
\(393\) 7.98358 0.402718
\(394\) 1.18293 0.0595953
\(395\) 0 0
\(396\) −6.14312 −0.308703
\(397\) −17.5141 −0.879009 −0.439504 0.898240i \(-0.644846\pi\)
−0.439504 + 0.898240i \(0.644846\pi\)
\(398\) −17.0053 −0.852398
\(399\) −4.84124 −0.242365
\(400\) 0 0
\(401\) −35.5964 −1.77760 −0.888800 0.458294i \(-0.848461\pi\)
−0.888800 + 0.458294i \(0.848461\pi\)
\(402\) −8.75812 −0.436815
\(403\) −1.43845 −0.0716543
\(404\) 6.44449 0.320625
\(405\) 0 0
\(406\) −28.5249 −1.41567
\(407\) 12.8884 0.638853
\(408\) −10.7947 −0.534417
\(409\) 20.2533 1.00146 0.500730 0.865603i \(-0.333065\pi\)
0.500730 + 0.865603i \(0.333065\pi\)
\(410\) 0 0
\(411\) 12.3520 0.609279
\(412\) 3.16650 0.156002
\(413\) 19.2510 0.947278
\(414\) −23.7019 −1.16488
\(415\) 0 0
\(416\) −1.19437 −0.0585587
\(417\) 7.78076 0.381025
\(418\) 10.2698 0.502311
\(419\) −12.5680 −0.613985 −0.306992 0.951712i \(-0.599323\pi\)
−0.306992 + 0.951712i \(0.599323\pi\)
\(420\) 0 0
\(421\) −24.6205 −1.19993 −0.599964 0.800027i \(-0.704818\pi\)
−0.599964 + 0.800027i \(0.704818\pi\)
\(422\) 6.39005 0.311063
\(423\) −7.72067 −0.375392
\(424\) −14.5380 −0.706026
\(425\) 0 0
\(426\) 7.27802 0.352621
\(427\) 20.9754 1.01507
\(428\) 2.67886 0.129488
\(429\) −0.986596 −0.0476333
\(430\) 0 0
\(431\) 25.8545 1.24537 0.622685 0.782473i \(-0.286042\pi\)
0.622685 + 0.782473i \(0.286042\pi\)
\(432\) 9.09696 0.437678
\(433\) −14.5312 −0.698326 −0.349163 0.937062i \(-0.613534\pi\)
−0.349163 + 0.937062i \(0.613534\pi\)
\(434\) −15.5000 −0.744026
\(435\) 0 0
\(436\) −6.15159 −0.294608
\(437\) −17.0087 −0.813634
\(438\) −1.42621 −0.0681471
\(439\) 14.7262 0.702843 0.351421 0.936217i \(-0.385698\pi\)
0.351421 + 0.936217i \(0.385698\pi\)
\(440\) 0 0
\(441\) −10.3848 −0.494516
\(442\) 2.25455 0.107238
\(443\) 16.8930 0.802611 0.401306 0.915944i \(-0.368557\pi\)
0.401306 + 0.915944i \(0.368557\pi\)
\(444\) 1.29715 0.0615601
\(445\) 0 0
\(446\) 19.1407 0.906340
\(447\) −10.9800 −0.519335
\(448\) −29.0969 −1.37470
\(449\) 40.2353 1.89882 0.949412 0.314034i \(-0.101681\pi\)
0.949412 + 0.314034i \(0.101681\pi\)
\(450\) 0 0
\(451\) −18.3805 −0.865505
\(452\) −6.34430 −0.298411
\(453\) −10.5018 −0.493417
\(454\) −8.72255 −0.409369
\(455\) 0 0
\(456\) 4.47509 0.209566
\(457\) 23.9328 1.11953 0.559764 0.828652i \(-0.310892\pi\)
0.559764 + 0.828652i \(0.310892\pi\)
\(458\) 23.5229 1.09915
\(459\) 19.4655 0.908573
\(460\) 0 0
\(461\) −36.4943 −1.69971 −0.849855 0.527017i \(-0.823310\pi\)
−0.849855 + 0.527017i \(0.823310\pi\)
\(462\) −10.6311 −0.494603
\(463\) 22.8528 1.06206 0.531030 0.847353i \(-0.321805\pi\)
0.531030 + 0.847353i \(0.321805\pi\)
\(464\) 17.6633 0.819998
\(465\) 0 0
\(466\) 13.1700 0.610087
\(467\) −27.0948 −1.25380 −0.626898 0.779101i \(-0.715676\pi\)
−0.626898 + 0.779101i \(0.715676\pi\)
\(468\) 0.559087 0.0258438
\(469\) −36.6322 −1.69152
\(470\) 0 0
\(471\) −9.85695 −0.454184
\(472\) −17.7950 −0.819081
\(473\) −33.3931 −1.53542
\(474\) 11.4710 0.526881
\(475\) 0 0
\(476\) −10.4283 −0.477980
\(477\) 12.0387 0.551215
\(478\) 7.00651 0.320470
\(479\) −9.83837 −0.449527 −0.224763 0.974413i \(-0.572161\pi\)
−0.224763 + 0.974413i \(0.572161\pi\)
\(480\) 0 0
\(481\) −1.17297 −0.0534830
\(482\) −13.4458 −0.612441
\(483\) 17.6071 0.801150
\(484\) −3.07313 −0.139688
\(485\) 0 0
\(486\) −17.3265 −0.785946
\(487\) 21.7301 0.984685 0.492342 0.870402i \(-0.336141\pi\)
0.492342 + 0.870402i \(0.336141\pi\)
\(488\) −19.3891 −0.877701
\(489\) −2.30074 −0.104043
\(490\) 0 0
\(491\) 9.92067 0.447714 0.223857 0.974622i \(-0.428135\pi\)
0.223857 + 0.974622i \(0.428135\pi\)
\(492\) −1.84991 −0.0834003
\(493\) 37.7957 1.70223
\(494\) −0.934654 −0.0420521
\(495\) 0 0
\(496\) 9.59801 0.430963
\(497\) 30.4414 1.36549
\(498\) 2.03791 0.0913208
\(499\) 5.40678 0.242041 0.121020 0.992650i \(-0.461383\pi\)
0.121020 + 0.992650i \(0.461383\pi\)
\(500\) 0 0
\(501\) −0.178335 −0.00796743
\(502\) −32.8837 −1.46767
\(503\) 4.66981 0.208216 0.104108 0.994566i \(-0.466801\pi\)
0.104108 + 0.994566i \(0.466801\pi\)
\(504\) 26.0836 1.16185
\(505\) 0 0
\(506\) −37.3501 −1.66041
\(507\) −8.65462 −0.384365
\(508\) −8.11597 −0.360088
\(509\) −21.1778 −0.938690 −0.469345 0.883015i \(-0.655510\pi\)
−0.469345 + 0.883015i \(0.655510\pi\)
\(510\) 0 0
\(511\) −5.96536 −0.263892
\(512\) 22.9691 1.01510
\(513\) −8.06971 −0.356286
\(514\) −15.0083 −0.661989
\(515\) 0 0
\(516\) −3.36085 −0.147953
\(517\) −12.1664 −0.535080
\(518\) −12.6394 −0.555344
\(519\) 7.63964 0.335343
\(520\) 0 0
\(521\) 12.2704 0.537577 0.268789 0.963199i \(-0.413377\pi\)
0.268789 + 0.963199i \(0.413377\pi\)
\(522\) −21.8346 −0.955676
\(523\) 7.41074 0.324049 0.162024 0.986787i \(-0.448198\pi\)
0.162024 + 0.986787i \(0.448198\pi\)
\(524\) −7.12929 −0.311445
\(525\) 0 0
\(526\) 34.6455 1.51062
\(527\) 20.5377 0.894635
\(528\) 6.58304 0.286490
\(529\) 38.8587 1.68951
\(530\) 0 0
\(531\) 14.7358 0.639481
\(532\) 4.32320 0.187434
\(533\) 1.67282 0.0724577
\(534\) 10.9587 0.474228
\(535\) 0 0
\(536\) 33.8617 1.46260
\(537\) −7.14198 −0.308199
\(538\) 8.01605 0.345596
\(539\) −16.3647 −0.704879
\(540\) 0 0
\(541\) −4.41764 −0.189929 −0.0949647 0.995481i \(-0.530274\pi\)
−0.0949647 + 0.995481i \(0.530274\pi\)
\(542\) 28.9279 1.24256
\(543\) 12.5311 0.537760
\(544\) 17.0528 0.731132
\(545\) 0 0
\(546\) 0.967538 0.0414068
\(547\) −7.34172 −0.313909 −0.156955 0.987606i \(-0.550168\pi\)
−0.156955 + 0.987606i \(0.550168\pi\)
\(548\) −11.0303 −0.471190
\(549\) 16.0558 0.685247
\(550\) 0 0
\(551\) −15.6687 −0.667510
\(552\) −16.2755 −0.692729
\(553\) 47.9793 2.04029
\(554\) 1.95060 0.0828729
\(555\) 0 0
\(556\) −6.94818 −0.294668
\(557\) 3.51847 0.149082 0.0745412 0.997218i \(-0.476251\pi\)
0.0745412 + 0.997218i \(0.476251\pi\)
\(558\) −11.8647 −0.502271
\(559\) 3.03911 0.128541
\(560\) 0 0
\(561\) 14.0863 0.594723
\(562\) 18.0752 0.762458
\(563\) 26.4829 1.11612 0.558060 0.829800i \(-0.311546\pi\)
0.558060 + 0.829800i \(0.311546\pi\)
\(564\) −1.22449 −0.0515605
\(565\) 0 0
\(566\) −16.9011 −0.710405
\(567\) −17.0820 −0.717377
\(568\) −28.1392 −1.18069
\(569\) 32.0339 1.34293 0.671466 0.741036i \(-0.265665\pi\)
0.671466 + 0.741036i \(0.265665\pi\)
\(570\) 0 0
\(571\) −30.6558 −1.28290 −0.641452 0.767163i \(-0.721668\pi\)
−0.641452 + 0.767163i \(0.721668\pi\)
\(572\) 0.881025 0.0368375
\(573\) 3.88930 0.162478
\(574\) 18.0255 0.752368
\(575\) 0 0
\(576\) −22.2725 −0.928022
\(577\) −27.1211 −1.12907 −0.564533 0.825410i \(-0.690944\pi\)
−0.564533 + 0.825410i \(0.690944\pi\)
\(578\) −12.0797 −0.502451
\(579\) 0.338184 0.0140544
\(580\) 0 0
\(581\) 8.52386 0.353629
\(582\) −3.73522 −0.154830
\(583\) 18.9710 0.785697
\(584\) 5.51420 0.228179
\(585\) 0 0
\(586\) 11.6143 0.479780
\(587\) −35.1593 −1.45118 −0.725589 0.688128i \(-0.758433\pi\)
−0.725589 + 0.688128i \(0.758433\pi\)
\(588\) −1.64703 −0.0679224
\(589\) −8.51418 −0.350821
\(590\) 0 0
\(591\) −0.672647 −0.0276690
\(592\) 7.82664 0.321673
\(593\) −40.0424 −1.64435 −0.822173 0.569238i \(-0.807238\pi\)
−0.822173 + 0.569238i \(0.807238\pi\)
\(594\) −17.7206 −0.727087
\(595\) 0 0
\(596\) 9.80505 0.401630
\(597\) 9.66966 0.395753
\(598\) 3.39924 0.139005
\(599\) 6.08575 0.248657 0.124329 0.992241i \(-0.460322\pi\)
0.124329 + 0.992241i \(0.460322\pi\)
\(600\) 0 0
\(601\) 15.5884 0.635866 0.317933 0.948113i \(-0.397011\pi\)
0.317933 + 0.948113i \(0.397011\pi\)
\(602\) 32.7480 1.33471
\(603\) −28.0405 −1.14190
\(604\) 9.37804 0.381587
\(605\) 0 0
\(606\) 8.53689 0.346788
\(607\) 43.0843 1.74874 0.874368 0.485263i \(-0.161276\pi\)
0.874368 + 0.485263i \(0.161276\pi\)
\(608\) −7.06947 −0.286705
\(609\) 16.2200 0.657268
\(610\) 0 0
\(611\) 1.10727 0.0447954
\(612\) −7.98244 −0.322671
\(613\) 9.83189 0.397106 0.198553 0.980090i \(-0.436376\pi\)
0.198553 + 0.980090i \(0.436376\pi\)
\(614\) −21.8254 −0.880801
\(615\) 0 0
\(616\) 41.1032 1.65610
\(617\) −40.8672 −1.64525 −0.822626 0.568583i \(-0.807492\pi\)
−0.822626 + 0.568583i \(0.807492\pi\)
\(618\) 4.19460 0.168732
\(619\) −35.8404 −1.44055 −0.720274 0.693689i \(-0.755984\pi\)
−0.720274 + 0.693689i \(0.755984\pi\)
\(620\) 0 0
\(621\) 29.3487 1.17772
\(622\) −41.0055 −1.64417
\(623\) 45.8363 1.83639
\(624\) −0.599124 −0.0239841
\(625\) 0 0
\(626\) 14.6632 0.586058
\(627\) −5.83966 −0.233214
\(628\) 8.80220 0.351246
\(629\) 16.7473 0.667759
\(630\) 0 0
\(631\) −5.16698 −0.205694 −0.102847 0.994697i \(-0.532795\pi\)
−0.102847 + 0.994697i \(0.532795\pi\)
\(632\) −44.3507 −1.76417
\(633\) −3.63355 −0.144421
\(634\) −26.2179 −1.04125
\(635\) 0 0
\(636\) 1.90933 0.0757100
\(637\) 1.48936 0.0590105
\(638\) −34.4077 −1.36221
\(639\) 23.3017 0.921801
\(640\) 0 0
\(641\) 23.3893 0.923822 0.461911 0.886926i \(-0.347164\pi\)
0.461911 + 0.886926i \(0.347164\pi\)
\(642\) 3.54864 0.140053
\(643\) 48.9826 1.93168 0.965842 0.259130i \(-0.0834359\pi\)
0.965842 + 0.259130i \(0.0834359\pi\)
\(644\) −15.7230 −0.619574
\(645\) 0 0
\(646\) 13.3447 0.525038
\(647\) −44.2948 −1.74141 −0.870703 0.491809i \(-0.836336\pi\)
−0.870703 + 0.491809i \(0.836336\pi\)
\(648\) 15.7901 0.620294
\(649\) 23.2212 0.911510
\(650\) 0 0
\(651\) 8.81374 0.345438
\(652\) 2.05455 0.0804623
\(653\) −20.8680 −0.816629 −0.408315 0.912841i \(-0.633883\pi\)
−0.408315 + 0.912841i \(0.633883\pi\)
\(654\) −8.14889 −0.318647
\(655\) 0 0
\(656\) −11.1618 −0.435796
\(657\) −4.56624 −0.178146
\(658\) 11.9314 0.465135
\(659\) −16.4987 −0.642697 −0.321349 0.946961i \(-0.604136\pi\)
−0.321349 + 0.946961i \(0.604136\pi\)
\(660\) 0 0
\(661\) −35.2710 −1.37188 −0.685941 0.727658i \(-0.740609\pi\)
−0.685941 + 0.727658i \(0.740609\pi\)
\(662\) 32.4281 1.26035
\(663\) −1.28199 −0.0497886
\(664\) −7.87920 −0.305772
\(665\) 0 0
\(666\) −9.67496 −0.374897
\(667\) 56.9855 2.20649
\(668\) 0.159252 0.00616166
\(669\) −10.8839 −0.420797
\(670\) 0 0
\(671\) 25.3013 0.976745
\(672\) 7.31820 0.282306
\(673\) −41.8981 −1.61505 −0.807527 0.589830i \(-0.799195\pi\)
−0.807527 + 0.589830i \(0.799195\pi\)
\(674\) −7.46828 −0.287667
\(675\) 0 0
\(676\) 7.72853 0.297251
\(677\) −16.8927 −0.649240 −0.324620 0.945845i \(-0.605236\pi\)
−0.324620 + 0.945845i \(0.605236\pi\)
\(678\) −8.40418 −0.322760
\(679\) −15.6232 −0.599562
\(680\) 0 0
\(681\) 4.95987 0.190063
\(682\) −18.6967 −0.715933
\(683\) 34.9194 1.33615 0.668077 0.744093i \(-0.267118\pi\)
0.668077 + 0.744093i \(0.267118\pi\)
\(684\) 3.30923 0.126532
\(685\) 0 0
\(686\) −11.5100 −0.439454
\(687\) −13.3758 −0.510317
\(688\) −20.2784 −0.773106
\(689\) −1.72655 −0.0657764
\(690\) 0 0
\(691\) 37.2958 1.41880 0.709399 0.704807i \(-0.248966\pi\)
0.709399 + 0.704807i \(0.248966\pi\)
\(692\) −6.82215 −0.259339
\(693\) −34.0371 −1.29296
\(694\) −17.6605 −0.670382
\(695\) 0 0
\(696\) −14.9933 −0.568319
\(697\) −23.8839 −0.904666
\(698\) −25.7991 −0.976512
\(699\) −7.48880 −0.283253
\(700\) 0 0
\(701\) 5.44329 0.205590 0.102795 0.994703i \(-0.467221\pi\)
0.102795 + 0.994703i \(0.467221\pi\)
\(702\) 1.61276 0.0608697
\(703\) −6.94284 −0.261854
\(704\) −35.0977 −1.32279
\(705\) 0 0
\(706\) 11.0350 0.415307
\(707\) 35.7069 1.34290
\(708\) 2.33709 0.0878334
\(709\) −8.83117 −0.331661 −0.165831 0.986154i \(-0.553031\pi\)
−0.165831 + 0.986154i \(0.553031\pi\)
\(710\) 0 0
\(711\) 36.7263 1.37734
\(712\) −42.3697 −1.58787
\(713\) 30.9652 1.15966
\(714\) −13.8142 −0.516982
\(715\) 0 0
\(716\) 6.37775 0.238348
\(717\) −3.98409 −0.148788
\(718\) −16.7552 −0.625299
\(719\) 7.51607 0.280302 0.140151 0.990130i \(-0.455241\pi\)
0.140151 + 0.990130i \(0.455241\pi\)
\(720\) 0 0
\(721\) 17.5446 0.653394
\(722\) 16.9435 0.630572
\(723\) 7.64567 0.284345
\(724\) −11.1902 −0.415880
\(725\) 0 0
\(726\) −4.07092 −0.151086
\(727\) −9.35179 −0.346839 −0.173419 0.984848i \(-0.555482\pi\)
−0.173419 + 0.984848i \(0.555482\pi\)
\(728\) −3.74081 −0.138644
\(729\) −5.54556 −0.205391
\(730\) 0 0
\(731\) −43.3914 −1.60489
\(732\) 2.54645 0.0941194
\(733\) −8.95136 −0.330626 −0.165313 0.986241i \(-0.552863\pi\)
−0.165313 + 0.986241i \(0.552863\pi\)
\(734\) 8.83825 0.326226
\(735\) 0 0
\(736\) 25.7109 0.947717
\(737\) −44.1870 −1.62765
\(738\) 13.7978 0.507903
\(739\) 39.4888 1.45262 0.726309 0.687368i \(-0.241234\pi\)
0.726309 + 0.687368i \(0.241234\pi\)
\(740\) 0 0
\(741\) 0.531469 0.0195240
\(742\) −18.6045 −0.682993
\(743\) −12.2083 −0.447879 −0.223939 0.974603i \(-0.571892\pi\)
−0.223939 + 0.974603i \(0.571892\pi\)
\(744\) −8.14716 −0.298689
\(745\) 0 0
\(746\) −33.5342 −1.22778
\(747\) 6.52467 0.238725
\(748\) −12.5790 −0.459932
\(749\) 14.8427 0.542341
\(750\) 0 0
\(751\) 31.3797 1.14506 0.572531 0.819883i \(-0.305962\pi\)
0.572531 + 0.819883i \(0.305962\pi\)
\(752\) −7.38823 −0.269421
\(753\) 18.6985 0.681413
\(754\) 3.13145 0.114041
\(755\) 0 0
\(756\) −7.45974 −0.271308
\(757\) 28.2134 1.02544 0.512718 0.858557i \(-0.328639\pi\)
0.512718 + 0.858557i \(0.328639\pi\)
\(758\) 28.7468 1.04413
\(759\) 21.2383 0.770900
\(760\) 0 0
\(761\) 35.6534 1.29243 0.646217 0.763154i \(-0.276350\pi\)
0.646217 + 0.763154i \(0.276350\pi\)
\(762\) −10.7511 −0.389470
\(763\) −34.0840 −1.23392
\(764\) −3.47312 −0.125653
\(765\) 0 0
\(766\) −1.11470 −0.0402759
\(767\) −2.11336 −0.0763091
\(768\) −8.73470 −0.315186
\(769\) 45.2644 1.63228 0.816139 0.577856i \(-0.196110\pi\)
0.816139 + 0.577856i \(0.196110\pi\)
\(770\) 0 0
\(771\) 8.53414 0.307350
\(772\) −0.301996 −0.0108691
\(773\) −24.4364 −0.878915 −0.439457 0.898263i \(-0.644829\pi\)
−0.439457 + 0.898263i \(0.644829\pi\)
\(774\) 25.0673 0.901026
\(775\) 0 0
\(776\) 14.4416 0.518422
\(777\) 7.18711 0.257836
\(778\) −5.16757 −0.185266
\(779\) 9.90139 0.354754
\(780\) 0 0
\(781\) 36.7195 1.31393
\(782\) −48.5331 −1.73554
\(783\) 27.0366 0.966210
\(784\) −9.93770 −0.354918
\(785\) 0 0
\(786\) −9.44404 −0.336858
\(787\) −8.26001 −0.294437 −0.147219 0.989104i \(-0.547032\pi\)
−0.147219 + 0.989104i \(0.547032\pi\)
\(788\) 0.600670 0.0213980
\(789\) −19.7004 −0.701352
\(790\) 0 0
\(791\) −35.1518 −1.24985
\(792\) 31.4629 1.11798
\(793\) −2.30267 −0.0817703
\(794\) 20.7180 0.735256
\(795\) 0 0
\(796\) −8.63495 −0.306058
\(797\) −6.32888 −0.224180 −0.112090 0.993698i \(-0.535755\pi\)
−0.112090 + 0.993698i \(0.535755\pi\)
\(798\) 5.72686 0.202729
\(799\) −15.8092 −0.559290
\(800\) 0 0
\(801\) 35.0859 1.23970
\(802\) 42.1082 1.48689
\(803\) −7.19562 −0.253928
\(804\) −4.44720 −0.156841
\(805\) 0 0
\(806\) 1.70159 0.0599359
\(807\) −4.55814 −0.160454
\(808\) −33.0064 −1.16116
\(809\) 0.743242 0.0261310 0.0130655 0.999915i \(-0.495841\pi\)
0.0130655 + 0.999915i \(0.495841\pi\)
\(810\) 0 0
\(811\) −35.0526 −1.23086 −0.615431 0.788191i \(-0.711018\pi\)
−0.615431 + 0.788191i \(0.711018\pi\)
\(812\) −14.4844 −0.508302
\(813\) −16.4492 −0.576897
\(814\) −15.2461 −0.534375
\(815\) 0 0
\(816\) 8.55407 0.299452
\(817\) 17.9885 0.629338
\(818\) −23.9583 −0.837681
\(819\) 3.09772 0.108243
\(820\) 0 0
\(821\) −29.8090 −1.04034 −0.520171 0.854062i \(-0.674132\pi\)
−0.520171 + 0.854062i \(0.674132\pi\)
\(822\) −14.6116 −0.509638
\(823\) 20.0698 0.699591 0.349795 0.936826i \(-0.386251\pi\)
0.349795 + 0.936826i \(0.386251\pi\)
\(824\) −16.2177 −0.564969
\(825\) 0 0
\(826\) −22.7726 −0.792360
\(827\) −18.9685 −0.659598 −0.329799 0.944051i \(-0.606981\pi\)
−0.329799 + 0.944051i \(0.606981\pi\)
\(828\) −12.0353 −0.418257
\(829\) 20.7884 0.722011 0.361005 0.932564i \(-0.382434\pi\)
0.361005 + 0.932564i \(0.382434\pi\)
\(830\) 0 0
\(831\) −1.10916 −0.0384764
\(832\) 3.19425 0.110741
\(833\) −21.2645 −0.736772
\(834\) −9.20412 −0.318712
\(835\) 0 0
\(836\) 5.21479 0.180357
\(837\) 14.6914 0.507807
\(838\) 14.8670 0.513573
\(839\) 52.9766 1.82896 0.914478 0.404636i \(-0.132602\pi\)
0.914478 + 0.404636i \(0.132602\pi\)
\(840\) 0 0
\(841\) 23.4962 0.810215
\(842\) 29.1243 1.00369
\(843\) −10.2781 −0.353996
\(844\) 3.24474 0.111689
\(845\) 0 0
\(846\) 9.13303 0.314000
\(847\) −17.0273 −0.585064
\(848\) 11.5204 0.395611
\(849\) 9.61040 0.329828
\(850\) 0 0
\(851\) 25.2504 0.865572
\(852\) 3.69564 0.126610
\(853\) −23.3978 −0.801126 −0.400563 0.916269i \(-0.631185\pi\)
−0.400563 + 0.916269i \(0.631185\pi\)
\(854\) −24.8125 −0.849067
\(855\) 0 0
\(856\) −13.7202 −0.468946
\(857\) −24.1325 −0.824349 −0.412175 0.911105i \(-0.635231\pi\)
−0.412175 + 0.911105i \(0.635231\pi\)
\(858\) 1.16708 0.0398434
\(859\) 4.08951 0.139532 0.0697661 0.997563i \(-0.477775\pi\)
0.0697661 + 0.997563i \(0.477775\pi\)
\(860\) 0 0
\(861\) −10.2498 −0.349311
\(862\) −30.5842 −1.04170
\(863\) −44.4527 −1.51319 −0.756594 0.653885i \(-0.773138\pi\)
−0.756594 + 0.653885i \(0.773138\pi\)
\(864\) 12.1985 0.415001
\(865\) 0 0
\(866\) 17.1895 0.584122
\(867\) 6.86887 0.233279
\(868\) −7.87062 −0.267146
\(869\) 57.8743 1.96325
\(870\) 0 0
\(871\) 4.02147 0.136262
\(872\) 31.5062 1.06694
\(873\) −11.9589 −0.404747
\(874\) 20.1201 0.680572
\(875\) 0 0
\(876\) −0.724203 −0.0244686
\(877\) 14.4263 0.487142 0.243571 0.969883i \(-0.421681\pi\)
0.243571 + 0.969883i \(0.421681\pi\)
\(878\) −17.4201 −0.587900
\(879\) −6.60418 −0.222753
\(880\) 0 0
\(881\) −15.8712 −0.534715 −0.267357 0.963597i \(-0.586150\pi\)
−0.267357 + 0.963597i \(0.586150\pi\)
\(882\) 12.2846 0.413643
\(883\) −4.89293 −0.164660 −0.0823301 0.996605i \(-0.526236\pi\)
−0.0823301 + 0.996605i \(0.526236\pi\)
\(884\) 1.14481 0.0385043
\(885\) 0 0
\(886\) −19.9833 −0.671352
\(887\) −26.0584 −0.874955 −0.437477 0.899229i \(-0.644128\pi\)
−0.437477 + 0.899229i \(0.644128\pi\)
\(888\) −6.64355 −0.222943
\(889\) −44.9680 −1.50818
\(890\) 0 0
\(891\) −20.6049 −0.690290
\(892\) 9.71929 0.325426
\(893\) 6.55394 0.219319
\(894\) 12.9886 0.434402
\(895\) 0 0
\(896\) 12.6603 0.422951
\(897\) −1.93290 −0.0645376
\(898\) −47.5957 −1.58829
\(899\) 28.5258 0.951388
\(900\) 0 0
\(901\) 24.6511 0.821247
\(902\) 21.7429 0.723960
\(903\) −18.6214 −0.619682
\(904\) 32.4932 1.08071
\(905\) 0 0
\(906\) 12.4229 0.412723
\(907\) −57.2778 −1.90188 −0.950940 0.309376i \(-0.899880\pi\)
−0.950940 + 0.309376i \(0.899880\pi\)
\(908\) −4.42914 −0.146986
\(909\) 27.3322 0.906551
\(910\) 0 0
\(911\) −29.9179 −0.991225 −0.495613 0.868544i \(-0.665056\pi\)
−0.495613 + 0.868544i \(0.665056\pi\)
\(912\) −3.54621 −0.117427
\(913\) 10.2818 0.340277
\(914\) −28.3109 −0.936441
\(915\) 0 0
\(916\) 11.9445 0.394657
\(917\) −39.5012 −1.30444
\(918\) −23.0264 −0.759985
\(919\) −41.7005 −1.37557 −0.687786 0.725913i \(-0.741417\pi\)
−0.687786 + 0.725913i \(0.741417\pi\)
\(920\) 0 0
\(921\) 12.4105 0.408940
\(922\) 43.1703 1.42174
\(923\) −3.34185 −0.109998
\(924\) −5.39826 −0.177590
\(925\) 0 0
\(926\) −27.0333 −0.888371
\(927\) 13.4297 0.441088
\(928\) 23.6854 0.777512
\(929\) −28.6930 −0.941387 −0.470694 0.882297i \(-0.655996\pi\)
−0.470694 + 0.882297i \(0.655996\pi\)
\(930\) 0 0
\(931\) 8.81551 0.288917
\(932\) 6.68746 0.219055
\(933\) 23.3168 0.763359
\(934\) 32.0513 1.04875
\(935\) 0 0
\(936\) −2.86344 −0.0935945
\(937\) −38.1640 −1.24676 −0.623382 0.781917i \(-0.714242\pi\)
−0.623382 + 0.781917i \(0.714242\pi\)
\(938\) 43.3334 1.41489
\(939\) −8.33787 −0.272096
\(940\) 0 0
\(941\) −51.7782 −1.68792 −0.843961 0.536404i \(-0.819782\pi\)
−0.843961 + 0.536404i \(0.819782\pi\)
\(942\) 11.6601 0.379907
\(943\) −36.0103 −1.17266
\(944\) 14.1013 0.458960
\(945\) 0 0
\(946\) 39.5018 1.28431
\(947\) 1.35453 0.0440164 0.0220082 0.999758i \(-0.492994\pi\)
0.0220082 + 0.999758i \(0.492994\pi\)
\(948\) 5.82476 0.189179
\(949\) 0.654875 0.0212581
\(950\) 0 0
\(951\) 14.9082 0.483431
\(952\) 53.4100 1.73103
\(953\) −23.2905 −0.754452 −0.377226 0.926121i \(-0.623122\pi\)
−0.377226 + 0.926121i \(0.623122\pi\)
\(954\) −14.2410 −0.461069
\(955\) 0 0
\(956\) 3.55777 0.115066
\(957\) 19.5651 0.632450
\(958\) 11.6381 0.376011
\(959\) −61.1152 −1.97351
\(960\) 0 0
\(961\) −15.4995 −0.499982
\(962\) 1.38755 0.0447364
\(963\) 11.3615 0.366120
\(964\) −6.82754 −0.219900
\(965\) 0 0
\(966\) −20.8280 −0.670130
\(967\) −6.69207 −0.215203 −0.107601 0.994194i \(-0.534317\pi\)
−0.107601 + 0.994194i \(0.534317\pi\)
\(968\) 15.7395 0.505887
\(969\) −7.58813 −0.243766
\(970\) 0 0
\(971\) −41.7616 −1.34019 −0.670097 0.742274i \(-0.733748\pi\)
−0.670097 + 0.742274i \(0.733748\pi\)
\(972\) −8.79806 −0.282198
\(973\) −38.4976 −1.23418
\(974\) −25.7052 −0.823649
\(975\) 0 0
\(976\) 15.3645 0.491806
\(977\) 18.8391 0.602715 0.301357 0.953511i \(-0.402560\pi\)
0.301357 + 0.953511i \(0.402560\pi\)
\(978\) 2.72162 0.0870278
\(979\) 55.2893 1.76705
\(980\) 0 0
\(981\) −26.0899 −0.832987
\(982\) −11.7355 −0.374494
\(983\) 41.7654 1.33211 0.666055 0.745903i \(-0.267982\pi\)
0.666055 + 0.745903i \(0.267982\pi\)
\(984\) 9.47457 0.302038
\(985\) 0 0
\(986\) −44.7097 −1.42385
\(987\) −6.78453 −0.215954
\(988\) −0.474599 −0.0150990
\(989\) −65.4223 −2.08031
\(990\) 0 0
\(991\) −31.3931 −0.997235 −0.498617 0.866822i \(-0.666159\pi\)
−0.498617 + 0.866822i \(0.666159\pi\)
\(992\) 12.8704 0.408634
\(993\) −18.4395 −0.585160
\(994\) −36.0102 −1.14217
\(995\) 0 0
\(996\) 1.03481 0.0327892
\(997\) −12.4169 −0.393247 −0.196623 0.980479i \(-0.562998\pi\)
−0.196623 + 0.980479i \(0.562998\pi\)
\(998\) −6.39586 −0.202457
\(999\) 11.9800 0.379029
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.s.1.16 49
5.2 odd 4 985.2.b.a.789.33 98
5.3 odd 4 985.2.b.a.789.66 yes 98
5.4 even 2 4925.2.a.r.1.34 49
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.b.a.789.33 98 5.2 odd 4
985.2.b.a.789.66 yes 98 5.3 odd 4
4925.2.a.r.1.34 49 5.4 even 2
4925.2.a.s.1.16 49 1.1 even 1 trivial