Properties

Label 4925.2.a.s.1.10
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $0$
Dimension $49$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4925,2,Mod(1,4925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [49,5,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(0\)
Dimension: \(49\)
Twist minimal: no (minimal twist has level 985)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 4925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.80911 q^{2} -2.24718 q^{3} +1.27287 q^{4} +4.06540 q^{6} +2.84950 q^{7} +1.31546 q^{8} +2.04984 q^{9} -0.745776 q^{11} -2.86037 q^{12} +4.06489 q^{13} -5.15504 q^{14} -4.92554 q^{16} -6.80009 q^{17} -3.70837 q^{18} -7.39798 q^{19} -6.40334 q^{21} +1.34919 q^{22} -1.49894 q^{23} -2.95608 q^{24} -7.35382 q^{26} +2.13519 q^{27} +3.62703 q^{28} -5.21854 q^{29} +2.04295 q^{31} +6.27992 q^{32} +1.67590 q^{33} +12.3021 q^{34} +2.60917 q^{36} +6.87951 q^{37} +13.3837 q^{38} -9.13456 q^{39} +6.86920 q^{41} +11.5843 q^{42} -5.24725 q^{43} -0.949275 q^{44} +2.71175 q^{46} +2.06962 q^{47} +11.0686 q^{48} +1.11963 q^{49} +15.2811 q^{51} +5.17407 q^{52} -4.36958 q^{53} -3.86279 q^{54} +3.74840 q^{56} +16.6246 q^{57} +9.44090 q^{58} -6.79294 q^{59} -10.4968 q^{61} -3.69592 q^{62} +5.84100 q^{63} -1.50995 q^{64} -3.03188 q^{66} +11.1601 q^{67} -8.65562 q^{68} +3.36840 q^{69} -3.12691 q^{71} +2.69648 q^{72} +15.0523 q^{73} -12.4458 q^{74} -9.41665 q^{76} -2.12509 q^{77} +16.5254 q^{78} +15.7598 q^{79} -10.9477 q^{81} -12.4271 q^{82} +17.6697 q^{83} -8.15061 q^{84} +9.49284 q^{86} +11.7270 q^{87} -0.981038 q^{88} -9.96196 q^{89} +11.5829 q^{91} -1.90796 q^{92} -4.59089 q^{93} -3.74416 q^{94} -14.1121 q^{96} -17.1696 q^{97} -2.02553 q^{98} -1.52872 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 49 q + 5 q^{2} + 22 q^{3} + 49 q^{4} + 2 q^{6} + 32 q^{7} + 15 q^{8} + 51 q^{9} - 2 q^{11} + 44 q^{12} + 32 q^{13} - 8 q^{14} + 49 q^{16} + 14 q^{17} + 25 q^{18} + 4 q^{19} + 10 q^{21} + 38 q^{22} + 24 q^{23}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.80911 −1.27923 −0.639616 0.768695i \(-0.720907\pi\)
−0.639616 + 0.768695i \(0.720907\pi\)
\(3\) −2.24718 −1.29741 −0.648706 0.761039i \(-0.724690\pi\)
−0.648706 + 0.761039i \(0.724690\pi\)
\(4\) 1.27287 0.636434
\(5\) 0 0
\(6\) 4.06540 1.65969
\(7\) 2.84950 1.07701 0.538504 0.842623i \(-0.318990\pi\)
0.538504 + 0.842623i \(0.318990\pi\)
\(8\) 1.31546 0.465085
\(9\) 2.04984 0.683279
\(10\) 0 0
\(11\) −0.745776 −0.224860 −0.112430 0.993660i \(-0.535863\pi\)
−0.112430 + 0.993660i \(0.535863\pi\)
\(12\) −2.86037 −0.825717
\(13\) 4.06489 1.12740 0.563699 0.825980i \(-0.309378\pi\)
0.563699 + 0.825980i \(0.309378\pi\)
\(14\) −5.15504 −1.37774
\(15\) 0 0
\(16\) −4.92554 −1.23139
\(17\) −6.80009 −1.64926 −0.824632 0.565669i \(-0.808618\pi\)
−0.824632 + 0.565669i \(0.808618\pi\)
\(18\) −3.70837 −0.874072
\(19\) −7.39798 −1.69721 −0.848606 0.529025i \(-0.822558\pi\)
−0.848606 + 0.529025i \(0.822558\pi\)
\(20\) 0 0
\(21\) −6.40334 −1.39732
\(22\) 1.34919 0.287648
\(23\) −1.49894 −0.312551 −0.156276 0.987713i \(-0.549949\pi\)
−0.156276 + 0.987713i \(0.549949\pi\)
\(24\) −2.95608 −0.603407
\(25\) 0 0
\(26\) −7.35382 −1.44220
\(27\) 2.13519 0.410918
\(28\) 3.62703 0.685445
\(29\) −5.21854 −0.969059 −0.484529 0.874775i \(-0.661009\pi\)
−0.484529 + 0.874775i \(0.661009\pi\)
\(30\) 0 0
\(31\) 2.04295 0.366925 0.183462 0.983027i \(-0.441269\pi\)
0.183462 + 0.983027i \(0.441269\pi\)
\(32\) 6.27992 1.11014
\(33\) 1.67590 0.291736
\(34\) 12.3021 2.10979
\(35\) 0 0
\(36\) 2.60917 0.434862
\(37\) 6.87951 1.13098 0.565492 0.824754i \(-0.308686\pi\)
0.565492 + 0.824754i \(0.308686\pi\)
\(38\) 13.3837 2.17113
\(39\) −9.13456 −1.46270
\(40\) 0 0
\(41\) 6.86920 1.07279 0.536394 0.843968i \(-0.319786\pi\)
0.536394 + 0.843968i \(0.319786\pi\)
\(42\) 11.5843 1.78750
\(43\) −5.24725 −0.800198 −0.400099 0.916472i \(-0.631024\pi\)
−0.400099 + 0.916472i \(0.631024\pi\)
\(44\) −0.949275 −0.143109
\(45\) 0 0
\(46\) 2.71175 0.399826
\(47\) 2.06962 0.301885 0.150943 0.988543i \(-0.451769\pi\)
0.150943 + 0.988543i \(0.451769\pi\)
\(48\) 11.0686 1.59762
\(49\) 1.11963 0.159947
\(50\) 0 0
\(51\) 15.2811 2.13978
\(52\) 5.17407 0.717515
\(53\) −4.36958 −0.600208 −0.300104 0.953906i \(-0.597021\pi\)
−0.300104 + 0.953906i \(0.597021\pi\)
\(54\) −3.86279 −0.525660
\(55\) 0 0
\(56\) 3.74840 0.500901
\(57\) 16.6246 2.20198
\(58\) 9.44090 1.23965
\(59\) −6.79294 −0.884365 −0.442183 0.896925i \(-0.645796\pi\)
−0.442183 + 0.896925i \(0.645796\pi\)
\(60\) 0 0
\(61\) −10.4968 −1.34398 −0.671992 0.740559i \(-0.734561\pi\)
−0.671992 + 0.740559i \(0.734561\pi\)
\(62\) −3.69592 −0.469382
\(63\) 5.84100 0.735897
\(64\) −1.50995 −0.188744
\(65\) 0 0
\(66\) −3.03188 −0.373198
\(67\) 11.1601 1.36342 0.681710 0.731622i \(-0.261237\pi\)
0.681710 + 0.731622i \(0.261237\pi\)
\(68\) −8.65562 −1.04965
\(69\) 3.36840 0.405508
\(70\) 0 0
\(71\) −3.12691 −0.371096 −0.185548 0.982635i \(-0.559406\pi\)
−0.185548 + 0.982635i \(0.559406\pi\)
\(72\) 2.69648 0.317783
\(73\) 15.0523 1.76174 0.880870 0.473358i \(-0.156958\pi\)
0.880870 + 0.473358i \(0.156958\pi\)
\(74\) −12.4458 −1.44679
\(75\) 0 0
\(76\) −9.41665 −1.08016
\(77\) −2.12509 −0.242176
\(78\) 16.5254 1.87113
\(79\) 15.7598 1.77311 0.886556 0.462621i \(-0.153091\pi\)
0.886556 + 0.462621i \(0.153091\pi\)
\(80\) 0 0
\(81\) −10.9477 −1.21641
\(82\) −12.4271 −1.37234
\(83\) 17.6697 1.93950 0.969751 0.244098i \(-0.0784919\pi\)
0.969751 + 0.244098i \(0.0784919\pi\)
\(84\) −8.15061 −0.889305
\(85\) 0 0
\(86\) 9.49284 1.02364
\(87\) 11.7270 1.25727
\(88\) −0.981038 −0.104579
\(89\) −9.96196 −1.05597 −0.527983 0.849255i \(-0.677051\pi\)
−0.527983 + 0.849255i \(0.677051\pi\)
\(90\) 0 0
\(91\) 11.5829 1.21422
\(92\) −1.90796 −0.198918
\(93\) −4.59089 −0.476053
\(94\) −3.74416 −0.386181
\(95\) 0 0
\(96\) −14.1121 −1.44031
\(97\) −17.1696 −1.74331 −0.871653 0.490123i \(-0.836952\pi\)
−0.871653 + 0.490123i \(0.836952\pi\)
\(98\) −2.02553 −0.204610
\(99\) −1.52872 −0.153642
\(100\) 0 0
\(101\) 6.61755 0.658471 0.329235 0.944248i \(-0.393209\pi\)
0.329235 + 0.944248i \(0.393209\pi\)
\(102\) −27.6451 −2.73727
\(103\) −16.2135 −1.59756 −0.798780 0.601623i \(-0.794521\pi\)
−0.798780 + 0.601623i \(0.794521\pi\)
\(104\) 5.34720 0.524336
\(105\) 0 0
\(106\) 7.90504 0.767806
\(107\) −8.27804 −0.800269 −0.400134 0.916457i \(-0.631037\pi\)
−0.400134 + 0.916457i \(0.631037\pi\)
\(108\) 2.71782 0.261522
\(109\) 6.12234 0.586414 0.293207 0.956049i \(-0.405277\pi\)
0.293207 + 0.956049i \(0.405277\pi\)
\(110\) 0 0
\(111\) −15.4595 −1.46735
\(112\) −14.0353 −1.32621
\(113\) −9.92629 −0.933787 −0.466893 0.884314i \(-0.654627\pi\)
−0.466893 + 0.884314i \(0.654627\pi\)
\(114\) −30.0757 −2.81685
\(115\) 0 0
\(116\) −6.64252 −0.616742
\(117\) 8.33236 0.770327
\(118\) 12.2892 1.13131
\(119\) −19.3768 −1.77627
\(120\) 0 0
\(121\) −10.4438 −0.949438
\(122\) 18.9899 1.71927
\(123\) −15.4363 −1.39185
\(124\) 2.60041 0.233523
\(125\) 0 0
\(126\) −10.5670 −0.941383
\(127\) −7.74417 −0.687184 −0.343592 0.939119i \(-0.611644\pi\)
−0.343592 + 0.939119i \(0.611644\pi\)
\(128\) −9.82816 −0.868695
\(129\) 11.7915 1.03819
\(130\) 0 0
\(131\) −21.2818 −1.85940 −0.929700 0.368318i \(-0.879934\pi\)
−0.929700 + 0.368318i \(0.879934\pi\)
\(132\) 2.13319 0.185671
\(133\) −21.0805 −1.82791
\(134\) −20.1898 −1.74413
\(135\) 0 0
\(136\) −8.94524 −0.767048
\(137\) 12.6452 1.08035 0.540174 0.841553i \(-0.318358\pi\)
0.540174 + 0.841553i \(0.318358\pi\)
\(138\) −6.09380 −0.518739
\(139\) 17.3823 1.47434 0.737172 0.675706i \(-0.236161\pi\)
0.737172 + 0.675706i \(0.236161\pi\)
\(140\) 0 0
\(141\) −4.65082 −0.391669
\(142\) 5.65692 0.474718
\(143\) −3.03150 −0.253507
\(144\) −10.0966 −0.841380
\(145\) 0 0
\(146\) −27.2313 −2.25367
\(147\) −2.51602 −0.207518
\(148\) 8.75671 0.719797
\(149\) 7.34550 0.601767 0.300884 0.953661i \(-0.402718\pi\)
0.300884 + 0.953661i \(0.402718\pi\)
\(150\) 0 0
\(151\) 2.98039 0.242541 0.121270 0.992620i \(-0.461303\pi\)
0.121270 + 0.992620i \(0.461303\pi\)
\(152\) −9.73174 −0.789348
\(153\) −13.9391 −1.12691
\(154\) 3.84451 0.309799
\(155\) 0 0
\(156\) −11.6271 −0.930912
\(157\) 18.2772 1.45868 0.729342 0.684150i \(-0.239826\pi\)
0.729342 + 0.684150i \(0.239826\pi\)
\(158\) −28.5111 −2.26822
\(159\) 9.81925 0.778718
\(160\) 0 0
\(161\) −4.27123 −0.336620
\(162\) 19.8055 1.55607
\(163\) 12.7146 0.995885 0.497943 0.867210i \(-0.334089\pi\)
0.497943 + 0.867210i \(0.334089\pi\)
\(164\) 8.74358 0.682759
\(165\) 0 0
\(166\) −31.9664 −2.48107
\(167\) 1.77532 0.137378 0.0686892 0.997638i \(-0.478118\pi\)
0.0686892 + 0.997638i \(0.478118\pi\)
\(168\) −8.42334 −0.649875
\(169\) 3.52334 0.271026
\(170\) 0 0
\(171\) −15.1646 −1.15967
\(172\) −6.67906 −0.509274
\(173\) −6.59088 −0.501095 −0.250547 0.968104i \(-0.580611\pi\)
−0.250547 + 0.968104i \(0.580611\pi\)
\(174\) −21.2154 −1.60834
\(175\) 0 0
\(176\) 3.67335 0.276889
\(177\) 15.2650 1.14739
\(178\) 18.0223 1.35082
\(179\) 10.1511 0.758732 0.379366 0.925247i \(-0.376142\pi\)
0.379366 + 0.925247i \(0.376142\pi\)
\(180\) 0 0
\(181\) 24.6663 1.83343 0.916717 0.399536i \(-0.130829\pi\)
0.916717 + 0.399536i \(0.130829\pi\)
\(182\) −20.9547 −1.55327
\(183\) 23.5883 1.74370
\(184\) −1.97180 −0.145363
\(185\) 0 0
\(186\) 8.30541 0.608982
\(187\) 5.07135 0.370854
\(188\) 2.63435 0.192130
\(189\) 6.08423 0.442562
\(190\) 0 0
\(191\) 0.954691 0.0690790 0.0345395 0.999403i \(-0.489004\pi\)
0.0345395 + 0.999403i \(0.489004\pi\)
\(192\) 3.39314 0.244879
\(193\) −4.52820 −0.325947 −0.162973 0.986630i \(-0.552108\pi\)
−0.162973 + 0.986630i \(0.552108\pi\)
\(194\) 31.0616 2.23009
\(195\) 0 0
\(196\) 1.42514 0.101796
\(197\) −1.00000 −0.0712470
\(198\) 2.76562 0.196544
\(199\) 12.3248 0.873682 0.436841 0.899539i \(-0.356097\pi\)
0.436841 + 0.899539i \(0.356097\pi\)
\(200\) 0 0
\(201\) −25.0787 −1.76892
\(202\) −11.9719 −0.842337
\(203\) −14.8702 −1.04368
\(204\) 19.4508 1.36183
\(205\) 0 0
\(206\) 29.3319 2.04365
\(207\) −3.07259 −0.213560
\(208\) −20.0218 −1.38826
\(209\) 5.51723 0.381635
\(210\) 0 0
\(211\) −3.96349 −0.272858 −0.136429 0.990650i \(-0.543563\pi\)
−0.136429 + 0.990650i \(0.543563\pi\)
\(212\) −5.56190 −0.381993
\(213\) 7.02674 0.481465
\(214\) 14.9759 1.02373
\(215\) 0 0
\(216\) 2.80876 0.191112
\(217\) 5.82138 0.395181
\(218\) −11.0760 −0.750160
\(219\) −33.8253 −2.28570
\(220\) 0 0
\(221\) −27.6416 −1.85938
\(222\) 27.9679 1.87708
\(223\) 0.0193322 0.00129458 0.000647291 1.00000i \(-0.499794\pi\)
0.000647291 1.00000i \(0.499794\pi\)
\(224\) 17.8946 1.19563
\(225\) 0 0
\(226\) 17.9577 1.19453
\(227\) 4.56798 0.303187 0.151594 0.988443i \(-0.451559\pi\)
0.151594 + 0.988443i \(0.451559\pi\)
\(228\) 21.1609 1.40142
\(229\) −3.24750 −0.214601 −0.107300 0.994227i \(-0.534221\pi\)
−0.107300 + 0.994227i \(0.534221\pi\)
\(230\) 0 0
\(231\) 4.77546 0.314202
\(232\) −6.86478 −0.450695
\(233\) −3.73326 −0.244574 −0.122287 0.992495i \(-0.539023\pi\)
−0.122287 + 0.992495i \(0.539023\pi\)
\(234\) −15.0741 −0.985427
\(235\) 0 0
\(236\) −8.64651 −0.562840
\(237\) −35.4151 −2.30046
\(238\) 35.0548 2.27226
\(239\) 1.47211 0.0952231 0.0476115 0.998866i \(-0.484839\pi\)
0.0476115 + 0.998866i \(0.484839\pi\)
\(240\) 0 0
\(241\) 1.03890 0.0669213 0.0334606 0.999440i \(-0.489347\pi\)
0.0334606 + 0.999440i \(0.489347\pi\)
\(242\) 18.8940 1.21455
\(243\) 18.1959 1.16727
\(244\) −13.3611 −0.855357
\(245\) 0 0
\(246\) 27.9260 1.78050
\(247\) −30.0720 −1.91343
\(248\) 2.68742 0.170651
\(249\) −39.7071 −2.51633
\(250\) 0 0
\(251\) 7.15367 0.451536 0.225768 0.974181i \(-0.427511\pi\)
0.225768 + 0.974181i \(0.427511\pi\)
\(252\) 7.43482 0.468350
\(253\) 1.11788 0.0702803
\(254\) 14.0100 0.879068
\(255\) 0 0
\(256\) 20.8001 1.30001
\(257\) 16.2257 1.01213 0.506066 0.862495i \(-0.331099\pi\)
0.506066 + 0.862495i \(0.331099\pi\)
\(258\) −21.3322 −1.32808
\(259\) 19.6031 1.21808
\(260\) 0 0
\(261\) −10.6972 −0.662137
\(262\) 38.5011 2.37860
\(263\) 21.8595 1.34792 0.673958 0.738770i \(-0.264593\pi\)
0.673958 + 0.738770i \(0.264593\pi\)
\(264\) 2.20457 0.135682
\(265\) 0 0
\(266\) 38.1369 2.33832
\(267\) 22.3864 1.37002
\(268\) 14.2053 0.867727
\(269\) −4.27811 −0.260841 −0.130421 0.991459i \(-0.541633\pi\)
−0.130421 + 0.991459i \(0.541633\pi\)
\(270\) 0 0
\(271\) 7.02587 0.426791 0.213396 0.976966i \(-0.431548\pi\)
0.213396 + 0.976966i \(0.431548\pi\)
\(272\) 33.4941 2.03088
\(273\) −26.0289 −1.57534
\(274\) −22.8764 −1.38202
\(275\) 0 0
\(276\) 4.28753 0.258079
\(277\) −20.1351 −1.20980 −0.604899 0.796302i \(-0.706787\pi\)
−0.604899 + 0.796302i \(0.706787\pi\)
\(278\) −31.4464 −1.88603
\(279\) 4.18771 0.250712
\(280\) 0 0
\(281\) −3.44937 −0.205772 −0.102886 0.994693i \(-0.532808\pi\)
−0.102886 + 0.994693i \(0.532808\pi\)
\(282\) 8.41383 0.501036
\(283\) −5.98364 −0.355690 −0.177845 0.984058i \(-0.556913\pi\)
−0.177845 + 0.984058i \(0.556913\pi\)
\(284\) −3.98014 −0.236178
\(285\) 0 0
\(286\) 5.48431 0.324294
\(287\) 19.5738 1.15540
\(288\) 12.8728 0.758537
\(289\) 29.2413 1.72007
\(290\) 0 0
\(291\) 38.5832 2.26179
\(292\) 19.1596 1.12123
\(293\) −15.4879 −0.904813 −0.452406 0.891812i \(-0.649434\pi\)
−0.452406 + 0.891812i \(0.649434\pi\)
\(294\) 4.55175 0.265463
\(295\) 0 0
\(296\) 9.04971 0.526004
\(297\) −1.59238 −0.0923990
\(298\) −13.2888 −0.769800
\(299\) −6.09304 −0.352370
\(300\) 0 0
\(301\) −14.9520 −0.861820
\(302\) −5.39184 −0.310266
\(303\) −14.8708 −0.854308
\(304\) 36.4390 2.08992
\(305\) 0 0
\(306\) 25.2173 1.44158
\(307\) 12.5020 0.713526 0.356763 0.934195i \(-0.383880\pi\)
0.356763 + 0.934195i \(0.383880\pi\)
\(308\) −2.70495 −0.154129
\(309\) 36.4346 2.07269
\(310\) 0 0
\(311\) −15.4593 −0.876616 −0.438308 0.898825i \(-0.644422\pi\)
−0.438308 + 0.898825i \(0.644422\pi\)
\(312\) −12.0161 −0.680280
\(313\) −19.8301 −1.12086 −0.560430 0.828202i \(-0.689364\pi\)
−0.560430 + 0.828202i \(0.689364\pi\)
\(314\) −33.0655 −1.86599
\(315\) 0 0
\(316\) 20.0601 1.12847
\(317\) −17.4047 −0.977546 −0.488773 0.872411i \(-0.662555\pi\)
−0.488773 + 0.872411i \(0.662555\pi\)
\(318\) −17.7641 −0.996160
\(319\) 3.89186 0.217903
\(320\) 0 0
\(321\) 18.6023 1.03828
\(322\) 7.72712 0.430616
\(323\) 50.3069 2.79915
\(324\) −13.9350 −0.774164
\(325\) 0 0
\(326\) −23.0021 −1.27397
\(327\) −13.7580 −0.760821
\(328\) 9.03615 0.498938
\(329\) 5.89738 0.325133
\(330\) 0 0
\(331\) −28.2178 −1.55099 −0.775496 0.631353i \(-0.782500\pi\)
−0.775496 + 0.631353i \(0.782500\pi\)
\(332\) 22.4912 1.23436
\(333\) 14.1019 0.772777
\(334\) −3.21174 −0.175739
\(335\) 0 0
\(336\) 31.5399 1.72064
\(337\) −23.1981 −1.26368 −0.631841 0.775098i \(-0.717701\pi\)
−0.631841 + 0.775098i \(0.717701\pi\)
\(338\) −6.37410 −0.346705
\(339\) 22.3062 1.21151
\(340\) 0 0
\(341\) −1.52358 −0.0825067
\(342\) 27.4344 1.48349
\(343\) −16.7561 −0.904744
\(344\) −6.90255 −0.372160
\(345\) 0 0
\(346\) 11.9236 0.641017
\(347\) 28.0414 1.50534 0.752671 0.658396i \(-0.228765\pi\)
0.752671 + 0.658396i \(0.228765\pi\)
\(348\) 14.9270 0.800169
\(349\) −0.609875 −0.0326459 −0.0163229 0.999867i \(-0.505196\pi\)
−0.0163229 + 0.999867i \(0.505196\pi\)
\(350\) 0 0
\(351\) 8.67933 0.463268
\(352\) −4.68341 −0.249627
\(353\) 8.46810 0.450711 0.225356 0.974277i \(-0.427646\pi\)
0.225356 + 0.974277i \(0.427646\pi\)
\(354\) −27.6160 −1.46777
\(355\) 0 0
\(356\) −12.6803 −0.672052
\(357\) 43.5433 2.30456
\(358\) −18.3645 −0.970594
\(359\) −33.9630 −1.79250 −0.896248 0.443553i \(-0.853718\pi\)
−0.896248 + 0.443553i \(0.853718\pi\)
\(360\) 0 0
\(361\) 35.7300 1.88053
\(362\) −44.6241 −2.34539
\(363\) 23.4692 1.23181
\(364\) 14.7435 0.772769
\(365\) 0 0
\(366\) −42.6738 −2.23060
\(367\) 23.1703 1.20948 0.604741 0.796422i \(-0.293277\pi\)
0.604741 + 0.796422i \(0.293277\pi\)
\(368\) 7.38311 0.384871
\(369\) 14.0807 0.733013
\(370\) 0 0
\(371\) −12.4511 −0.646429
\(372\) −5.84359 −0.302976
\(373\) −0.768561 −0.0397946 −0.0198973 0.999802i \(-0.506334\pi\)
−0.0198973 + 0.999802i \(0.506334\pi\)
\(374\) −9.17461 −0.474408
\(375\) 0 0
\(376\) 2.72250 0.140402
\(377\) −21.2128 −1.09252
\(378\) −11.0070 −0.566140
\(379\) 3.18413 0.163558 0.0817789 0.996650i \(-0.473940\pi\)
0.0817789 + 0.996650i \(0.473940\pi\)
\(380\) 0 0
\(381\) 17.4026 0.891561
\(382\) −1.72714 −0.0883680
\(383\) −19.7260 −1.00795 −0.503977 0.863717i \(-0.668130\pi\)
−0.503977 + 0.863717i \(0.668130\pi\)
\(384\) 22.0857 1.12706
\(385\) 0 0
\(386\) 8.19199 0.416961
\(387\) −10.7560 −0.546758
\(388\) −21.8546 −1.10950
\(389\) 4.51662 0.229002 0.114501 0.993423i \(-0.463473\pi\)
0.114501 + 0.993423i \(0.463473\pi\)
\(390\) 0 0
\(391\) 10.1930 0.515480
\(392\) 1.47283 0.0743891
\(393\) 47.8241 2.41241
\(394\) 1.80911 0.0911415
\(395\) 0 0
\(396\) −1.94586 −0.0977830
\(397\) 21.9779 1.10304 0.551519 0.834162i \(-0.314048\pi\)
0.551519 + 0.834162i \(0.314048\pi\)
\(398\) −22.2969 −1.11764
\(399\) 47.3718 2.37156
\(400\) 0 0
\(401\) −7.89978 −0.394496 −0.197248 0.980354i \(-0.563200\pi\)
−0.197248 + 0.980354i \(0.563200\pi\)
\(402\) 45.3701 2.26286
\(403\) 8.30437 0.413670
\(404\) 8.42327 0.419073
\(405\) 0 0
\(406\) 26.9018 1.33511
\(407\) −5.13057 −0.254313
\(408\) 20.1016 0.995178
\(409\) −0.0919677 −0.00454751 −0.00227376 0.999997i \(-0.500724\pi\)
−0.00227376 + 0.999997i \(0.500724\pi\)
\(410\) 0 0
\(411\) −28.4160 −1.40166
\(412\) −20.6376 −1.01674
\(413\) −19.3565 −0.952469
\(414\) 5.55864 0.273192
\(415\) 0 0
\(416\) 25.5272 1.25157
\(417\) −39.0611 −1.91283
\(418\) −9.98126 −0.488200
\(419\) 20.9183 1.02193 0.510963 0.859602i \(-0.329289\pi\)
0.510963 + 0.859602i \(0.329289\pi\)
\(420\) 0 0
\(421\) 3.95842 0.192922 0.0964608 0.995337i \(-0.469248\pi\)
0.0964608 + 0.995337i \(0.469248\pi\)
\(422\) 7.17038 0.349048
\(423\) 4.24238 0.206272
\(424\) −5.74801 −0.279148
\(425\) 0 0
\(426\) −12.7121 −0.615905
\(427\) −29.9107 −1.44748
\(428\) −10.5369 −0.509318
\(429\) 6.81234 0.328903
\(430\) 0 0
\(431\) 10.9486 0.527375 0.263688 0.964608i \(-0.415061\pi\)
0.263688 + 0.964608i \(0.415061\pi\)
\(432\) −10.5170 −0.505999
\(433\) 30.9442 1.48709 0.743543 0.668689i \(-0.233144\pi\)
0.743543 + 0.668689i \(0.233144\pi\)
\(434\) −10.5315 −0.505528
\(435\) 0 0
\(436\) 7.79293 0.373214
\(437\) 11.0891 0.530466
\(438\) 61.1936 2.92395
\(439\) 28.3938 1.35516 0.677582 0.735447i \(-0.263028\pi\)
0.677582 + 0.735447i \(0.263028\pi\)
\(440\) 0 0
\(441\) 2.29506 0.109289
\(442\) 50.0067 2.37857
\(443\) 8.40244 0.399212 0.199606 0.979876i \(-0.436034\pi\)
0.199606 + 0.979876i \(0.436034\pi\)
\(444\) −19.6779 −0.933873
\(445\) 0 0
\(446\) −0.0349741 −0.00165607
\(447\) −16.5067 −0.780740
\(448\) −4.30261 −0.203279
\(449\) 1.94020 0.0915636 0.0457818 0.998951i \(-0.485422\pi\)
0.0457818 + 0.998951i \(0.485422\pi\)
\(450\) 0 0
\(451\) −5.12288 −0.241227
\(452\) −12.6349 −0.594294
\(453\) −6.69748 −0.314675
\(454\) −8.26396 −0.387847
\(455\) 0 0
\(456\) 21.8690 1.02411
\(457\) 32.9131 1.53961 0.769804 0.638280i \(-0.220354\pi\)
0.769804 + 0.638280i \(0.220354\pi\)
\(458\) 5.87507 0.274524
\(459\) −14.5195 −0.677713
\(460\) 0 0
\(461\) 22.0106 1.02513 0.512567 0.858647i \(-0.328695\pi\)
0.512567 + 0.858647i \(0.328695\pi\)
\(462\) −8.63932 −0.401937
\(463\) −1.14649 −0.0532819 −0.0266410 0.999645i \(-0.508481\pi\)
−0.0266410 + 0.999645i \(0.508481\pi\)
\(464\) 25.7042 1.19329
\(465\) 0 0
\(466\) 6.75387 0.312867
\(467\) 11.6655 0.539814 0.269907 0.962886i \(-0.413007\pi\)
0.269907 + 0.962886i \(0.413007\pi\)
\(468\) 10.6060 0.490262
\(469\) 31.8006 1.46842
\(470\) 0 0
\(471\) −41.0723 −1.89251
\(472\) −8.93583 −0.411305
\(473\) 3.91327 0.179933
\(474\) 64.0697 2.94282
\(475\) 0 0
\(476\) −24.6642 −1.13048
\(477\) −8.95693 −0.410109
\(478\) −2.66321 −0.121812
\(479\) −8.60694 −0.393261 −0.196631 0.980478i \(-0.563000\pi\)
−0.196631 + 0.980478i \(0.563000\pi\)
\(480\) 0 0
\(481\) 27.9645 1.27507
\(482\) −1.87948 −0.0856078
\(483\) 9.59825 0.436735
\(484\) −13.2936 −0.604255
\(485\) 0 0
\(486\) −32.9183 −1.49320
\(487\) 1.99510 0.0904067 0.0452033 0.998978i \(-0.485606\pi\)
0.0452033 + 0.998978i \(0.485606\pi\)
\(488\) −13.8082 −0.625067
\(489\) −28.5721 −1.29207
\(490\) 0 0
\(491\) −38.9159 −1.75625 −0.878124 0.478433i \(-0.841205\pi\)
−0.878124 + 0.478433i \(0.841205\pi\)
\(492\) −19.6484 −0.885820
\(493\) 35.4866 1.59823
\(494\) 54.4034 2.44772
\(495\) 0 0
\(496\) −10.0626 −0.451826
\(497\) −8.91012 −0.399674
\(498\) 71.8343 3.21897
\(499\) −3.41314 −0.152793 −0.0763966 0.997078i \(-0.524342\pi\)
−0.0763966 + 0.997078i \(0.524342\pi\)
\(500\) 0 0
\(501\) −3.98947 −0.178236
\(502\) −12.9418 −0.577619
\(503\) 7.16856 0.319630 0.159815 0.987147i \(-0.448910\pi\)
0.159815 + 0.987147i \(0.448910\pi\)
\(504\) 7.68360 0.342255
\(505\) 0 0
\(506\) −2.02236 −0.0899048
\(507\) −7.91760 −0.351633
\(508\) −9.85731 −0.437347
\(509\) 6.96089 0.308536 0.154268 0.988029i \(-0.450698\pi\)
0.154268 + 0.988029i \(0.450698\pi\)
\(510\) 0 0
\(511\) 42.8915 1.89741
\(512\) −17.9733 −0.794315
\(513\) −15.7961 −0.697415
\(514\) −29.3540 −1.29475
\(515\) 0 0
\(516\) 15.0091 0.660738
\(517\) −1.54347 −0.0678819
\(518\) −35.4642 −1.55821
\(519\) 14.8109 0.650127
\(520\) 0 0
\(521\) −16.0653 −0.703834 −0.351917 0.936031i \(-0.614470\pi\)
−0.351917 + 0.936031i \(0.614470\pi\)
\(522\) 19.3523 0.847027
\(523\) 28.1079 1.22907 0.614537 0.788888i \(-0.289343\pi\)
0.614537 + 0.788888i \(0.289343\pi\)
\(524\) −27.0889 −1.18339
\(525\) 0 0
\(526\) −39.5462 −1.72430
\(527\) −13.8923 −0.605156
\(528\) −8.25470 −0.359240
\(529\) −20.7532 −0.902312
\(530\) 0 0
\(531\) −13.9244 −0.604268
\(532\) −26.8327 −1.16335
\(533\) 27.9225 1.20946
\(534\) −40.4993 −1.75258
\(535\) 0 0
\(536\) 14.6806 0.634106
\(537\) −22.8115 −0.984388
\(538\) 7.73956 0.333676
\(539\) −0.834994 −0.0359657
\(540\) 0 0
\(541\) −0.688559 −0.0296034 −0.0148017 0.999890i \(-0.504712\pi\)
−0.0148017 + 0.999890i \(0.504712\pi\)
\(542\) −12.7106 −0.545965
\(543\) −55.4298 −2.37872
\(544\) −42.7040 −1.83092
\(545\) 0 0
\(546\) 47.0891 2.01523
\(547\) 16.4885 0.704996 0.352498 0.935813i \(-0.385332\pi\)
0.352498 + 0.935813i \(0.385332\pi\)
\(548\) 16.0956 0.687571
\(549\) −21.5168 −0.918315
\(550\) 0 0
\(551\) 38.6066 1.64470
\(552\) 4.43100 0.188596
\(553\) 44.9074 1.90966
\(554\) 36.4265 1.54761
\(555\) 0 0
\(556\) 22.1253 0.938322
\(557\) 19.8953 0.842990 0.421495 0.906831i \(-0.361505\pi\)
0.421495 + 0.906831i \(0.361505\pi\)
\(558\) −7.57602 −0.320719
\(559\) −21.3295 −0.902142
\(560\) 0 0
\(561\) −11.3962 −0.481150
\(562\) 6.24028 0.263230
\(563\) 5.23265 0.220530 0.110265 0.993902i \(-0.464830\pi\)
0.110265 + 0.993902i \(0.464830\pi\)
\(564\) −5.91988 −0.249272
\(565\) 0 0
\(566\) 10.8250 0.455010
\(567\) −31.1954 −1.31008
\(568\) −4.11332 −0.172591
\(569\) 29.3627 1.23095 0.615475 0.788157i \(-0.288964\pi\)
0.615475 + 0.788157i \(0.288964\pi\)
\(570\) 0 0
\(571\) 28.4996 1.19267 0.596336 0.802735i \(-0.296622\pi\)
0.596336 + 0.802735i \(0.296622\pi\)
\(572\) −3.85870 −0.161340
\(573\) −2.14537 −0.0896239
\(574\) −35.4110 −1.47803
\(575\) 0 0
\(576\) −3.09516 −0.128965
\(577\) −3.78549 −0.157592 −0.0787959 0.996891i \(-0.525108\pi\)
−0.0787959 + 0.996891i \(0.525108\pi\)
\(578\) −52.9006 −2.20037
\(579\) 10.1757 0.422887
\(580\) 0 0
\(581\) 50.3497 2.08886
\(582\) −69.8011 −2.89335
\(583\) 3.25873 0.134963
\(584\) 19.8007 0.819359
\(585\) 0 0
\(586\) 28.0193 1.15747
\(587\) 27.2568 1.12501 0.562504 0.826795i \(-0.309838\pi\)
0.562504 + 0.826795i \(0.309838\pi\)
\(588\) −3.20256 −0.132071
\(589\) −15.1137 −0.622749
\(590\) 0 0
\(591\) 2.24718 0.0924368
\(592\) −33.8853 −1.39268
\(593\) −30.4143 −1.24897 −0.624484 0.781038i \(-0.714691\pi\)
−0.624484 + 0.781038i \(0.714691\pi\)
\(594\) 2.88078 0.118200
\(595\) 0 0
\(596\) 9.34986 0.382985
\(597\) −27.6961 −1.13353
\(598\) 11.0230 0.450763
\(599\) 1.43537 0.0586475 0.0293237 0.999570i \(-0.490665\pi\)
0.0293237 + 0.999570i \(0.490665\pi\)
\(600\) 0 0
\(601\) −34.3674 −1.40188 −0.700939 0.713222i \(-0.747235\pi\)
−0.700939 + 0.713222i \(0.747235\pi\)
\(602\) 27.0498 1.10247
\(603\) 22.8763 0.931596
\(604\) 3.79364 0.154361
\(605\) 0 0
\(606\) 26.9030 1.09286
\(607\) 30.4221 1.23479 0.617397 0.786652i \(-0.288187\pi\)
0.617397 + 0.786652i \(0.288187\pi\)
\(608\) −46.4587 −1.88415
\(609\) 33.4161 1.35409
\(610\) 0 0
\(611\) 8.41278 0.340345
\(612\) −17.7426 −0.717202
\(613\) 18.4853 0.746615 0.373308 0.927708i \(-0.378224\pi\)
0.373308 + 0.927708i \(0.378224\pi\)
\(614\) −22.6174 −0.912766
\(615\) 0 0
\(616\) −2.79546 −0.112632
\(617\) 38.3447 1.54370 0.771850 0.635804i \(-0.219331\pi\)
0.771850 + 0.635804i \(0.219331\pi\)
\(618\) −65.9142 −2.65146
\(619\) 9.89770 0.397822 0.198911 0.980018i \(-0.436260\pi\)
0.198911 + 0.980018i \(0.436260\pi\)
\(620\) 0 0
\(621\) −3.20053 −0.128433
\(622\) 27.9675 1.12140
\(623\) −28.3866 −1.13728
\(624\) 44.9927 1.80115
\(625\) 0 0
\(626\) 35.8747 1.43384
\(627\) −12.3982 −0.495138
\(628\) 23.2645 0.928356
\(629\) −46.7813 −1.86529
\(630\) 0 0
\(631\) 2.16277 0.0860986 0.0430493 0.999073i \(-0.486293\pi\)
0.0430493 + 0.999073i \(0.486293\pi\)
\(632\) 20.7313 0.824648
\(633\) 8.90669 0.354009
\(634\) 31.4870 1.25051
\(635\) 0 0
\(636\) 12.4986 0.495602
\(637\) 4.55118 0.180324
\(638\) −7.04080 −0.278748
\(639\) −6.40965 −0.253562
\(640\) 0 0
\(641\) 6.80536 0.268796 0.134398 0.990927i \(-0.457090\pi\)
0.134398 + 0.990927i \(0.457090\pi\)
\(642\) −33.6535 −1.32820
\(643\) 29.2180 1.15224 0.576122 0.817363i \(-0.304565\pi\)
0.576122 + 0.817363i \(0.304565\pi\)
\(644\) −5.43672 −0.214237
\(645\) 0 0
\(646\) −91.0106 −3.58076
\(647\) −42.1419 −1.65677 −0.828385 0.560160i \(-0.810740\pi\)
−0.828385 + 0.560160i \(0.810740\pi\)
\(648\) −14.4012 −0.565734
\(649\) 5.06601 0.198858
\(650\) 0 0
\(651\) −13.0817 −0.512713
\(652\) 16.1840 0.633815
\(653\) −42.3133 −1.65585 −0.827925 0.560839i \(-0.810479\pi\)
−0.827925 + 0.560839i \(0.810479\pi\)
\(654\) 24.8897 0.973266
\(655\) 0 0
\(656\) −33.8345 −1.32102
\(657\) 30.8548 1.20376
\(658\) −10.6690 −0.415920
\(659\) −18.9681 −0.738894 −0.369447 0.929252i \(-0.620453\pi\)
−0.369447 + 0.929252i \(0.620453\pi\)
\(660\) 0 0
\(661\) −22.4832 −0.874495 −0.437247 0.899341i \(-0.644047\pi\)
−0.437247 + 0.899341i \(0.644047\pi\)
\(662\) 51.0490 1.98408
\(663\) 62.1158 2.41238
\(664\) 23.2438 0.902033
\(665\) 0 0
\(666\) −25.5118 −0.988561
\(667\) 7.82230 0.302881
\(668\) 2.25975 0.0874323
\(669\) −0.0434431 −0.00167961
\(670\) 0 0
\(671\) 7.82830 0.302208
\(672\) −40.2125 −1.55123
\(673\) 9.83248 0.379014 0.189507 0.981879i \(-0.439311\pi\)
0.189507 + 0.981879i \(0.439311\pi\)
\(674\) 41.9679 1.61654
\(675\) 0 0
\(676\) 4.48475 0.172490
\(677\) 37.2861 1.43302 0.716512 0.697575i \(-0.245738\pi\)
0.716512 + 0.697575i \(0.245738\pi\)
\(678\) −40.3543 −1.54980
\(679\) −48.9247 −1.87756
\(680\) 0 0
\(681\) −10.2651 −0.393359
\(682\) 2.75633 0.105545
\(683\) 39.5287 1.51252 0.756261 0.654270i \(-0.227024\pi\)
0.756261 + 0.654270i \(0.227024\pi\)
\(684\) −19.3026 −0.738053
\(685\) 0 0
\(686\) 30.3136 1.15738
\(687\) 7.29773 0.278426
\(688\) 25.8456 0.985353
\(689\) −17.7619 −0.676674
\(690\) 0 0
\(691\) −0.510033 −0.0194026 −0.00970129 0.999953i \(-0.503088\pi\)
−0.00970129 + 0.999953i \(0.503088\pi\)
\(692\) −8.38932 −0.318914
\(693\) −4.35608 −0.165474
\(694\) −50.7299 −1.92568
\(695\) 0 0
\(696\) 15.4264 0.584737
\(697\) −46.7112 −1.76931
\(698\) 1.10333 0.0417616
\(699\) 8.38932 0.317313
\(700\) 0 0
\(701\) 31.1167 1.17526 0.587631 0.809129i \(-0.300060\pi\)
0.587631 + 0.809129i \(0.300060\pi\)
\(702\) −15.7018 −0.592628
\(703\) −50.8944 −1.91952
\(704\) 1.12609 0.0424410
\(705\) 0 0
\(706\) −15.3197 −0.576564
\(707\) 18.8567 0.709178
\(708\) 19.4303 0.730236
\(709\) −13.2510 −0.497653 −0.248827 0.968548i \(-0.580045\pi\)
−0.248827 + 0.968548i \(0.580045\pi\)
\(710\) 0 0
\(711\) 32.3049 1.21153
\(712\) −13.1046 −0.491114
\(713\) −3.06227 −0.114683
\(714\) −78.7745 −2.94806
\(715\) 0 0
\(716\) 12.9211 0.482883
\(717\) −3.30811 −0.123544
\(718\) 61.4426 2.29302
\(719\) 10.2589 0.382591 0.191296 0.981532i \(-0.438731\pi\)
0.191296 + 0.981532i \(0.438731\pi\)
\(720\) 0 0
\(721\) −46.2002 −1.72059
\(722\) −64.6395 −2.40563
\(723\) −2.33459 −0.0868245
\(724\) 31.3970 1.16686
\(725\) 0 0
\(726\) −42.4583 −1.57577
\(727\) 41.1951 1.52784 0.763922 0.645309i \(-0.223271\pi\)
0.763922 + 0.645309i \(0.223271\pi\)
\(728\) 15.2368 0.564714
\(729\) −8.04643 −0.298016
\(730\) 0 0
\(731\) 35.6818 1.31974
\(732\) 30.0248 1.10975
\(733\) 8.80769 0.325320 0.162660 0.986682i \(-0.447993\pi\)
0.162660 + 0.986682i \(0.447993\pi\)
\(734\) −41.9176 −1.54721
\(735\) 0 0
\(736\) −9.41324 −0.346977
\(737\) −8.32292 −0.306579
\(738\) −25.4735 −0.937694
\(739\) 10.8085 0.397596 0.198798 0.980040i \(-0.436296\pi\)
0.198798 + 0.980040i \(0.436296\pi\)
\(740\) 0 0
\(741\) 67.5772 2.48251
\(742\) 22.5254 0.826933
\(743\) 46.3861 1.70174 0.850870 0.525376i \(-0.176075\pi\)
0.850870 + 0.525376i \(0.176075\pi\)
\(744\) −6.03913 −0.221405
\(745\) 0 0
\(746\) 1.39041 0.0509065
\(747\) 36.2200 1.32522
\(748\) 6.45515 0.236024
\(749\) −23.5883 −0.861896
\(750\) 0 0
\(751\) 28.1339 1.02662 0.513311 0.858203i \(-0.328419\pi\)
0.513311 + 0.858203i \(0.328419\pi\)
\(752\) −10.1940 −0.371737
\(753\) −16.0756 −0.585828
\(754\) 38.3762 1.39758
\(755\) 0 0
\(756\) 7.74442 0.281662
\(757\) 32.4601 1.17978 0.589891 0.807483i \(-0.299171\pi\)
0.589891 + 0.807483i \(0.299171\pi\)
\(758\) −5.76044 −0.209228
\(759\) −2.51207 −0.0911825
\(760\) 0 0
\(761\) −5.92476 −0.214772 −0.107386 0.994217i \(-0.534248\pi\)
−0.107386 + 0.994217i \(0.534248\pi\)
\(762\) −31.4831 −1.14051
\(763\) 17.4456 0.631573
\(764\) 1.21520 0.0439642
\(765\) 0 0
\(766\) 35.6865 1.28941
\(767\) −27.6126 −0.997032
\(768\) −46.7417 −1.68664
\(769\) 12.5599 0.452923 0.226461 0.974020i \(-0.427284\pi\)
0.226461 + 0.974020i \(0.427284\pi\)
\(770\) 0 0
\(771\) −36.4621 −1.31315
\(772\) −5.76380 −0.207444
\(773\) 14.4118 0.518357 0.259179 0.965829i \(-0.416548\pi\)
0.259179 + 0.965829i \(0.416548\pi\)
\(774\) 19.4588 0.699431
\(775\) 0 0
\(776\) −22.5859 −0.810786
\(777\) −44.0519 −1.58035
\(778\) −8.17105 −0.292946
\(779\) −50.8181 −1.82075
\(780\) 0 0
\(781\) 2.33198 0.0834446
\(782\) −18.4401 −0.659418
\(783\) −11.1426 −0.398204
\(784\) −5.51479 −0.196957
\(785\) 0 0
\(786\) −86.5190 −3.08603
\(787\) −3.51279 −0.125217 −0.0626087 0.998038i \(-0.519942\pi\)
−0.0626087 + 0.998038i \(0.519942\pi\)
\(788\) −1.27287 −0.0453441
\(789\) −49.1224 −1.74880
\(790\) 0 0
\(791\) −28.2849 −1.00570
\(792\) −2.01097 −0.0714566
\(793\) −42.6685 −1.51520
\(794\) −39.7604 −1.41104
\(795\) 0 0
\(796\) 15.6878 0.556041
\(797\) 10.4129 0.368843 0.184421 0.982847i \(-0.440959\pi\)
0.184421 + 0.982847i \(0.440959\pi\)
\(798\) −85.7006 −3.03377
\(799\) −14.0736 −0.497888
\(800\) 0 0
\(801\) −20.4204 −0.721519
\(802\) 14.2916 0.504652
\(803\) −11.2257 −0.396145
\(804\) −31.9219 −1.12580
\(805\) 0 0
\(806\) −15.0235 −0.529180
\(807\) 9.61371 0.338418
\(808\) 8.70511 0.306245
\(809\) −22.6403 −0.795990 −0.397995 0.917388i \(-0.630294\pi\)
−0.397995 + 0.917388i \(0.630294\pi\)
\(810\) 0 0
\(811\) 14.2638 0.500870 0.250435 0.968133i \(-0.419426\pi\)
0.250435 + 0.968133i \(0.419426\pi\)
\(812\) −18.9278 −0.664237
\(813\) −15.7884 −0.553724
\(814\) 9.28175 0.325325
\(815\) 0 0
\(816\) −75.2675 −2.63489
\(817\) 38.8190 1.35811
\(818\) 0.166379 0.00581732
\(819\) 23.7430 0.829649
\(820\) 0 0
\(821\) 46.6504 1.62811 0.814054 0.580789i \(-0.197256\pi\)
0.814054 + 0.580789i \(0.197256\pi\)
\(822\) 51.4076 1.79304
\(823\) 1.29527 0.0451502 0.0225751 0.999745i \(-0.492814\pi\)
0.0225751 + 0.999745i \(0.492814\pi\)
\(824\) −21.3282 −0.743001
\(825\) 0 0
\(826\) 35.0179 1.21843
\(827\) 18.4609 0.641948 0.320974 0.947088i \(-0.395990\pi\)
0.320974 + 0.947088i \(0.395990\pi\)
\(828\) −3.91100 −0.135917
\(829\) −35.6828 −1.23932 −0.619658 0.784872i \(-0.712729\pi\)
−0.619658 + 0.784872i \(0.712729\pi\)
\(830\) 0 0
\(831\) 45.2472 1.56961
\(832\) −6.13780 −0.212790
\(833\) −7.61360 −0.263795
\(834\) 70.6657 2.44695
\(835\) 0 0
\(836\) 7.02271 0.242886
\(837\) 4.36210 0.150776
\(838\) −37.8435 −1.30728
\(839\) −15.4370 −0.532943 −0.266472 0.963843i \(-0.585858\pi\)
−0.266472 + 0.963843i \(0.585858\pi\)
\(840\) 0 0
\(841\) −1.76682 −0.0609248
\(842\) −7.16120 −0.246791
\(843\) 7.75137 0.266971
\(844\) −5.04500 −0.173656
\(845\) 0 0
\(846\) −7.67492 −0.263869
\(847\) −29.7596 −1.02255
\(848\) 21.5226 0.739088
\(849\) 13.4463 0.461477
\(850\) 0 0
\(851\) −10.3120 −0.353491
\(852\) 8.94412 0.306420
\(853\) 9.33840 0.319741 0.159870 0.987138i \(-0.448892\pi\)
0.159870 + 0.987138i \(0.448892\pi\)
\(854\) 54.1117 1.85166
\(855\) 0 0
\(856\) −10.8894 −0.372193
\(857\) −2.80292 −0.0957460 −0.0478730 0.998853i \(-0.515244\pi\)
−0.0478730 + 0.998853i \(0.515244\pi\)
\(858\) −12.3242 −0.420743
\(859\) −37.2809 −1.27201 −0.636003 0.771686i \(-0.719414\pi\)
−0.636003 + 0.771686i \(0.719414\pi\)
\(860\) 0 0
\(861\) −43.9858 −1.49903
\(862\) −19.8072 −0.674635
\(863\) 43.5426 1.48221 0.741104 0.671390i \(-0.234303\pi\)
0.741104 + 0.671390i \(0.234303\pi\)
\(864\) 13.4088 0.456178
\(865\) 0 0
\(866\) −55.9814 −1.90233
\(867\) −65.7105 −2.23164
\(868\) 7.40985 0.251507
\(869\) −11.7533 −0.398702
\(870\) 0 0
\(871\) 45.3645 1.53712
\(872\) 8.05369 0.272732
\(873\) −35.1948 −1.19116
\(874\) −20.0615 −0.678589
\(875\) 0 0
\(876\) −43.0552 −1.45470
\(877\) −7.12426 −0.240569 −0.120285 0.992739i \(-0.538381\pi\)
−0.120285 + 0.992739i \(0.538381\pi\)
\(878\) −51.3675 −1.73357
\(879\) 34.8042 1.17392
\(880\) 0 0
\(881\) 3.36338 0.113315 0.0566576 0.998394i \(-0.481956\pi\)
0.0566576 + 0.998394i \(0.481956\pi\)
\(882\) −4.15201 −0.139805
\(883\) 49.2397 1.65705 0.828523 0.559955i \(-0.189181\pi\)
0.828523 + 0.559955i \(0.189181\pi\)
\(884\) −35.1842 −1.18337
\(885\) 0 0
\(886\) −15.2009 −0.510685
\(887\) −39.4318 −1.32399 −0.661995 0.749508i \(-0.730290\pi\)
−0.661995 + 0.749508i \(0.730290\pi\)
\(888\) −20.3364 −0.682444
\(889\) −22.0670 −0.740103
\(890\) 0 0
\(891\) 8.16452 0.273522
\(892\) 0.0246074 0.000823916 0
\(893\) −15.3110 −0.512363
\(894\) 29.8624 0.998748
\(895\) 0 0
\(896\) −28.0053 −0.935592
\(897\) 13.6922 0.457169
\(898\) −3.51003 −0.117131
\(899\) −10.6612 −0.355572
\(900\) 0 0
\(901\) 29.7136 0.989902
\(902\) 9.26784 0.308585
\(903\) 33.6000 1.11814
\(904\) −13.0576 −0.434290
\(905\) 0 0
\(906\) 12.1165 0.402542
\(907\) 8.54232 0.283643 0.141822 0.989892i \(-0.454704\pi\)
0.141822 + 0.989892i \(0.454704\pi\)
\(908\) 5.81443 0.192959
\(909\) 13.5649 0.449919
\(910\) 0 0
\(911\) 2.86873 0.0950451 0.0475226 0.998870i \(-0.484867\pi\)
0.0475226 + 0.998870i \(0.484867\pi\)
\(912\) −81.8852 −2.71149
\(913\) −13.1776 −0.436116
\(914\) −59.5432 −1.96952
\(915\) 0 0
\(916\) −4.13364 −0.136579
\(917\) −60.6424 −2.00259
\(918\) 26.2673 0.866952
\(919\) 52.6798 1.73775 0.868873 0.495035i \(-0.164845\pi\)
0.868873 + 0.495035i \(0.164845\pi\)
\(920\) 0 0
\(921\) −28.0943 −0.925738
\(922\) −39.8195 −1.31138
\(923\) −12.7106 −0.418373
\(924\) 6.07853 0.199969
\(925\) 0 0
\(926\) 2.07412 0.0681599
\(927\) −33.2349 −1.09158
\(928\) −32.7720 −1.07579
\(929\) 16.4388 0.539339 0.269670 0.962953i \(-0.413085\pi\)
0.269670 + 0.962953i \(0.413085\pi\)
\(930\) 0 0
\(931\) −8.28300 −0.271465
\(932\) −4.75195 −0.155655
\(933\) 34.7399 1.13733
\(934\) −21.1041 −0.690548
\(935\) 0 0
\(936\) 10.9609 0.358268
\(937\) −27.3664 −0.894023 −0.447011 0.894528i \(-0.647512\pi\)
−0.447011 + 0.894528i \(0.647512\pi\)
\(938\) −57.5307 −1.87844
\(939\) 44.5618 1.45422
\(940\) 0 0
\(941\) 28.6192 0.932959 0.466479 0.884532i \(-0.345522\pi\)
0.466479 + 0.884532i \(0.345522\pi\)
\(942\) 74.3043 2.42096
\(943\) −10.2965 −0.335301
\(944\) 33.4589 1.08899
\(945\) 0 0
\(946\) −7.07953 −0.230175
\(947\) −54.5673 −1.77320 −0.886600 0.462537i \(-0.846939\pi\)
−0.886600 + 0.462537i \(0.846939\pi\)
\(948\) −45.0788 −1.46409
\(949\) 61.1860 1.98618
\(950\) 0 0
\(951\) 39.1116 1.26828
\(952\) −25.4894 −0.826118
\(953\) −14.3729 −0.465583 −0.232791 0.972527i \(-0.574786\pi\)
−0.232791 + 0.972527i \(0.574786\pi\)
\(954\) 16.2040 0.524625
\(955\) 0 0
\(956\) 1.87381 0.0606032
\(957\) −8.74573 −0.282709
\(958\) 15.5709 0.503072
\(959\) 36.0323 1.16354
\(960\) 0 0
\(961\) −26.8264 −0.865366
\(962\) −50.5907 −1.63111
\(963\) −16.9686 −0.546806
\(964\) 1.32238 0.0425910
\(965\) 0 0
\(966\) −17.3643 −0.558686
\(967\) 55.8404 1.79571 0.897853 0.440295i \(-0.145126\pi\)
0.897853 + 0.440295i \(0.145126\pi\)
\(968\) −13.7384 −0.441569
\(969\) −113.049 −3.63165
\(970\) 0 0
\(971\) 1.97942 0.0635227 0.0317613 0.999495i \(-0.489888\pi\)
0.0317613 + 0.999495i \(0.489888\pi\)
\(972\) 23.1609 0.742888
\(973\) 49.5307 1.58788
\(974\) −3.60935 −0.115651
\(975\) 0 0
\(976\) 51.7027 1.65496
\(977\) −42.9153 −1.37298 −0.686492 0.727138i \(-0.740850\pi\)
−0.686492 + 0.727138i \(0.740850\pi\)
\(978\) 51.6899 1.65286
\(979\) 7.42939 0.237444
\(980\) 0 0
\(981\) 12.5498 0.400684
\(982\) 70.4030 2.24665
\(983\) −13.5082 −0.430844 −0.215422 0.976521i \(-0.569113\pi\)
−0.215422 + 0.976521i \(0.569113\pi\)
\(984\) −20.3059 −0.647328
\(985\) 0 0
\(986\) −64.1990 −2.04451
\(987\) −13.2525 −0.421831
\(988\) −38.2776 −1.21777
\(989\) 7.86533 0.250103
\(990\) 0 0
\(991\) 52.5064 1.66792 0.833961 0.551824i \(-0.186068\pi\)
0.833961 + 0.551824i \(0.186068\pi\)
\(992\) 12.8296 0.407339
\(993\) 63.4106 2.01228
\(994\) 16.1194 0.511275
\(995\) 0 0
\(996\) −50.5419 −1.60148
\(997\) −10.1737 −0.322205 −0.161102 0.986938i \(-0.551505\pi\)
−0.161102 + 0.986938i \(0.551505\pi\)
\(998\) 6.17474 0.195458
\(999\) 14.6891 0.464742
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.s.1.10 49
5.2 odd 4 985.2.b.a.789.21 98
5.3 odd 4 985.2.b.a.789.78 yes 98
5.4 even 2 4925.2.a.r.1.40 49
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.b.a.789.21 98 5.2 odd 4
985.2.b.a.789.78 yes 98 5.3 odd 4
4925.2.a.r.1.40 49 5.4 even 2
4925.2.a.s.1.10 49 1.1 even 1 trivial