# Properties

 Label 4900.2.a.i Level $4900$ Weight $2$ Character orbit 4900.a Self dual yes Analytic conductor $39.127$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [4900,2,Mod(1,4900)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(4900, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("4900.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$4900 = 2^{2} \cdot 5^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4900.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$39.1266969904$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 140) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{3} - 2 q^{9}+O(q^{10})$$ q - q^3 - 2 * q^9 $$q - q^{3} - 2 q^{9} + 6 q^{11} - 2 q^{13} + 6 q^{17} + 8 q^{19} - 3 q^{23} + 5 q^{27} + 3 q^{29} + 2 q^{31} - 6 q^{33} - 8 q^{37} + 2 q^{39} - 3 q^{41} - 5 q^{43} - 6 q^{51} - 12 q^{53} - 8 q^{57} - q^{61} + 7 q^{67} + 3 q^{69} + 10 q^{73} - 4 q^{79} + q^{81} - 3 q^{83} - 3 q^{87} - 3 q^{89} - 2 q^{93} + 10 q^{97} - 12 q^{99}+O(q^{100})$$ q - q^3 - 2 * q^9 + 6 * q^11 - 2 * q^13 + 6 * q^17 + 8 * q^19 - 3 * q^23 + 5 * q^27 + 3 * q^29 + 2 * q^31 - 6 * q^33 - 8 * q^37 + 2 * q^39 - 3 * q^41 - 5 * q^43 - 6 * q^51 - 12 * q^53 - 8 * q^57 - q^61 + 7 * q^67 + 3 * q^69 + 10 * q^73 - 4 * q^79 + q^81 - 3 * q^83 - 3 * q^87 - 3 * q^89 - 2 * q^93 + 10 * q^97 - 12 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −1.00000 0 0 0 0 0 −2.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$1$$
$$7$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4900.2.a.i 1
5.b even 2 1 980.2.a.g 1
5.c odd 4 2 4900.2.e.m 2
7.b odd 2 1 4900.2.a.q 1
7.c even 3 2 700.2.i.b 2
15.d odd 2 1 8820.2.a.p 1
20.d odd 2 1 3920.2.a.k 1
35.c odd 2 1 980.2.a.e 1
35.f even 4 2 4900.2.e.n 2
35.i odd 6 2 980.2.i.f 2
35.j even 6 2 140.2.i.a 2
35.l odd 12 4 700.2.r.a 4
105.g even 2 1 8820.2.a.a 1
105.o odd 6 2 1260.2.s.c 2
140.c even 2 1 3920.2.a.w 1
140.p odd 6 2 560.2.q.f 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.i.a 2 35.j even 6 2
560.2.q.f 2 140.p odd 6 2
700.2.i.b 2 7.c even 3 2
700.2.r.a 4 35.l odd 12 4
980.2.a.e 1 35.c odd 2 1
980.2.a.g 1 5.b even 2 1
980.2.i.f 2 35.i odd 6 2
1260.2.s.c 2 105.o odd 6 2
3920.2.a.k 1 20.d odd 2 1
3920.2.a.w 1 140.c even 2 1
4900.2.a.i 1 1.a even 1 1 trivial
4900.2.a.q 1 7.b odd 2 1
4900.2.e.m 2 5.c odd 4 2
4900.2.e.n 2 35.f even 4 2
8820.2.a.a 1 105.g even 2 1
8820.2.a.p 1 15.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(4900))$$:

 $$T_{3} + 1$$ T3 + 1 $$T_{11} - 6$$ T11 - 6 $$T_{13} + 2$$ T13 + 2 $$T_{19} - 8$$ T19 - 8 $$T_{23} + 3$$ T23 + 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 1$$
$5$ $$T$$
$7$ $$T$$
$11$ $$T - 6$$
$13$ $$T + 2$$
$17$ $$T - 6$$
$19$ $$T - 8$$
$23$ $$T + 3$$
$29$ $$T - 3$$
$31$ $$T - 2$$
$37$ $$T + 8$$
$41$ $$T + 3$$
$43$ $$T + 5$$
$47$ $$T$$
$53$ $$T + 12$$
$59$ $$T$$
$61$ $$T + 1$$
$67$ $$T - 7$$
$71$ $$T$$
$73$ $$T - 10$$
$79$ $$T + 4$$
$83$ $$T + 3$$
$89$ $$T + 3$$
$97$ $$T - 10$$