Learn more

Refine search


Results (1-50 of 57 matches)

Next   Download to          
Label Char Prim Dim $A$ Field CM Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
4900.2.a.a 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(-3\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+6q^{9}-2q^{11}-6q^{13}+2q^{17}+\cdots\)
4900.2.a.b 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(-3\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+6q^{9}+3q^{11}-q^{13}+5q^{17}+\cdots\)
4900.2.a.c 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(-2\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{9}-q^{11}-2q^{13}+4q^{17}+\cdots\)
4900.2.a.d 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(-2\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{9}-q^{11}-2q^{13}+4q^{17}+\cdots\)
4900.2.a.e 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(-2\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{9}+2q^{13}-6q^{17}+4q^{19}+\cdots\)
4900.2.a.f 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(-2\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{9}+3q^{11}-4q^{13}-2q^{19}+\cdots\)
4900.2.a.g 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(-1\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{9}-3q^{11}-2q^{13}-3q^{17}+\cdots\)
4900.2.a.h 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(-1\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{9}-q^{11}+5q^{13}-q^{17}+\cdots\)
4900.2.a.i 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(-1\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{9}+6q^{11}-2q^{13}+6q^{17}+\cdots\)
4900.2.a.j 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(0\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-3q^{9}-5q^{11}-6q^{13}+4q^{17}+6q^{19}+\cdots\)
4900.2.a.k 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(0\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q-3q^{9}-5q^{11}+6q^{13}-4q^{17}+6q^{19}+\cdots\)
4900.2.a.l 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(0\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-3q^{9}-4q^{13}-4q^{17}-4q^{19}+8q^{23}+\cdots\)
4900.2.a.m 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(0\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-3q^{9}+4q^{13}+4q^{17}-4q^{19}-8q^{23}+\cdots\)
4900.2.a.n 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(1\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{9}-3q^{11}+2q^{13}+3q^{17}+\cdots\)
4900.2.a.o 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(1\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{9}-q^{11}-5q^{13}+q^{17}+\cdots\)
4900.2.a.p 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(1\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{9}+3q^{11}-q^{13}-3q^{17}+\cdots\)
4900.2.a.q 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(1\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{9}+6q^{11}+2q^{13}-6q^{17}+\cdots\)
4900.2.a.r 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(2\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{9}-q^{11}+2q^{13}-4q^{17}+\cdots\)
4900.2.a.s 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(2\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{9}-q^{11}+2q^{13}-4q^{17}+\cdots\)
4900.2.a.t 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(2\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{9}+3q^{11}+4q^{13}-2q^{19}+\cdots\)
4900.2.a.u 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(3\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+6q^{9}-5q^{11}-3q^{13}-q^{17}+\cdots\)
4900.2.a.v 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(3\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+6q^{9}-2q^{11}+6q^{13}-2q^{17}+\cdots\)
4900.2.a.w 4900.a 1.a $1$ $39.127$ \(\Q\) None \(0\) \(3\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+6q^{9}+3q^{11}+q^{13}-5q^{17}+\cdots\)
4900.2.a.x 4900.a 1.a $2$ $39.127$ \(\Q(\sqrt{2}) \) None \(0\) \(-2\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{3}-2\beta q^{9}+(-1-2\beta )q^{11}+\cdots\)
4900.2.a.y 4900.a 1.a $2$ $39.127$ \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+2\beta q^{3}+5q^{9}+4q^{11}-3\beta q^{13}+\cdots\)
4900.2.a.z 4900.a 1.a $2$ $39.127$ \(\Q(\sqrt{2}) \) None \(0\) \(2\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+2\beta q^{9}+(-1+2\beta )q^{11}+\cdots\)
4900.2.a.ba 4900.a 1.a $3$ $39.127$ 3.3.257.1 None \(0\) \(-1\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}+(2-\beta _{1}-\beta _{2})q^{9}+(1-\beta _{2})q^{11}+\cdots\)
4900.2.a.bb 4900.a 1.a $3$ $39.127$ 3.3.257.1 None \(0\) \(-1\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}+(2-\beta _{1}-\beta _{2})q^{9}+(1-\beta _{2})q^{11}+\cdots\)
4900.2.a.bc 4900.a 1.a $3$ $39.127$ 3.3.257.1 None \(0\) \(1\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}+(2-\beta _{1}-\beta _{2})q^{9}+(1-\beta _{2})q^{11}+\cdots\)
4900.2.a.bd 4900.a 1.a $3$ $39.127$ 3.3.257.1 None \(0\) \(1\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}+(2-\beta _{1}-\beta _{2})q^{9}+(1-\beta _{2})q^{11}+\cdots\)
4900.2.a.be 4900.a 1.a $4$ $39.127$ \(\Q(\sqrt{3}, \sqrt{19})\) None \(0\) \(0\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}+(-2-\beta _{3})q^{11}+(2\beta _{1}-2\beta _{2}+\cdots)q^{13}+\cdots\)
4900.2.a.bf 4900.a 1.a $4$ $39.127$ \(\Q(\sqrt{3}, \sqrt{19})\) None \(0\) \(0\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}+(-2-\beta _{3})q^{11}+(2\beta _{1}-2\beta _{2}+\cdots)q^{13}+\cdots\)
4900.2.a.bg 4900.a 1.a $4$ $39.127$ \(\Q(\sqrt{2}, \sqrt{5})\) None \(0\) \(0\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+\beta _{3}q^{9}+(-1-2\beta _{3})q^{11}+\cdots\)
4900.2.a.bh 4900.a 1.a $4$ $39.127$ \(\Q(\zeta_{24})^+\) None \(0\) \(0\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-q^{11}+\beta _{1}q^{13}-3\beta _{1}q^{17}+\cdots\)
4900.2.a.bi 4900.a 1.a $4$ $39.127$ \(\Q(\sqrt{2}, \sqrt{5})\) None \(0\) \(0\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+\beta _{3}q^{9}+(-1-2\beta _{3})q^{11}+\cdots\)
4900.2.a.bj 4900.a 1.a $4$ $39.127$ \(\Q(\sqrt{5}, \sqrt{21})\) \(\Q(\sqrt{-35}) \) \(0\) \(0\) \(0\) \(0\) $-$ $N(\mathrm{U}(1))$ \(q+\beta _{1}q^{3}+(4+\beta _{3})q^{9}+(1-\beta _{3})q^{11}+\cdots\)
4900.2.e.a 4900.e 5.b $2$ $39.127$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3iq^{3}-6q^{9}-5q^{11}-3iq^{13}+\cdots\)
4900.2.e.b 4900.e 5.b $2$ $39.127$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3iq^{3}-6q^{9}-2q^{11}+6iq^{13}+\cdots\)
4900.2.e.c 4900.e 5.b $2$ $39.127$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3iq^{3}-6q^{9}-2q^{11}+6iq^{13}+\cdots\)
4900.2.e.d 4900.e 5.b $2$ $39.127$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2iq^{3}-q^{9}-q^{11}+2iq^{13}+4iq^{17}+\cdots\)
4900.2.e.e 4900.e 5.b $2$ $39.127$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2iq^{3}-q^{9}-q^{11}+2iq^{13}+4iq^{17}+\cdots\)
4900.2.e.f 4900.e 5.b $2$ $39.127$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{3}-q^{9}-iq^{13}-3iq^{17}-4q^{19}+\cdots\)
4900.2.e.g 4900.e 5.b $2$ $39.127$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2iq^{3}-q^{9}+3q^{11}+4iq^{13}+2q^{19}+\cdots\)
4900.2.e.h 4900.e 5.b $2$ $39.127$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{3}+2q^{9}-3q^{11}+2iq^{13}-3iq^{17}+\cdots\)
4900.2.e.i 4900.e 5.b $2$ $39.127$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{3}+2q^{9}-3q^{11}+2iq^{13}-3iq^{17}+\cdots\)
4900.2.e.j 4900.e 5.b $2$ $39.127$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{3}+2q^{9}-q^{11}-5iq^{13}-iq^{17}+\cdots\)
4900.2.e.k 4900.e 5.b $2$ $39.127$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{3}+2q^{9}-q^{11}-5iq^{13}-iq^{17}+\cdots\)
4900.2.e.l 4900.e 5.b $2$ $39.127$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{3}+2q^{9}+3q^{11}-iq^{13}+3iq^{17}+\cdots\)
4900.2.e.m 4900.e 5.b $2$ $39.127$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{3}+2q^{9}+6q^{11}+2iq^{13}+6iq^{17}+\cdots\)
4900.2.e.n 4900.e 5.b $2$ $39.127$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{3}+2q^{9}+6q^{11}+2iq^{13}+6iq^{17}+\cdots\)
Next   Download to