gp: [N,k,chi] = [490,8,Mod(1,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 8, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: traces = [1,8,93]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 − 93 T_{3} - 93 T 3 − 9 3
T3 - 93
acting on S 8 n e w ( Γ 0 ( 490 ) ) S_{8}^{\mathrm{new}}(\Gamma_0(490)) S 8 n e w ( Γ 0 ( 4 9 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T − 8 T - 8 T − 8
T - 8
3 3 3
T − 93 T - 93 T − 9 3
T - 93
5 5 5
T + 125 T + 125 T + 1 2 5
T + 125
7 7 7
T T T
T
11 11 1 1
T + 2167 T + 2167 T + 2 1 6 7
T + 2167
13 13 1 3
T − 1661 T - 1661 T − 1 6 6 1
T - 1661
17 17 1 7
T − 35771 T - 35771 T − 3 5 7 7 1
T - 35771
19 19 1 9
T + 20222 T + 20222 T + 2 0 2 2 2
T + 20222
23 23 2 3
T + 42130 T + 42130 T + 4 2 1 3 0
T + 42130
29 29 2 9
T + 111789 T + 111789 T + 1 1 1 7 8 9
T + 111789
31 31 3 1
T − 269504 T - 269504 T − 2 6 9 5 0 4
T - 269504
37 37 3 7
T − 532774 T - 532774 T − 5 3 2 7 7 4
T - 532774
41 41 4 1
T + 158056 T + 158056 T + 1 5 8 0 5 6
T + 158056
43 43 4 3
T + 521874 T + 521874 T + 5 2 1 8 7 4
T + 521874
47 47 4 7
T − 939733 T - 939733 T − 9 3 9 7 3 3
T - 939733
53 53 5 3
T + 408384 T + 408384 T + 4 0 8 3 8 4
T + 408384
59 59 5 9
T − 522172 T - 522172 T − 5 2 2 1 7 2
T - 522172
61 61 6 1
T + 350080 T + 350080 T + 3 5 0 0 8 0
T + 350080
67 67 6 7
T + 3931176 T + 3931176 T + 3 9 3 1 1 7 6
T + 3931176
71 71 7 1
T − 1194016 T - 1194016 T − 1 1 9 4 0 1 6
T - 1194016
73 73 7 3
T + 998350 T + 998350 T + 9 9 8 3 5 0
T + 998350
79 79 7 9
T + 2120709 T + 2120709 T + 2 1 2 0 7 0 9
T + 2120709
83 83 8 3
T − 1746708 T - 1746708 T − 1 7 4 6 7 0 8
T - 1746708
89 89 8 9
T − 10077740 T - 10077740 T − 1 0 0 7 7 7 4 0
T - 10077740
97 97 9 7
T − 6238295 T - 6238295 T − 6 2 3 8 2 9 5
T - 6238295
show more
show less