Properties

Label 490.8.a.e
Level 490490
Weight 88
Character orbit 490.a
Self dual yes
Analytic conductor 153.069153.069
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [490,8,Mod(1,490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("490.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: N N == 490=2572 490 = 2 \cdot 5 \cdot 7^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 490.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,8,93] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 153.068662487153.068662487
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 70)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+8q2+93q3+64q4125q5+744q6+512q8+6462q91000q102167q11+5952q12+1661q1311625q15+4096q16+35771q17+51696q1820222q19+14003154q99+O(q100) q + 8 q^{2} + 93 q^{3} + 64 q^{4} - 125 q^{5} + 744 q^{6} + 512 q^{8} + 6462 q^{9} - 1000 q^{10} - 2167 q^{11} + 5952 q^{12} + 1661 q^{13} - 11625 q^{15} + 4096 q^{16} + 35771 q^{17} + 51696 q^{18} - 20222 q^{19}+ \cdots - 14003154 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
8.00000 93.0000 64.0000 −125.000 744.000 0 512.000 6462.00 −1000.00
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.8.a.e 1
7.b odd 2 1 70.8.a.a 1
28.d even 2 1 560.8.a.b 1
35.c odd 2 1 350.8.a.e 1
35.f even 4 2 350.8.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.8.a.a 1 7.b odd 2 1
350.8.a.e 1 35.c odd 2 1
350.8.c.a 2 35.f even 4 2
490.8.a.e 1 1.a even 1 1 trivial
560.8.a.b 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T393 T_{3} - 93 acting on S8new(Γ0(490))S_{8}^{\mathrm{new}}(\Gamma_0(490)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T - 8 Copy content Toggle raw display
33 T93 T - 93 Copy content Toggle raw display
55 T+125 T + 125 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T+2167 T + 2167 Copy content Toggle raw display
1313 T1661 T - 1661 Copy content Toggle raw display
1717 T35771 T - 35771 Copy content Toggle raw display
1919 T+20222 T + 20222 Copy content Toggle raw display
2323 T+42130 T + 42130 Copy content Toggle raw display
2929 T+111789 T + 111789 Copy content Toggle raw display
3131 T269504 T - 269504 Copy content Toggle raw display
3737 T532774 T - 532774 Copy content Toggle raw display
4141 T+158056 T + 158056 Copy content Toggle raw display
4343 T+521874 T + 521874 Copy content Toggle raw display
4747 T939733 T - 939733 Copy content Toggle raw display
5353 T+408384 T + 408384 Copy content Toggle raw display
5959 T522172 T - 522172 Copy content Toggle raw display
6161 T+350080 T + 350080 Copy content Toggle raw display
6767 T+3931176 T + 3931176 Copy content Toggle raw display
7171 T1194016 T - 1194016 Copy content Toggle raw display
7373 T+998350 T + 998350 Copy content Toggle raw display
7979 T+2120709 T + 2120709 Copy content Toggle raw display
8383 T1746708 T - 1746708 Copy content Toggle raw display
8989 T10077740 T - 10077740 Copy content Toggle raw display
9797 T6238295 T - 6238295 Copy content Toggle raw display
show more
show less