gp: [N,k,chi] = [490,8,Mod(1,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 8, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: traces = [1,8,-9]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 + 9 T_{3} + 9 T 3 + 9
T3 + 9
acting on S 8 n e w ( Γ 0 ( 490 ) ) S_{8}^{\mathrm{new}}(\Gamma_0(490)) S 8 n e w ( Γ 0 ( 4 9 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T − 8 T - 8 T − 8
T - 8
3 3 3
T + 9 T + 9 T + 9
T + 9
5 5 5
T − 125 T - 125 T − 1 2 5
T - 125
7 7 7
T T T
T
11 11 1 1
T + 2335 T + 2335 T + 2 3 3 5
T + 2335
13 13 1 3
T − 327 T - 327 T − 3 2 7
T - 327
17 17 1 7
T − 29273 T - 29273 T − 2 9 2 7 3
T - 29273
19 19 1 9
T + 6378 T + 6378 T + 6 3 7 8
T + 6378
23 23 2 3
T + 10350 T + 10350 T + 1 0 3 5 0
T + 10350
29 29 2 9
T + 118509 T + 118509 T + 1 1 8 5 0 9
T + 118509
31 31 3 1
T − 81364 T - 81364 T − 8 1 3 6 4
T - 81364
37 37 3 7
T − 14354 T - 14354 T − 1 4 3 5 4
T - 14354
41 41 4 1
T − 79964 T - 79964 T − 7 9 9 6 4
T - 79964
43 43 4 3
T + 241706 T + 241706 T + 2 4 1 7 0 6
T + 241706
47 47 4 7
T + 338041 T + 338041 T + 3 3 8 0 4 1
T + 338041
53 53 5 3
T + 1344172 T + 1344172 T + 1 3 4 4 1 7 2
T + 1344172
59 59 5 9
T + 1722056 T + 1722056 T + 1 7 2 2 0 5 6
T + 1722056
61 61 6 1
T + 328528 T + 328528 T + 3 2 8 5 2 8
T + 328528
67 67 6 7
T + 93468 T + 93468 T + 9 3 4 6 8
T + 93468
71 71 7 1
T + 666920 T + 666920 T + 6 6 6 9 2 0
T + 666920
73 73 7 3
T + 4750946 T + 4750946 T + 4 7 5 0 9 4 6
T + 4750946
79 79 7 9
T − 5507107 T - 5507107 T − 5 5 0 7 1 0 7
T - 5507107
83 83 8 3
T + 5460292 T + 5460292 T + 5 4 6 0 2 9 2
T + 5460292
89 89 8 9
T + 6010796 T + 6010796 T + 6 0 1 0 7 9 6
T + 6010796
97 97 9 7
T + 1936235 T + 1936235 T + 1 9 3 6 2 3 5
T + 1936235
show more
show less