Properties

Label 490.2.l.d.117.4
Level $490$
Weight $2$
Character 490.117
Analytic conductor $3.913$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [490,2,Mod(117,490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("490.117"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 10])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 490.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.91266969904\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 117.4
Character \(\chi\) \(=\) 490.117
Dual form 490.2.l.d.423.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.965926 + 0.258819i) q^{2} +(0.830751 - 3.10041i) q^{3} +(0.866025 - 0.500000i) q^{4} +(1.65469 - 1.50399i) q^{5} +3.20978i q^{6} +(-0.707107 + 0.707107i) q^{8} +(-6.32429 - 3.65133i) q^{9} +(-1.20905 + 1.88101i) q^{10} +(-1.22833 - 2.12753i) q^{11} +(-0.830751 - 3.10041i) q^{12} +(-0.884667 - 0.884667i) q^{13} +(-3.28835 - 6.37966i) q^{15} +(0.500000 - 0.866025i) q^{16} +(4.69086 + 1.25691i) q^{17} +(7.05383 + 1.89007i) q^{18} +(-0.522496 + 0.904990i) q^{19} +(0.681009 - 2.12984i) q^{20} +(1.73712 + 1.73712i) q^{22} +(2.13100 + 7.95301i) q^{23} +(1.60489 + 2.77975i) q^{24} +(0.476010 - 4.97729i) q^{25} +(1.08349 + 0.625554i) q^{26} +(-9.76556 + 9.76556i) q^{27} -1.56821i q^{29} +(4.82748 + 5.31119i) q^{30} +(0.594910 - 0.343471i) q^{31} +(-0.258819 + 0.965926i) q^{32} +(-7.61663 + 2.04087i) q^{33} -4.85633 q^{34} -7.30266 q^{36} +(-2.63765 + 0.706756i) q^{37} +(0.270464 - 1.00938i) q^{38} +(-3.47777 + 2.00789i) q^{39} +(-0.106560 + 2.23353i) q^{40} -7.63326i q^{41} +(4.56555 - 4.56555i) q^{43} +(-2.12753 - 1.22833i) q^{44} +(-15.9563 + 3.46986i) q^{45} +(-4.11678 - 7.13047i) q^{46} +(2.63166 + 9.82150i) q^{47} +(-2.26965 - 2.26965i) q^{48} +(0.828427 + 4.93089i) q^{50} +(7.79387 - 13.4994i) q^{51} +(-1.20848 - 0.323811i) q^{52} +(-1.72513 - 0.462247i) q^{53} +(6.90529 - 11.9603i) q^{54} +(-5.23229 - 1.67300i) q^{55} +(2.37177 + 2.37177i) q^{57} +(0.405882 + 1.51477i) q^{58} +(3.42620 + 5.93435i) q^{59} +(-6.03763 - 3.88077i) q^{60} +(0.544847 + 0.314567i) q^{61} +(-0.485742 + 0.485742i) q^{62} -1.00000i q^{64} +(-2.79439 - 0.133318i) q^{65} +(6.82889 - 3.94266i) q^{66} +(0.136078 - 0.507848i) q^{67} +(4.69086 - 1.25691i) q^{68} +26.4279 q^{69} -10.9419 q^{71} +(7.05383 - 1.89007i) q^{72} +(2.60957 - 9.73903i) q^{73} +(2.36485 - 1.36535i) q^{74} +(-15.0362 - 5.61071i) q^{75} +1.04499i q^{76} +(2.83958 - 2.83958i) q^{78} +(-7.06156 - 4.07700i) q^{79} +(-0.475150 - 2.18500i) q^{80} +(11.2105 + 19.4171i) q^{81} +(1.97563 + 7.37316i) q^{82} +(6.80896 + 6.80896i) q^{83} +(9.65231 - 4.97522i) q^{85} +(-3.22833 + 5.59163i) q^{86} +(-4.86208 - 1.30279i) q^{87} +(2.37295 + 0.635829i) q^{88} +(3.90949 - 6.77143i) q^{89} +(14.5146 - 7.48143i) q^{90} +(5.82200 + 5.82200i) q^{92} +(-0.570678 - 2.12980i) q^{93} +(-5.08398 - 8.80571i) q^{94} +(0.496528 + 2.28331i) q^{95} +(2.77975 + 1.60489i) q^{96} +(7.49243 - 7.49243i) q^{97} +17.9401i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{11} - 48 q^{15} + 16 q^{16} + 16 q^{18} + 32 q^{22} - 16 q^{23} - 32 q^{25} - 40 q^{30} - 96 q^{36} + 48 q^{37} + 32 q^{43} + 16 q^{46} - 64 q^{50} + 80 q^{51} - 32 q^{53} + 96 q^{57} - 16 q^{58}+ \cdots - 40 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/490\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.965926 + 0.258819i −0.683013 + 0.183013i
\(3\) 0.830751 3.10041i 0.479634 1.79002i −0.123459 0.992350i \(-0.539399\pi\)
0.603094 0.797670i \(-0.293935\pi\)
\(4\) 0.866025 0.500000i 0.433013 0.250000i
\(5\) 1.65469 1.50399i 0.740001 0.672606i
\(6\) 3.20978i 1.31039i
\(7\) 0 0
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) −6.32429 3.65133i −2.10810 1.21711i
\(10\) −1.20905 + 1.88101i −0.382334 + 0.594828i
\(11\) −1.22833 2.12753i −0.370355 0.641473i 0.619265 0.785182i \(-0.287431\pi\)
−0.989620 + 0.143708i \(0.954097\pi\)
\(12\) −0.830751 3.10041i −0.239817 0.895010i
\(13\) −0.884667 0.884667i −0.245363 0.245363i 0.573702 0.819064i \(-0.305507\pi\)
−0.819064 + 0.573702i \(0.805507\pi\)
\(14\) 0 0
\(15\) −3.28835 6.37966i −0.849049 1.64722i
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 4.69086 + 1.25691i 1.13770 + 0.304846i 0.778026 0.628232i \(-0.216221\pi\)
0.359674 + 0.933078i \(0.382888\pi\)
\(18\) 7.05383 + 1.89007i 1.66260 + 0.445493i
\(19\) −0.522496 + 0.904990i −0.119869 + 0.207619i −0.919716 0.392585i \(-0.871581\pi\)
0.799847 + 0.600204i \(0.204914\pi\)
\(20\) 0.681009 2.12984i 0.152278 0.476247i
\(21\) 0 0
\(22\) 1.73712 + 1.73712i 0.370355 + 0.370355i
\(23\) 2.13100 + 7.95301i 0.444345 + 1.65832i 0.717661 + 0.696392i \(0.245213\pi\)
−0.273317 + 0.961924i \(0.588121\pi\)
\(24\) 1.60489 + 2.77975i 0.327596 + 0.567414i
\(25\) 0.476010 4.97729i 0.0952020 0.995458i
\(26\) 1.08349 + 0.625554i 0.212490 + 0.122681i
\(27\) −9.76556 + 9.76556i −1.87938 + 1.87938i
\(28\) 0 0
\(29\) 1.56821i 0.291209i −0.989343 0.145604i \(-0.953487\pi\)
0.989343 0.145604i \(-0.0465126\pi\)
\(30\) 4.82748 + 5.31119i 0.881373 + 0.969686i
\(31\) 0.594910 0.343471i 0.106849 0.0616893i −0.445623 0.895221i \(-0.647018\pi\)
0.552472 + 0.833531i \(0.313685\pi\)
\(32\) −0.258819 + 0.965926i −0.0457532 + 0.170753i
\(33\) −7.61663 + 2.04087i −1.32589 + 0.355270i
\(34\) −4.85633 −0.832855
\(35\) 0 0
\(36\) −7.30266 −1.21711
\(37\) −2.63765 + 0.706756i −0.433627 + 0.116190i −0.469028 0.883183i \(-0.655396\pi\)
0.0354013 + 0.999373i \(0.488729\pi\)
\(38\) 0.270464 1.00938i 0.0438750 0.163744i
\(39\) −3.47777 + 2.00789i −0.556888 + 0.321520i
\(40\) −0.106560 + 2.23353i −0.0168486 + 0.353152i
\(41\) 7.63326i 1.19212i −0.802942 0.596058i \(-0.796733\pi\)
0.802942 0.596058i \(-0.203267\pi\)
\(42\) 0 0
\(43\) 4.56555 4.56555i 0.696239 0.696239i −0.267358 0.963597i \(-0.586151\pi\)
0.963597 + 0.267358i \(0.0861507\pi\)
\(44\) −2.12753 1.22833i −0.320737 0.185177i
\(45\) −15.9563 + 3.46986i −2.37863 + 0.517257i
\(46\) −4.11678 7.13047i −0.606986 1.05133i
\(47\) 2.63166 + 9.82150i 0.383867 + 1.43261i 0.839944 + 0.542672i \(0.182587\pi\)
−0.456077 + 0.889940i \(0.650746\pi\)
\(48\) −2.26965 2.26965i −0.327596 0.327596i
\(49\) 0 0
\(50\) 0.828427 + 4.93089i 0.117157 + 0.697334i
\(51\) 7.79387 13.4994i 1.09136 1.89029i
\(52\) −1.20848 0.323811i −0.167586 0.0449045i
\(53\) −1.72513 0.462247i −0.236965 0.0634945i 0.138382 0.990379i \(-0.455810\pi\)
−0.375347 + 0.926884i \(0.622476\pi\)
\(54\) 6.90529 11.9603i 0.939692 1.62759i
\(55\) −5.23229 1.67300i −0.705522 0.225588i
\(56\) 0 0
\(57\) 2.37177 + 2.37177i 0.314149 + 0.314149i
\(58\) 0.405882 + 1.51477i 0.0532949 + 0.198899i
\(59\) 3.42620 + 5.93435i 0.446053 + 0.772587i 0.998125 0.0612096i \(-0.0194958\pi\)
−0.552072 + 0.833797i \(0.686162\pi\)
\(60\) −6.03763 3.88077i −0.779454 0.501006i
\(61\) 0.544847 + 0.314567i 0.0697605 + 0.0402762i 0.534475 0.845185i \(-0.320510\pi\)
−0.464714 + 0.885461i \(0.653843\pi\)
\(62\) −0.485742 + 0.485742i −0.0616893 + 0.0616893i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −2.79439 0.133318i −0.346601 0.0165361i
\(66\) 6.82889 3.94266i 0.840578 0.485308i
\(67\) 0.136078 0.507848i 0.0166245 0.0620435i −0.957115 0.289707i \(-0.906442\pi\)
0.973740 + 0.227664i \(0.0731087\pi\)
\(68\) 4.69086 1.25691i 0.568850 0.152423i
\(69\) 26.4279 3.18154
\(70\) 0 0
\(71\) −10.9419 −1.29857 −0.649285 0.760546i \(-0.724932\pi\)
−0.649285 + 0.760546i \(0.724932\pi\)
\(72\) 7.05383 1.89007i 0.831302 0.222747i
\(73\) 2.60957 9.73903i 0.305427 1.13987i −0.627151 0.778898i \(-0.715779\pi\)
0.932578 0.360970i \(-0.117554\pi\)
\(74\) 2.36485 1.36535i 0.274908 0.158718i
\(75\) −15.0362 5.61071i −1.73623 0.647869i
\(76\) 1.04499i 0.119869i
\(77\) 0 0
\(78\) 2.83958 2.83958i 0.321520 0.321520i
\(79\) −7.06156 4.07700i −0.794488 0.458698i 0.0470521 0.998892i \(-0.485017\pi\)
−0.841540 + 0.540195i \(0.818351\pi\)
\(80\) −0.475150 2.18500i −0.0531234 0.244291i
\(81\) 11.2105 + 19.4171i 1.24561 + 2.15745i
\(82\) 1.97563 + 7.37316i 0.218172 + 0.814230i
\(83\) 6.80896 + 6.80896i 0.747381 + 0.747381i 0.973987 0.226606i \(-0.0727629\pi\)
−0.226606 + 0.973987i \(0.572763\pi\)
\(84\) 0 0
\(85\) 9.65231 4.97522i 1.04694 0.539638i
\(86\) −3.22833 + 5.59163i −0.348120 + 0.602961i
\(87\) −4.86208 1.30279i −0.521269 0.139674i
\(88\) 2.37295 + 0.635829i 0.252957 + 0.0677796i
\(89\) 3.90949 6.77143i 0.414405 0.717770i −0.580961 0.813931i \(-0.697323\pi\)
0.995366 + 0.0961615i \(0.0306565\pi\)
\(90\) 14.5146 7.48143i 1.52997 0.788612i
\(91\) 0 0
\(92\) 5.82200 + 5.82200i 0.606986 + 0.606986i
\(93\) −0.570678 2.12980i −0.0591766 0.220850i
\(94\) −5.08398 8.80571i −0.524373 0.908240i
\(95\) 0.496528 + 2.28331i 0.0509427 + 0.234263i
\(96\) 2.77975 + 1.60489i 0.283707 + 0.163798i
\(97\) 7.49243 7.49243i 0.760741 0.760741i −0.215715 0.976456i \(-0.569208\pi\)
0.976456 + 0.215715i \(0.0692083\pi\)
\(98\) 0 0
\(99\) 17.9401i 1.80305i
\(100\) −2.07641 4.54846i −0.207641 0.454846i
\(101\) −0.346727 + 0.200183i −0.0345006 + 0.0199189i −0.517151 0.855894i \(-0.673007\pi\)
0.482651 + 0.875813i \(0.339674\pi\)
\(102\) −4.03441 + 15.0566i −0.399466 + 1.49083i
\(103\) 0.549691 0.147289i 0.0541627 0.0145128i −0.231636 0.972803i \(-0.574408\pi\)
0.285799 + 0.958290i \(0.407741\pi\)
\(104\) 1.25111 0.122681
\(105\) 0 0
\(106\) 1.78598 0.173470
\(107\) 4.53554 1.21529i 0.438467 0.117487i −0.0328310 0.999461i \(-0.510452\pi\)
0.471298 + 0.881974i \(0.343786\pi\)
\(108\) −3.57444 + 13.3400i −0.343951 + 1.28364i
\(109\) 5.71712 3.30078i 0.547601 0.316158i −0.200553 0.979683i \(-0.564274\pi\)
0.748154 + 0.663525i \(0.230940\pi\)
\(110\) 5.48701 + 0.261782i 0.523166 + 0.0249599i
\(111\) 8.76492i 0.831930i
\(112\) 0 0
\(113\) −12.9309 + 12.9309i −1.21644 + 1.21644i −0.247565 + 0.968871i \(0.579630\pi\)
−0.968871 + 0.247565i \(0.920370\pi\)
\(114\) −2.90481 1.67710i −0.272061 0.157074i
\(115\) 15.4874 + 9.95476i 1.44421 + 0.928286i
\(116\) −0.784103 1.35811i −0.0728021 0.126097i
\(117\) 2.36468 + 8.82511i 0.218615 + 0.815882i
\(118\) −4.84538 4.84538i −0.446053 0.446053i
\(119\) 0 0
\(120\) 6.83632 + 2.18589i 0.624067 + 0.199543i
\(121\) 2.48242 4.29968i 0.225675 0.390880i
\(122\) −0.607698 0.162832i −0.0550183 0.0147421i
\(123\) −23.6662 6.34134i −2.13391 0.571779i
\(124\) 0.343471 0.594910i 0.0308446 0.0534245i
\(125\) −6.69816 8.95180i −0.599102 0.800673i
\(126\) 0 0
\(127\) −2.41155 2.41155i −0.213991 0.213991i 0.591970 0.805960i \(-0.298351\pi\)
−0.805960 + 0.591970i \(0.798351\pi\)
\(128\) 0.258819 + 0.965926i 0.0228766 + 0.0853766i
\(129\) −10.3622 17.9479i −0.912342 1.58022i
\(130\) 2.73367 0.594465i 0.239759 0.0521380i
\(131\) 11.7298 + 6.77221i 1.02484 + 0.591691i 0.915502 0.402314i \(-0.131794\pi\)
0.109337 + 0.994005i \(0.465127\pi\)
\(132\) −5.57576 + 5.57576i −0.485308 + 0.485308i
\(133\) 0 0
\(134\) 0.525763i 0.0454190i
\(135\) −1.47166 + 30.8463i −0.126660 + 2.65483i
\(136\) −4.20571 + 2.42817i −0.360637 + 0.208214i
\(137\) −2.13979 + 7.98579i −0.182814 + 0.682272i 0.812273 + 0.583277i \(0.198230\pi\)
−0.995088 + 0.0989957i \(0.968437\pi\)
\(138\) −25.5274 + 6.84004i −2.17303 + 0.582263i
\(139\) −1.44739 −0.122766 −0.0613832 0.998114i \(-0.519551\pi\)
−0.0613832 + 0.998114i \(0.519551\pi\)
\(140\) 0 0
\(141\) 32.6369 2.74852
\(142\) 10.5691 2.83198i 0.886939 0.237655i
\(143\) −0.795492 + 2.96882i −0.0665224 + 0.248265i
\(144\) −6.32429 + 3.65133i −0.527024 + 0.304278i
\(145\) −2.35857 2.59490i −0.195869 0.215495i
\(146\) 10.0826i 0.834441i
\(147\) 0 0
\(148\) −1.93089 + 1.93089i −0.158718 + 0.158718i
\(149\) 18.3274 + 10.5813i 1.50144 + 0.866856i 0.999999 + 0.00166336i \(0.000529463\pi\)
0.501440 + 0.865193i \(0.332804\pi\)
\(150\) 15.9760 + 1.52789i 1.30443 + 0.124751i
\(151\) 3.35419 + 5.80963i 0.272960 + 0.472781i 0.969618 0.244622i \(-0.0786640\pi\)
−0.696658 + 0.717403i \(0.745331\pi\)
\(152\) −0.270464 1.00938i −0.0219375 0.0818719i
\(153\) −25.0770 25.0770i −2.02735 2.02735i
\(154\) 0 0
\(155\) 0.467814 1.46308i 0.0375757 0.117517i
\(156\) −2.00789 + 3.47777i −0.160760 + 0.278444i
\(157\) 17.3474 + 4.64823i 1.38447 + 0.370969i 0.872744 0.488178i \(-0.162338\pi\)
0.511730 + 0.859146i \(0.329005\pi\)
\(158\) 7.87615 + 2.11041i 0.626593 + 0.167895i
\(159\) −2.86630 + 4.96459i −0.227313 + 0.393717i
\(160\) 1.02448 + 1.98757i 0.0809923 + 0.157131i
\(161\) 0 0
\(162\) −15.8540 15.8540i −1.24561 1.24561i
\(163\) 0.771907 + 2.88080i 0.0604604 + 0.225641i 0.989545 0.144227i \(-0.0460695\pi\)
−0.929084 + 0.369868i \(0.879403\pi\)
\(164\) −3.81663 6.61060i −0.298029 0.516201i
\(165\) −9.53372 + 14.8324i −0.742199 + 1.15470i
\(166\) −8.33924 4.81466i −0.647251 0.373690i
\(167\) 6.41955 6.41955i 0.496760 0.496760i −0.413668 0.910428i \(-0.635753\pi\)
0.910428 + 0.413668i \(0.135753\pi\)
\(168\) 0 0
\(169\) 11.4347i 0.879594i
\(170\) −8.03574 + 7.30389i −0.616313 + 0.560183i
\(171\) 6.60883 3.81561i 0.505390 0.291787i
\(172\) 1.67111 6.23665i 0.127421 0.475540i
\(173\) 21.2267 5.68769i 1.61384 0.432427i 0.664655 0.747150i \(-0.268578\pi\)
0.949183 + 0.314723i \(0.101912\pi\)
\(174\) 5.03359 0.381596
\(175\) 0 0
\(176\) −2.45666 −0.185177
\(177\) 21.2452 5.69264i 1.59689 0.427885i
\(178\) −2.02370 + 7.55255i −0.151683 + 0.566087i
\(179\) 11.6386 6.71954i 0.869908 0.502242i 0.00259060 0.999997i \(-0.499175\pi\)
0.867318 + 0.497755i \(0.165842\pi\)
\(180\) −12.0837 + 10.9832i −0.900663 + 0.818636i
\(181\) 13.1067i 0.974210i 0.873343 + 0.487105i \(0.161947\pi\)
−0.873343 + 0.487105i \(0.838053\pi\)
\(182\) 0 0
\(183\) 1.42792 1.42792i 0.105555 0.105555i
\(184\) −7.13047 4.11678i −0.525665 0.303493i
\(185\) −3.30154 + 5.13647i −0.242734 + 0.377641i
\(186\) 1.10247 + 1.90953i 0.0808367 + 0.140013i
\(187\) −3.08780 11.5238i −0.225802 0.842706i
\(188\) 7.18984 + 7.18984i 0.524373 + 0.524373i
\(189\) 0 0
\(190\) −1.07057 2.07700i −0.0776675 0.150681i
\(191\) −2.90542 + 5.03234i −0.210229 + 0.364127i −0.951786 0.306762i \(-0.900754\pi\)
0.741557 + 0.670890i \(0.234088\pi\)
\(192\) −3.10041 0.830751i −0.223753 0.0599543i
\(193\) −21.0589 5.64271i −1.51585 0.406171i −0.597478 0.801885i \(-0.703830\pi\)
−0.918374 + 0.395714i \(0.870497\pi\)
\(194\) −5.29795 + 9.17632i −0.380371 + 0.658821i
\(195\) −2.73478 + 8.55298i −0.195842 + 0.612491i
\(196\) 0 0
\(197\) 1.95310 + 1.95310i 0.139152 + 0.139152i 0.773252 0.634099i \(-0.218629\pi\)
−0.634099 + 0.773252i \(0.718629\pi\)
\(198\) −4.64325 17.3288i −0.329981 1.23151i
\(199\) −3.35205 5.80592i −0.237620 0.411570i 0.722411 0.691464i \(-0.243034\pi\)
−0.960031 + 0.279894i \(0.909701\pi\)
\(200\) 3.18289 + 3.85607i 0.225064 + 0.272665i
\(201\) −1.46149 0.843791i −0.103085 0.0595164i
\(202\) 0.283101 0.283101i 0.0199189 0.0199189i
\(203\) 0 0
\(204\) 15.5877i 1.09136i
\(205\) −11.4804 12.6307i −0.801824 0.882166i
\(206\) −0.492839 + 0.284541i −0.0343377 + 0.0198249i
\(207\) 15.5620 58.0781i 1.08163 4.03671i
\(208\) −1.20848 + 0.323811i −0.0837929 + 0.0224522i
\(209\) 2.56719 0.177576
\(210\) 0 0
\(211\) −20.7751 −1.43022 −0.715108 0.699014i \(-0.753623\pi\)
−0.715108 + 0.699014i \(0.753623\pi\)
\(212\) −1.72513 + 0.462247i −0.118482 + 0.0317472i
\(213\) −9.09003 + 33.9244i −0.622838 + 2.32446i
\(214\) −4.06645 + 2.34777i −0.277977 + 0.160490i
\(215\) 0.688022 14.4211i 0.0469227 0.983512i
\(216\) 13.8106i 0.939692i
\(217\) 0 0
\(218\) −4.66801 + 4.66801i −0.316158 + 0.316158i
\(219\) −28.0270 16.1814i −1.89389 1.09344i
\(220\) −5.36780 + 1.16728i −0.361897 + 0.0786981i
\(221\) −3.03790 5.26180i −0.204351 0.353947i
\(222\) −2.26853 8.46626i −0.152254 0.568218i
\(223\) 5.36473 + 5.36473i 0.359249 + 0.359249i 0.863536 0.504287i \(-0.168245\pi\)
−0.504287 + 0.863536i \(0.668245\pi\)
\(224\) 0 0
\(225\) −21.1842 + 29.7398i −1.41228 + 1.98265i
\(226\) 9.14352 15.8370i 0.608218 1.05346i
\(227\) −19.6002 5.25185i −1.30091 0.348577i −0.459115 0.888377i \(-0.651833\pi\)
−0.841793 + 0.539800i \(0.818500\pi\)
\(228\) 3.23990 + 0.868128i 0.214568 + 0.0574932i
\(229\) 3.57868 6.19845i 0.236486 0.409605i −0.723218 0.690620i \(-0.757338\pi\)
0.959703 + 0.281015i \(0.0906711\pi\)
\(230\) −17.5362 5.60712i −1.15630 0.369723i
\(231\) 0 0
\(232\) 1.10889 + 1.10889i 0.0728021 + 0.0728021i
\(233\) −1.00998 3.76930i −0.0661661 0.246935i 0.924919 0.380164i \(-0.124132\pi\)
−0.991085 + 0.133228i \(0.957466\pi\)
\(234\) −4.56821 7.91238i −0.298633 0.517248i
\(235\) 19.1261 + 12.2936i 1.24765 + 0.801943i
\(236\) 5.93435 + 3.42620i 0.386294 + 0.223027i
\(237\) −18.5067 + 18.5067i −1.20214 + 1.20214i
\(238\) 0 0
\(239\) 4.13821i 0.267679i −0.991003 0.133839i \(-0.957269\pi\)
0.991003 0.133839i \(-0.0427306\pi\)
\(240\) −7.16912 0.342034i −0.462765 0.0220782i
\(241\) 6.78622 3.91802i 0.437139 0.252382i −0.265244 0.964181i \(-0.585453\pi\)
0.702383 + 0.711799i \(0.252119\pi\)
\(242\) −1.28499 + 4.79567i −0.0826026 + 0.308277i
\(243\) 29.4939 7.90287i 1.89203 0.506969i
\(244\) 0.629135 0.0402762
\(245\) 0 0
\(246\) 24.5011 1.56213
\(247\) 1.26285 0.338380i 0.0803532 0.0215306i
\(248\) −0.177794 + 0.663536i −0.0112899 + 0.0421346i
\(249\) 26.7671 15.4540i 1.69630 0.979357i
\(250\) 8.78682 + 6.91316i 0.555727 + 0.437227i
\(251\) 12.6769i 0.800158i 0.916481 + 0.400079i \(0.131017\pi\)
−0.916481 + 0.400079i \(0.868983\pi\)
\(252\) 0 0
\(253\) 14.3027 14.3027i 0.899201 0.899201i
\(254\) 2.95354 + 1.70523i 0.185321 + 0.106995i
\(255\) −7.40652 34.0593i −0.463814 2.13287i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 3.42876 + 12.7963i 0.213880 + 0.798212i 0.986558 + 0.163413i \(0.0522503\pi\)
−0.772677 + 0.634799i \(0.781083\pi\)
\(258\) 14.6544 + 14.6544i 0.912342 + 0.912342i
\(259\) 0 0
\(260\) −2.48667 + 1.28174i −0.154217 + 0.0794899i
\(261\) −5.72604 + 9.91779i −0.354433 + 0.613896i
\(262\) −13.0829 3.50555i −0.808265 0.216574i
\(263\) 26.1727 + 7.01294i 1.61388 + 0.432437i 0.949194 0.314691i \(-0.101901\pi\)
0.664681 + 0.747127i \(0.268567\pi\)
\(264\) 3.94266 6.82889i 0.242654 0.420289i
\(265\) −3.54977 + 1.82971i −0.218061 + 0.112398i
\(266\) 0 0
\(267\) −17.7464 17.7464i −1.08606 1.08606i
\(268\) −0.136078 0.507848i −0.00831226 0.0310218i
\(269\) 1.56915 + 2.71785i 0.0956729 + 0.165710i 0.909889 0.414851i \(-0.136166\pi\)
−0.814216 + 0.580562i \(0.802833\pi\)
\(270\) −6.56211 30.1762i −0.399357 1.83646i
\(271\) −28.2799 16.3274i −1.71788 0.991818i −0.922770 0.385352i \(-0.874080\pi\)
−0.795109 0.606466i \(-0.792587\pi\)
\(272\) 3.43395 3.43395i 0.208214 0.208214i
\(273\) 0 0
\(274\) 8.26750i 0.499458i
\(275\) −11.1740 + 5.10102i −0.673818 + 0.307603i
\(276\) 22.8872 13.2139i 1.37765 0.795386i
\(277\) −8.17724 + 30.5179i −0.491323 + 1.83364i 0.0583973 + 0.998293i \(0.481401\pi\)
−0.549720 + 0.835349i \(0.685266\pi\)
\(278\) 1.39807 0.374613i 0.0838510 0.0224678i
\(279\) −5.01651 −0.300331
\(280\) 0 0
\(281\) −28.8795 −1.72281 −0.861404 0.507920i \(-0.830414\pi\)
−0.861404 + 0.507920i \(0.830414\pi\)
\(282\) −31.5248 + 8.44705i −1.87728 + 0.503014i
\(283\) 1.12024 4.18079i 0.0665914 0.248522i −0.924604 0.380930i \(-0.875604\pi\)
0.991195 + 0.132407i \(0.0422707\pi\)
\(284\) −9.47600 + 5.47097i −0.562297 + 0.324642i
\(285\) 7.49168 + 0.357423i 0.443769 + 0.0211719i
\(286\) 3.07354i 0.181742i
\(287\) 0 0
\(288\) 5.16376 5.16376i 0.304278 0.304278i
\(289\) 5.70190 + 3.29199i 0.335406 + 0.193647i
\(290\) 2.94981 + 1.89604i 0.173219 + 0.111339i
\(291\) −17.0052 29.4539i −0.996864 1.72662i
\(292\) −2.60957 9.73903i −0.152713 0.569934i
\(293\) 1.50173 + 1.50173i 0.0877317 + 0.0877317i 0.749611 0.661879i \(-0.230241\pi\)
−0.661879 + 0.749611i \(0.730241\pi\)
\(294\) 0 0
\(295\) 14.5945 + 4.66655i 0.849727 + 0.271697i
\(296\) 1.36535 2.36485i 0.0793592 0.137454i
\(297\) 32.7718 + 8.78118i 1.90161 + 0.509536i
\(298\) −20.4415 5.47730i −1.18415 0.317291i
\(299\) 5.15054 8.92099i 0.297863 0.515914i
\(300\) −15.8271 + 2.65907i −0.913776 + 0.153521i
\(301\) 0 0
\(302\) −4.74354 4.74354i −0.272960 0.272960i
\(303\) 0.332604 + 1.24130i 0.0191076 + 0.0713106i
\(304\) 0.522496 + 0.904990i 0.0299672 + 0.0519047i
\(305\) 1.37466 0.298934i 0.0787128 0.0171169i
\(306\) 30.7129 + 17.7321i 1.75574 + 1.01368i
\(307\) 13.6493 13.6493i 0.779006 0.779006i −0.200656 0.979662i \(-0.564307\pi\)
0.979662 + 0.200656i \(0.0643073\pi\)
\(308\) 0 0
\(309\) 1.82663i 0.103913i
\(310\) −0.0732007 + 1.53431i −0.00415752 + 0.0871427i
\(311\) −26.3403 + 15.2076i −1.49362 + 0.862343i −0.999973 0.00731761i \(-0.997671\pi\)
−0.493649 + 0.869661i \(0.664337\pi\)
\(312\) 1.03936 3.87894i 0.0588422 0.219602i
\(313\) −18.7948 + 5.03606i −1.06235 + 0.284655i −0.747345 0.664437i \(-0.768672\pi\)
−0.315001 + 0.949091i \(0.602005\pi\)
\(314\) −17.9594 −1.01351
\(315\) 0 0
\(316\) −8.15399 −0.458698
\(317\) 13.3162 3.56808i 0.747914 0.200403i 0.135322 0.990802i \(-0.456793\pi\)
0.612593 + 0.790399i \(0.290127\pi\)
\(318\) 1.48371 5.53728i 0.0832022 0.310515i
\(319\) −3.33640 + 1.92627i −0.186803 + 0.107851i
\(320\) −1.50399 1.65469i −0.0840758 0.0925001i
\(321\) 15.0716i 0.841216i
\(322\) 0 0
\(323\) −3.58845 + 3.58845i −0.199667 + 0.199667i
\(324\) 19.4171 + 11.2105i 1.07873 + 0.622803i
\(325\) −4.82436 + 3.98214i −0.267607 + 0.220889i
\(326\) −1.49121 2.58285i −0.0825905 0.143051i
\(327\) −5.48426 20.4675i −0.303280 1.13186i
\(328\) 5.39753 + 5.39753i 0.298029 + 0.298029i
\(329\) 0 0
\(330\) 5.36997 16.7945i 0.295607 0.924506i
\(331\) −8.52457 + 14.7650i −0.468553 + 0.811557i −0.999354 0.0359392i \(-0.988558\pi\)
0.530801 + 0.847496i \(0.321891\pi\)
\(332\) 9.30122 + 2.49225i 0.510471 + 0.136780i
\(333\) 19.2619 + 5.16120i 1.05554 + 0.282832i
\(334\) −4.53931 + 7.86231i −0.248380 + 0.430207i
\(335\) −0.538634 1.04499i −0.0294287 0.0570940i
\(336\) 0 0
\(337\) 12.6551 + 12.6551i 0.689365 + 0.689365i 0.962092 0.272727i \(-0.0879255\pi\)
−0.272727 + 0.962092i \(0.587926\pi\)
\(338\) 2.95953 + 11.0451i 0.160977 + 0.600774i
\(339\) 29.3487 + 50.8334i 1.59400 + 2.76089i
\(340\) 5.87154 9.13482i 0.318429 0.495405i
\(341\) −1.46149 0.843791i −0.0791441 0.0456938i
\(342\) −5.39609 + 5.39609i −0.291787 + 0.291787i
\(343\) 0 0
\(344\) 6.45666i 0.348120i
\(345\) 43.7300 39.7473i 2.35434 2.13993i
\(346\) −19.0314 + 10.9878i −1.02313 + 0.590706i
\(347\) −8.14551 + 30.3995i −0.437274 + 1.63193i 0.298291 + 0.954475i \(0.403583\pi\)
−0.735565 + 0.677454i \(0.763083\pi\)
\(348\) −4.86208 + 1.30279i −0.260635 + 0.0698368i
\(349\) −29.3377 −1.57041 −0.785206 0.619235i \(-0.787443\pi\)
−0.785206 + 0.619235i \(0.787443\pi\)
\(350\) 0 0
\(351\) 17.2785 0.922261
\(352\) 2.37295 0.635829i 0.126479 0.0338898i
\(353\) 4.03406 15.0553i 0.214712 0.801314i −0.771556 0.636161i \(-0.780521\pi\)
0.986268 0.165153i \(-0.0528119\pi\)
\(354\) −19.0480 + 10.9973i −1.01239 + 0.584502i
\(355\) −18.1055 + 16.4566i −0.960942 + 0.873426i
\(356\) 7.81897i 0.414405i
\(357\) 0 0
\(358\) −9.50286 + 9.50286i −0.502242 + 0.502242i
\(359\) 4.41633 + 2.54977i 0.233085 + 0.134572i 0.611994 0.790862i \(-0.290368\pi\)
−0.378910 + 0.925434i \(0.623701\pi\)
\(360\) 8.82927 13.7364i 0.465343 0.723972i
\(361\) 8.95400 + 15.5088i 0.471263 + 0.816251i
\(362\) −3.39225 12.6601i −0.178293 0.665398i
\(363\) −11.2685 11.2685i −0.591441 0.591441i
\(364\) 0 0
\(365\) −10.3294 20.0399i −0.540666 1.04893i
\(366\) −1.00969 + 1.74884i −0.0527774 + 0.0914131i
\(367\) 13.0370 + 3.49325i 0.680526 + 0.182346i 0.582492 0.812837i \(-0.302078\pi\)
0.0980341 + 0.995183i \(0.468745\pi\)
\(368\) 7.95301 + 2.13100i 0.414579 + 0.111086i
\(369\) −27.8716 + 48.2750i −1.45094 + 2.51309i
\(370\) 1.85963 5.81595i 0.0966774 0.302357i
\(371\) 0 0
\(372\) −1.55912 1.55912i −0.0808367 0.0808367i
\(373\) 6.47676 + 24.1716i 0.335354 + 1.25156i 0.903485 + 0.428620i \(0.141000\pi\)
−0.568131 + 0.822938i \(0.692333\pi\)
\(374\) 5.96517 + 10.3320i 0.308452 + 0.534254i
\(375\) −33.3187 + 13.3303i −1.72057 + 0.688374i
\(376\) −8.80571 5.08398i −0.454120 0.262186i
\(377\) −1.38734 + 1.38734i −0.0714517 + 0.0714517i
\(378\) 0 0
\(379\) 27.5397i 1.41462i 0.706903 + 0.707311i \(0.250092\pi\)
−0.706903 + 0.707311i \(0.749908\pi\)
\(380\) 1.57166 + 1.72914i 0.0806245 + 0.0887030i
\(381\) −9.48019 + 5.47339i −0.485685 + 0.280410i
\(382\) 1.50396 5.61285i 0.0769492 0.287178i
\(383\) −23.5667 + 6.31468i −1.20420 + 0.322665i −0.804484 0.593974i \(-0.797558\pi\)
−0.399717 + 0.916639i \(0.630892\pi\)
\(384\) 3.20978 0.163798
\(385\) 0 0
\(386\) 21.8018 1.10968
\(387\) −45.5442 + 12.2035i −2.31514 + 0.620340i
\(388\) 2.74242 10.2349i 0.139225 0.519596i
\(389\) 18.1725 10.4919i 0.921382 0.531960i 0.0373065 0.999304i \(-0.488122\pi\)
0.884076 + 0.467344i \(0.154789\pi\)
\(390\) 0.427922 8.96935i 0.0216687 0.454181i
\(391\) 39.9849i 2.02212i
\(392\) 0 0
\(393\) 30.7412 30.7412i 1.55069 1.55069i
\(394\) −2.39204 1.38105i −0.120509 0.0695761i
\(395\) −17.8165 + 3.87437i −0.896445 + 0.194941i
\(396\) 8.97007 + 15.5366i 0.450763 + 0.780744i
\(397\) 6.28677 + 23.4625i 0.315524 + 1.17755i 0.923501 + 0.383597i \(0.125315\pi\)
−0.607977 + 0.793955i \(0.708019\pi\)
\(398\) 4.74051 + 4.74051i 0.237620 + 0.237620i
\(399\) 0 0
\(400\) −4.07245 2.90088i −0.203623 0.145044i
\(401\) −18.6178 + 32.2469i −0.929727 + 1.61033i −0.145949 + 0.989292i \(0.546623\pi\)
−0.783778 + 0.621041i \(0.786710\pi\)
\(402\) 1.63008 + 0.436778i 0.0813010 + 0.0217845i
\(403\) −0.830155 0.222439i −0.0413530 0.0110805i
\(404\) −0.200183 + 0.346727i −0.00995946 + 0.0172503i
\(405\) 47.7530 + 15.2688i 2.37287 + 0.758714i
\(406\) 0 0
\(407\) 4.74354 + 4.74354i 0.235129 + 0.235129i
\(408\) 4.03441 + 15.0566i 0.199733 + 0.745413i
\(409\) −10.8522 18.7965i −0.536606 0.929428i −0.999084 0.0427977i \(-0.986373\pi\)
0.462478 0.886631i \(-0.346960\pi\)
\(410\) 14.3583 + 9.22898i 0.709103 + 0.455787i
\(411\) 22.9816 + 13.2684i 1.13360 + 0.654483i
\(412\) 0.402402 0.402402i 0.0198249 0.0198249i
\(413\) 0 0
\(414\) 60.1269i 2.95508i
\(415\) 21.5074 + 1.02610i 1.05576 + 0.0503694i
\(416\) 1.08349 0.625554i 0.0531226 0.0306703i
\(417\) −1.20242 + 4.48751i −0.0588830 + 0.219754i
\(418\) −2.47971 + 0.664437i −0.121287 + 0.0324987i
\(419\) −19.6046 −0.957749 −0.478874 0.877883i \(-0.658955\pi\)
−0.478874 + 0.877883i \(0.658955\pi\)
\(420\) 0 0
\(421\) 14.2142 0.692757 0.346378 0.938095i \(-0.387411\pi\)
0.346378 + 0.938095i \(0.387411\pi\)
\(422\) 20.0672 5.37699i 0.976856 0.261748i
\(423\) 19.2181 71.7231i 0.934418 3.48730i
\(424\) 1.54671 0.892992i 0.0751148 0.0433675i
\(425\) 8.48891 22.7495i 0.411773 1.10351i
\(426\) 35.1212i 1.70163i
\(427\) 0 0
\(428\) 3.32024 3.32024i 0.160490 0.160490i
\(429\) 8.54368 + 4.93269i 0.412493 + 0.238153i
\(430\) 3.06788 + 14.1078i 0.147946 + 0.680339i
\(431\) −6.61065 11.4500i −0.318424 0.551526i 0.661736 0.749737i \(-0.269820\pi\)
−0.980159 + 0.198211i \(0.936487\pi\)
\(432\) 3.57444 + 13.3400i 0.171975 + 0.641821i
\(433\) 7.65911 + 7.65911i 0.368073 + 0.368073i 0.866774 0.498701i \(-0.166189\pi\)
−0.498701 + 0.866774i \(0.666189\pi\)
\(434\) 0 0
\(435\) −10.0046 + 5.15681i −0.479685 + 0.247250i
\(436\) 3.30078 5.71712i 0.158079 0.273801i
\(437\) −8.31083 2.22688i −0.397561 0.106526i
\(438\) 31.2601 + 8.37612i 1.49367 + 0.400227i
\(439\) 13.8841 24.0480i 0.662652 1.14775i −0.317264 0.948337i \(-0.602764\pi\)
0.979916 0.199409i \(-0.0639024\pi\)
\(440\) 4.88278 2.51680i 0.232777 0.119984i
\(441\) 0 0
\(442\) 4.29624 + 4.29624i 0.204351 + 0.204351i
\(443\) −8.63132 32.2125i −0.410087 1.53046i −0.794478 0.607293i \(-0.792255\pi\)
0.384391 0.923170i \(-0.374411\pi\)
\(444\) 4.38246 + 7.59064i 0.207982 + 0.360236i
\(445\) −3.71519 17.0845i −0.176117 0.809881i
\(446\) −6.57042 3.79344i −0.311119 0.179624i
\(447\) 48.0319 48.0319i 2.27183 2.27183i
\(448\) 0 0
\(449\) 18.2049i 0.859144i 0.903033 + 0.429572i \(0.141336\pi\)
−0.903033 + 0.429572i \(0.858664\pi\)
\(450\) 12.7651 34.2093i 0.601753 1.61264i
\(451\) −16.2400 + 9.37615i −0.764710 + 0.441506i
\(452\) −4.73304 + 17.6639i −0.222623 + 0.830841i
\(453\) 20.7987 5.57300i 0.977208 0.261842i
\(454\) 20.2916 0.952331
\(455\) 0 0
\(456\) −3.35419 −0.157074
\(457\) −31.8056 + 8.52227i −1.48780 + 0.398655i −0.908994 0.416809i \(-0.863148\pi\)
−0.578807 + 0.815464i \(0.696482\pi\)
\(458\) −1.85246 + 6.91347i −0.0865597 + 0.323045i
\(459\) −58.0833 + 33.5344i −2.71110 + 1.56525i
\(460\) 18.3899 + 0.877369i 0.857432 + 0.0409075i
\(461\) 21.3025i 0.992156i −0.868278 0.496078i \(-0.834773\pi\)
0.868278 0.496078i \(-0.165227\pi\)
\(462\) 0 0
\(463\) −4.73701 + 4.73701i −0.220147 + 0.220147i −0.808560 0.588413i \(-0.799753\pi\)
0.588413 + 0.808560i \(0.299753\pi\)
\(464\) −1.35811 0.784103i −0.0630485 0.0364011i
\(465\) −4.14750 2.66587i −0.192336 0.123627i
\(466\) 1.95113 + 3.37946i 0.0903845 + 0.156551i
\(467\) −1.32248 4.93558i −0.0611972 0.228391i 0.928553 0.371200i \(-0.121053\pi\)
−0.989750 + 0.142808i \(0.954387\pi\)
\(468\) 6.46043 + 6.46043i 0.298633 + 0.298633i
\(469\) 0 0
\(470\) −21.6562 6.92447i −0.998924 0.319402i
\(471\) 28.8228 49.9225i 1.32808 2.30031i
\(472\) −6.61891 1.77353i −0.304660 0.0816334i
\(473\) −15.3213 4.10533i −0.704475 0.188763i
\(474\) 13.0862 22.6660i 0.601071 1.04109i
\(475\) 4.25568 + 3.03140i 0.195264 + 0.139090i
\(476\) 0 0
\(477\) 9.22240 + 9.22240i 0.422265 + 0.422265i
\(478\) 1.07105 + 3.99721i 0.0489886 + 0.182828i
\(479\) 13.6094 + 23.5722i 0.621829 + 1.07704i 0.989145 + 0.146943i \(0.0469434\pi\)
−0.367316 + 0.930096i \(0.619723\pi\)
\(480\) 7.01337 1.52513i 0.320115 0.0696122i
\(481\) 2.95869 + 1.70820i 0.134904 + 0.0778871i
\(482\) −5.54092 + 5.54092i −0.252382 + 0.252382i
\(483\) 0 0
\(484\) 4.96484i 0.225675i
\(485\) 1.12910 23.6662i 0.0512698 1.07463i
\(486\) −26.4435 + 15.2672i −1.19950 + 0.692533i
\(487\) 1.32394 4.94101i 0.0599935 0.223899i −0.929420 0.369024i \(-0.879692\pi\)
0.989413 + 0.145126i \(0.0463586\pi\)
\(488\) −0.607698 + 0.162832i −0.0275092 + 0.00737106i
\(489\) 9.57290 0.432901
\(490\) 0 0
\(491\) −2.12537 −0.0959165 −0.0479582 0.998849i \(-0.515271\pi\)
−0.0479582 + 0.998849i \(0.515271\pi\)
\(492\) −23.6662 + 6.34134i −1.06696 + 0.285890i
\(493\) 1.97110 7.35623i 0.0887737 0.331308i
\(494\) −1.13224 + 0.653699i −0.0509419 + 0.0294113i
\(495\) 26.9818 + 29.6854i 1.21274 + 1.33426i
\(496\) 0.686943i 0.0308446i
\(497\) 0 0
\(498\) −21.8553 + 21.8553i −0.979357 + 0.979357i
\(499\) 7.24451 + 4.18262i 0.324309 + 0.187240i 0.653311 0.757089i \(-0.273379\pi\)
−0.329003 + 0.944329i \(0.606713\pi\)
\(500\) −10.2767 4.40340i −0.459587 0.196926i
\(501\) −14.5702 25.2363i −0.650947 1.12747i
\(502\) −3.28102 12.2449i −0.146439 0.546518i
\(503\) 10.4440 + 10.4440i 0.465673 + 0.465673i 0.900510 0.434836i \(-0.143194\pi\)
−0.434836 + 0.900510i \(0.643194\pi\)
\(504\) 0 0
\(505\) −0.272652 + 0.852715i −0.0121329 + 0.0379453i
\(506\) −10.1135 + 17.5171i −0.449600 + 0.778731i
\(507\) −35.4523 9.49941i −1.57449 0.421884i
\(508\) −3.29424 0.882690i −0.146158 0.0391630i
\(509\) −1.64902 + 2.85618i −0.0730914 + 0.126598i −0.900255 0.435364i \(-0.856620\pi\)
0.827163 + 0.561962i \(0.189953\pi\)
\(510\) 15.9693 + 30.9818i 0.707134 + 1.37190i
\(511\) 0 0
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) −3.73526 13.9402i −0.164916 0.615475i
\(514\) −6.62386 11.4729i −0.292166 0.506046i
\(515\) 0.688047 1.07045i 0.0303190 0.0471696i
\(516\) −17.9479 10.3622i −0.790111 0.456171i
\(517\) 17.6630 17.6630i 0.776816 0.776816i
\(518\) 0 0
\(519\) 70.5365i 3.09621i
\(520\) 2.07020 1.88166i 0.0907842 0.0825162i
\(521\) 23.1368 13.3580i 1.01364 0.585226i 0.101385 0.994847i \(-0.467673\pi\)
0.912255 + 0.409622i \(0.134339\pi\)
\(522\) 2.96402 11.0619i 0.129731 0.484165i
\(523\) 17.3200 4.64087i 0.757349 0.202931i 0.140574 0.990070i \(-0.455105\pi\)
0.616776 + 0.787139i \(0.288439\pi\)
\(524\) 13.5444 0.591691
\(525\) 0 0
\(526\) −27.0959 −1.18144
\(527\) 3.22235 0.863426i 0.140368 0.0376114i
\(528\) −2.04087 + 7.61663i −0.0888175 + 0.331471i
\(529\) −38.7905 + 22.3957i −1.68655 + 0.973727i
\(530\) 2.95525 2.68611i 0.128368 0.116677i
\(531\) 50.0408i 2.17159i
\(532\) 0 0
\(533\) −6.75290 + 6.75290i −0.292500 + 0.292500i
\(534\) 21.7348 + 12.5486i 0.940555 + 0.543030i
\(535\) 5.67712 8.83235i 0.245443 0.381856i
\(536\) 0.262882 + 0.455324i 0.0113548 + 0.0196670i
\(537\) −11.1645 41.6666i −0.481785 1.79805i
\(538\) −2.21912 2.21912i −0.0956729 0.0956729i
\(539\) 0 0
\(540\) 14.1487 + 27.4495i 0.608862 + 1.18124i
\(541\) 1.69664 2.93866i 0.0729441 0.126343i −0.827246 0.561839i \(-0.810094\pi\)
0.900190 + 0.435497i \(0.143427\pi\)
\(542\) 31.5421 + 8.45168i 1.35485 + 0.363031i
\(543\) 40.6359 + 10.8884i 1.74386 + 0.467265i
\(544\) −2.42817 + 4.20571i −0.104107 + 0.180318i
\(545\) 4.49572 14.0603i 0.192576 0.602277i
\(546\) 0 0
\(547\) 23.9016 + 23.9016i 1.02196 + 1.02196i 0.999753 + 0.0222038i \(0.00706828\pi\)
0.0222038 + 0.999753i \(0.492932\pi\)
\(548\) 2.13979 + 7.98579i 0.0914072 + 0.341136i
\(549\) −2.29718 3.97883i −0.0980412 0.169812i
\(550\) 9.47303 7.81926i 0.403931 0.333414i
\(551\) 1.41921 + 0.819381i 0.0604604 + 0.0349068i
\(552\) −18.6873 + 18.6873i −0.795386 + 0.795386i
\(553\) 0 0
\(554\) 31.5944i 1.34232i
\(555\) 13.1824 + 14.5032i 0.559561 + 0.615628i
\(556\) −1.25348 + 0.723697i −0.0531594 + 0.0306916i
\(557\) 3.32361 12.4039i 0.140826 0.525569i −0.859080 0.511841i \(-0.828964\pi\)
0.999906 0.0137276i \(-0.00436976\pi\)
\(558\) 4.84558 1.29837i 0.205130 0.0549643i
\(559\) −8.07798 −0.341662
\(560\) 0 0
\(561\) −38.2937 −1.61676
\(562\) 27.8955 7.47457i 1.17670 0.315296i
\(563\) 1.10957 4.14097i 0.0467627 0.174521i −0.938595 0.345021i \(-0.887872\pi\)
0.985358 + 0.170500i \(0.0545384\pi\)
\(564\) 28.2644 16.3184i 1.19014 0.687130i
\(565\) −1.94867 + 40.8446i −0.0819812 + 1.71835i
\(566\) 4.32828i 0.181931i
\(567\) 0 0
\(568\) 7.73712 7.73712i 0.324642 0.324642i
\(569\) −15.0238 8.67402i −0.629832 0.363634i 0.150855 0.988556i \(-0.451797\pi\)
−0.780687 + 0.624922i \(0.785131\pi\)
\(570\) −7.32891 + 1.59374i −0.306974 + 0.0667546i
\(571\) 12.5023 + 21.6545i 0.523203 + 0.906214i 0.999635 + 0.0270031i \(0.00859640\pi\)
−0.476432 + 0.879211i \(0.658070\pi\)
\(572\) 0.795492 + 2.96882i 0.0332612 + 0.124132i
\(573\) 13.1886 + 13.1886i 0.550962 + 0.550962i
\(574\) 0 0
\(575\) 40.5988 6.82090i 1.69309 0.284451i
\(576\) −3.65133 + 6.32429i −0.152139 + 0.263512i
\(577\) −18.9114 5.06730i −0.787294 0.210955i −0.157296 0.987552i \(-0.550278\pi\)
−0.629998 + 0.776597i \(0.716944\pi\)
\(578\) −6.35964 1.70406i −0.264526 0.0708796i
\(579\) −34.9894 + 60.6034i −1.45411 + 2.51859i
\(580\) −3.34003 1.06796i −0.138687 0.0443447i
\(581\) 0 0
\(582\) 24.0490 + 24.0490i 0.996864 + 0.996864i
\(583\) 1.13558 + 4.23805i 0.0470310 + 0.175522i
\(584\) 5.04129 + 8.73178i 0.208610 + 0.361323i
\(585\) 17.1857 + 11.0464i 0.710542 + 0.456711i
\(586\) −1.83923 1.06188i −0.0759779 0.0438659i
\(587\) −14.3179 + 14.3179i −0.590961 + 0.590961i −0.937891 0.346930i \(-0.887224\pi\)
0.346930 + 0.937891i \(0.387224\pi\)
\(588\) 0 0
\(589\) 0.717850i 0.0295785i
\(590\) −15.3050 0.730193i −0.630098 0.0300616i
\(591\) 7.67792 4.43285i 0.315828 0.182343i
\(592\) −0.706756 + 2.63765i −0.0290475 + 0.108407i
\(593\) −1.95951 + 0.525050i −0.0804676 + 0.0215612i −0.298828 0.954307i \(-0.596596\pi\)
0.218361 + 0.975868i \(0.429929\pi\)
\(594\) −33.9279 −1.39208
\(595\) 0 0
\(596\) 21.1626 0.866856
\(597\) −20.7854 + 5.56943i −0.850690 + 0.227942i
\(598\) −2.66611 + 9.95007i −0.109026 + 0.406889i
\(599\) 4.97354 2.87148i 0.203214 0.117325i −0.394940 0.918707i \(-0.629235\pi\)
0.598154 + 0.801382i \(0.295901\pi\)
\(600\) 14.5996 6.66481i 0.596024 0.272090i
\(601\) 4.20038i 0.171337i 0.996324 + 0.0856684i \(0.0273026\pi\)
−0.996324 + 0.0856684i \(0.972697\pi\)
\(602\) 0 0
\(603\) −2.71492 + 2.71492i −0.110560 + 0.110560i
\(604\) 5.80963 + 3.35419i 0.236390 + 0.136480i
\(605\) −2.35904 10.8482i −0.0959088 0.441041i
\(606\) −0.642542 1.11292i −0.0261015 0.0452091i
\(607\) 7.11838 + 26.5662i 0.288926 + 1.07829i 0.945922 + 0.324393i \(0.105160\pi\)
−0.656996 + 0.753894i \(0.728173\pi\)
\(608\) −0.738921 0.738921i −0.0299672 0.0299672i
\(609\) 0 0
\(610\) −1.25045 + 0.644536i −0.0506293 + 0.0260965i
\(611\) 6.36061 11.0169i 0.257323 0.445696i
\(612\) −34.2558 9.17880i −1.38471 0.371031i
\(613\) −40.5212 10.8576i −1.63663 0.438535i −0.680807 0.732463i \(-0.738371\pi\)
−0.955828 + 0.293928i \(0.905037\pi\)
\(614\) −9.65151 + 16.7169i −0.389503 + 0.674639i
\(615\) −48.6976 + 25.1008i −1.96368 + 1.01216i
\(616\) 0 0
\(617\) 4.72792 + 4.72792i 0.190339 + 0.190339i 0.795843 0.605504i \(-0.207028\pi\)
−0.605504 + 0.795843i \(0.707028\pi\)
\(618\) 0.472766 + 1.76438i 0.0190174 + 0.0709740i
\(619\) 9.76333 + 16.9106i 0.392421 + 0.679694i 0.992768 0.120046i \(-0.0383042\pi\)
−0.600347 + 0.799740i \(0.704971\pi\)
\(620\) −0.326401 1.50097i −0.0131086 0.0602804i
\(621\) −98.4760 56.8551i −3.95171 2.28152i
\(622\) 21.5068 21.5068i 0.862343 0.862343i
\(623\) 0 0
\(624\) 4.01578i 0.160760i
\(625\) −24.5468 4.73848i −0.981873 0.189539i
\(626\) 16.8510 9.72891i 0.673500 0.388845i
\(627\) 2.13269 7.95932i 0.0851716 0.317865i
\(628\) 17.3474 4.64823i 0.692237 0.185484i
\(629\) −13.2612 −0.528758
\(630\) 0 0
\(631\) −21.3074 −0.848234 −0.424117 0.905607i \(-0.639415\pi\)
−0.424117 + 0.905607i \(0.639415\pi\)
\(632\) 7.87615 2.11041i 0.313297 0.0839475i
\(633\) −17.2589 + 64.4112i −0.685981 + 2.56012i
\(634\) −11.9390 + 6.89299i −0.474159 + 0.273756i
\(635\) −7.61734 0.363418i −0.302285 0.0144218i
\(636\) 5.73261i 0.227313i
\(637\) 0 0
\(638\) 2.72416 2.72416i 0.107851 0.107851i
\(639\) 69.2000 + 39.9526i 2.73751 + 1.58050i
\(640\) 1.88101 + 1.20905i 0.0743535 + 0.0477918i
\(641\) −10.2340 17.7258i −0.404218 0.700125i 0.590012 0.807394i \(-0.299123\pi\)
−0.994230 + 0.107269i \(0.965789\pi\)
\(642\) 3.90082 + 14.5581i 0.153953 + 0.574561i
\(643\) −7.63085 7.63085i −0.300931 0.300931i 0.540447 0.841378i \(-0.318255\pi\)
−0.841378 + 0.540447i \(0.818255\pi\)
\(644\) 0 0
\(645\) −44.1397 14.1135i −1.73800 0.555719i
\(646\) 2.53742 4.39493i 0.0998333 0.172916i
\(647\) −13.7404 3.68172i −0.540189 0.144743i −0.0215999 0.999767i \(-0.506876\pi\)
−0.518589 + 0.855023i \(0.673543\pi\)
\(648\) −21.6569 5.80296i −0.850765 0.227962i
\(649\) 8.41700 14.5787i 0.330396 0.572263i
\(650\) 3.62932 5.09508i 0.142354 0.199846i
\(651\) 0 0
\(652\) 2.10889 + 2.10889i 0.0825905 + 0.0825905i
\(653\) −3.38708 12.6408i −0.132547 0.494672i 0.867449 0.497526i \(-0.165758\pi\)
−0.999996 + 0.00285443i \(0.999091\pi\)
\(654\) 10.5948 + 18.3507i 0.414288 + 0.717569i
\(655\) 29.5946 6.43563i 1.15636 0.251461i
\(656\) −6.61060 3.81663i −0.258100 0.149014i
\(657\) −52.0641 + 52.0641i −2.03121 + 2.03121i
\(658\) 0 0
\(659\) 18.9238i 0.737165i −0.929595 0.368583i \(-0.879843\pi\)
0.929595 0.368583i \(-0.120157\pi\)
\(660\) −0.840260 + 17.6121i −0.0327071 + 0.685549i
\(661\) 5.11264 2.95179i 0.198859 0.114811i −0.397264 0.917704i \(-0.630040\pi\)
0.596123 + 0.802893i \(0.296707\pi\)
\(662\) 4.41264 16.4682i 0.171502 0.640055i
\(663\) −18.8375 + 5.04748i −0.731586 + 0.196028i
\(664\) −9.62933 −0.373690
\(665\) 0 0
\(666\) −19.9414 −0.772712
\(667\) 12.4720 3.34185i 0.482916 0.129397i
\(668\) 2.34972 8.76927i 0.0909134 0.339293i
\(669\) 21.0896 12.1761i 0.815371 0.470755i
\(670\) 0.790744 + 0.869976i 0.0305491 + 0.0336101i
\(671\) 1.54557i 0.0596660i
\(672\) 0 0
\(673\) −6.81402 + 6.81402i −0.262661 + 0.262661i −0.826134 0.563473i \(-0.809465\pi\)
0.563473 + 0.826134i \(0.309465\pi\)
\(674\) −15.4992 8.94847i −0.597007 0.344682i
\(675\) 43.9575 + 53.2545i 1.69193 + 2.04977i
\(676\) −5.71736 9.90276i −0.219899 0.380876i
\(677\) 5.79004 + 21.6087i 0.222529 + 0.830490i 0.983379 + 0.181563i \(0.0581155\pi\)
−0.760850 + 0.648928i \(0.775218\pi\)
\(678\) −41.5053 41.5053i −1.59400 1.59400i
\(679\) 0 0
\(680\) −3.30721 + 10.3432i −0.126826 + 0.396645i
\(681\) −32.5657 + 56.4055i −1.24792 + 2.16146i
\(682\) 1.63008 + 0.436778i 0.0624190 + 0.0167251i
\(683\) −20.9710 5.61915i −0.802431 0.215011i −0.165780 0.986163i \(-0.553014\pi\)
−0.636651 + 0.771152i \(0.719681\pi\)
\(684\) 3.81561 6.60883i 0.145894 0.252695i
\(685\) 8.46989 + 16.4323i 0.323618 + 0.627844i
\(686\) 0 0
\(687\) −16.2447 16.2447i −0.619775 0.619775i
\(688\) −1.67111 6.23665i −0.0637103 0.237770i
\(689\) 1.11723 + 1.93510i 0.0425631 + 0.0737214i
\(690\) −31.9526 + 49.7111i −1.21641 + 1.89247i
\(691\) −0.554917 0.320381i −0.0211100 0.0121879i 0.489408 0.872055i \(-0.337213\pi\)
−0.510518 + 0.859867i \(0.670546\pi\)
\(692\) 15.5390 15.5390i 0.590706 0.590706i
\(693\) 0 0
\(694\) 31.4718i 1.19466i
\(695\) −2.39499 + 2.17687i −0.0908472 + 0.0825734i
\(696\) 4.35922 2.51680i 0.165236 0.0953989i
\(697\) 9.59434 35.8066i 0.363411 1.35627i
\(698\) 28.3380 7.59316i 1.07261 0.287405i
\(699\) −12.5254 −0.473754
\(700\) 0 0
\(701\) 38.5834 1.45727 0.728637 0.684900i \(-0.240154\pi\)
0.728637 + 0.684900i \(0.240154\pi\)
\(702\) −16.6898 + 4.47202i −0.629916 + 0.168785i
\(703\) 0.738554 2.75632i 0.0278551 0.103957i
\(704\) −2.12753 + 1.22833i −0.0801842 + 0.0462944i
\(705\) 54.0040 49.0856i 2.03391 1.84867i
\(706\) 15.5864i 0.586603i
\(707\) 0 0
\(708\) 15.5526 15.5526i 0.584502 0.584502i
\(709\) −12.9839 7.49625i −0.487620 0.281527i 0.235967 0.971761i \(-0.424174\pi\)
−0.723586 + 0.690234i \(0.757508\pi\)
\(710\) 13.2293 20.5819i 0.496488 0.772425i
\(711\) 29.7729 + 51.5682i 1.11657 + 1.93396i
\(712\) 2.02370 + 7.55255i 0.0758413 + 0.283044i
\(713\) 3.99938 + 3.99938i 0.149778 + 0.149778i
\(714\) 0 0
\(715\) 3.14878 + 6.10889i 0.117758 + 0.228459i
\(716\) 6.71954 11.6386i 0.251121 0.434954i
\(717\) −12.8301 3.43783i −0.479150 0.128388i
\(718\) −4.92577 1.31986i −0.183828 0.0492566i
\(719\) −22.6721 + 39.2693i −0.845528 + 1.46450i 0.0396339 + 0.999214i \(0.487381\pi\)
−0.885162 + 0.465283i \(0.845952\pi\)
\(720\) −4.97318 + 15.5535i −0.185339 + 0.579646i
\(721\) 0 0
\(722\) −12.6629 12.6629i −0.471263 0.471263i
\(723\) −6.50981 24.2949i −0.242102 0.903538i
\(724\) 6.55333 + 11.3507i 0.243552 + 0.421845i
\(725\) −7.80542 0.746482i −0.289886 0.0277236i
\(726\) 13.8010 + 7.96801i 0.512203 + 0.295721i
\(727\) −3.25230 + 3.25230i −0.120621 + 0.120621i −0.764841 0.644219i \(-0.777182\pi\)
0.644219 + 0.764841i \(0.277182\pi\)
\(728\) 0 0
\(729\) 30.7457i 1.13873i
\(730\) 15.1641 + 16.6836i 0.561250 + 0.617487i
\(731\) 27.1548 15.6778i 1.00436 0.579866i
\(732\) 0.522654 1.95057i 0.0193179 0.0720953i
\(733\) 11.9011 3.18888i 0.439576 0.117784i −0.0322421 0.999480i \(-0.510265\pi\)
0.471818 + 0.881696i \(0.343598\pi\)
\(734\) −13.4969 −0.498179
\(735\) 0 0
\(736\) −8.23356 −0.303493
\(737\) −1.24761 + 0.334296i −0.0459563 + 0.0123139i
\(738\) 14.4274 53.8437i 0.531079 1.98202i
\(739\) 30.3007 17.4941i 1.11463 0.643532i 0.174606 0.984638i \(-0.444135\pi\)
0.940025 + 0.341106i \(0.110801\pi\)
\(740\) −0.290983 + 6.09908i −0.0106968 + 0.224207i
\(741\) 4.19646i 0.154161i
\(742\) 0 0
\(743\) −11.0169 + 11.0169i −0.404170 + 0.404170i −0.879700 0.475530i \(-0.842256\pi\)
0.475530 + 0.879700i \(0.342256\pi\)
\(744\) 1.90953 + 1.10247i 0.0700067 + 0.0404184i
\(745\) 46.2404 10.0554i 1.69412 0.368403i
\(746\) −12.5121 21.6717i −0.458102 0.793456i
\(747\) −18.2001 67.9237i −0.665907 2.48520i
\(748\) −8.43603 8.43603i −0.308452 0.308452i
\(749\) 0 0
\(750\) 28.7333 21.4996i 1.04919 0.785054i
\(751\) −16.8682 + 29.2166i −0.615530 + 1.06613i 0.374762 + 0.927121i \(0.377725\pi\)
−0.990291 + 0.139008i \(0.955609\pi\)
\(752\) 9.82150 + 2.63166i 0.358153 + 0.0959669i
\(753\) 39.3035 + 10.5313i 1.43230 + 0.383784i
\(754\) 0.980998 1.69914i 0.0357258 0.0618790i
\(755\) 14.2878 + 4.56847i 0.519986 + 0.166263i
\(756\) 0 0
\(757\) −34.1307 34.1307i −1.24050 1.24050i −0.959794 0.280706i \(-0.909431\pi\)
−0.280706 0.959794i \(-0.590569\pi\)
\(758\) −7.12781 26.6013i −0.258894 0.966204i
\(759\) −32.4621 56.2260i −1.17830 2.04088i
\(760\) −1.96564 1.26344i −0.0713013 0.0458300i
\(761\) 33.8469 + 19.5415i 1.22695 + 0.708380i 0.966391 0.257078i \(-0.0827596\pi\)
0.260560 + 0.965458i \(0.416093\pi\)
\(762\) 7.74055 7.74055i 0.280410 0.280410i
\(763\) 0 0
\(764\) 5.81085i 0.210229i
\(765\) −79.2102 3.77907i −2.86385 0.136632i
\(766\) 21.1293 12.1990i 0.763433 0.440768i
\(767\) 2.21888 8.28098i 0.0801192 0.299009i
\(768\) −3.10041 + 0.830751i −0.111876 + 0.0299772i
\(769\) 26.4297 0.953078 0.476539 0.879153i \(-0.341891\pi\)
0.476539 + 0.879153i \(0.341891\pi\)
\(770\) 0 0
\(771\) 42.5222 1.53140
\(772\) −21.0589 + 5.64271i −0.757926 + 0.203086i
\(773\) 1.62456 6.06294i 0.0584314 0.218069i −0.930536 0.366199i \(-0.880659\pi\)
0.988968 + 0.148130i \(0.0473255\pi\)
\(774\) 40.8338 23.5754i 1.46774 0.847400i
\(775\) −1.42637 3.12453i −0.0512368 0.112237i
\(776\) 10.5959i 0.380371i
\(777\) 0 0
\(778\) −14.8378 + 14.8378i −0.531960 + 0.531960i
\(779\) 6.90802 + 3.98835i 0.247506 + 0.142897i
\(780\) 1.90810 + 8.77448i 0.0683209 + 0.314177i
\(781\) 13.4403 + 23.2793i 0.480931 + 0.832998i
\(782\) −10.3489 38.6225i −0.370074 1.38114i
\(783\) 15.3144 + 15.3144i 0.547292 + 0.547292i
\(784\) 0 0
\(785\) 35.6955 18.3990i 1.27403 0.656689i
\(786\) −21.7373 + 37.6501i −0.775343 + 1.34293i
\(787\) 17.9432 + 4.80787i 0.639607 + 0.171382i 0.564025 0.825758i \(-0.309252\pi\)
0.0755813 + 0.997140i \(0.475919\pi\)
\(788\) 2.66798 + 0.714882i 0.0950428 + 0.0254666i
\(789\) 43.4859 75.3199i 1.54814 2.68146i
\(790\) 16.2066 8.35360i 0.576607 0.297208i
\(791\) 0 0
\(792\) −12.6856 12.6856i −0.450763 0.450763i
\(793\) −0.203721 0.760296i −0.00723433 0.0269989i
\(794\) −12.1451 21.0359i −0.431014 0.746538i
\(795\) 2.72385 + 12.5258i 0.0966050 + 0.444243i
\(796\) −5.80592 3.35205i −0.205785 0.118810i
\(797\) −20.2150 + 20.2150i −0.716053 + 0.716053i −0.967795 0.251741i \(-0.918997\pi\)
0.251741 + 0.967795i \(0.418997\pi\)
\(798\) 0 0
\(799\) 49.3790i 1.74690i
\(800\) 4.68449 + 1.74801i 0.165622 + 0.0618014i
\(801\) −49.4495 + 28.5497i −1.74721 + 1.00875i
\(802\) 9.63726 35.9667i 0.340304 1.27003i
\(803\) −23.9255 + 6.41081i −0.844311 + 0.226232i
\(804\) −1.68758 −0.0595164
\(805\) 0 0
\(806\) 0.859440 0.0302725
\(807\) 9.73002 2.60715i 0.342513 0.0917760i
\(808\) 0.103622 0.386723i 0.00364542 0.0136049i
\(809\) −0.500492 + 0.288959i −0.0175963 + 0.0101593i −0.508772 0.860901i \(-0.669901\pi\)
0.491176 + 0.871060i \(0.336567\pi\)
\(810\) −50.0777 2.38917i −1.75955 0.0839470i
\(811\) 3.39036i 0.119052i 0.998227 + 0.0595258i \(0.0189589\pi\)
−0.998227 + 0.0595258i \(0.981041\pi\)
\(812\) 0 0
\(813\) −74.1150 + 74.1150i −2.59933 + 2.59933i
\(814\) −5.80963 3.35419i −0.203627 0.117564i
\(815\) 5.60997 + 3.60589i 0.196509 + 0.126309i
\(816\) −7.79387 13.4994i −0.272840 0.472573i
\(817\) 1.74629 + 6.51725i 0.0610950 + 0.228010i
\(818\) 15.3473 + 15.3473i 0.536606 + 0.536606i
\(819\) 0 0
\(820\) −16.2576 5.19832i −0.567741 0.181533i
\(821\) 9.62000 16.6623i 0.335740 0.581520i −0.647886 0.761737i \(-0.724347\pi\)
0.983627 + 0.180217i \(0.0576802\pi\)
\(822\) −25.6326 6.86824i −0.894040 0.239557i
\(823\) 7.70585 + 2.06478i 0.268609 + 0.0719736i 0.390610 0.920556i \(-0.372264\pi\)
−0.122000 + 0.992530i \(0.538931\pi\)
\(824\) −0.284541 + 0.492839i −0.00991245 + 0.0171689i
\(825\) 6.53241 + 38.8817i 0.227429 + 1.35369i
\(826\) 0 0
\(827\) 8.62349 + 8.62349i 0.299868 + 0.299868i 0.840962 0.541094i \(-0.181990\pi\)
−0.541094 + 0.840962i \(0.681990\pi\)
\(828\) −15.5620 58.0781i −0.540816 2.01835i
\(829\) −14.1674 24.5387i −0.492055 0.852263i 0.507904 0.861414i \(-0.330421\pi\)
−0.999958 + 0.00915046i \(0.997087\pi\)
\(830\) −21.0401 + 4.57538i −0.730313 + 0.158814i
\(831\) 87.8246 + 50.7055i 3.04660 + 1.75896i
\(832\) −0.884667 + 0.884667i −0.0306703 + 0.0306703i
\(833\) 0 0
\(834\) 4.64581i 0.160871i
\(835\) 0.967419 20.2773i 0.0334789 0.701726i
\(836\) 2.22325 1.28359i 0.0768927 0.0443940i
\(837\) −2.45544 + 9.16382i −0.0848723 + 0.316748i
\(838\) 18.9366 5.07405i 0.654155 0.175280i
\(839\) 3.84212 0.132645 0.0663223 0.997798i \(-0.478873\pi\)
0.0663223 + 0.997798i \(0.478873\pi\)
\(840\) 0 0
\(841\) 26.5407 0.915198
\(842\) −13.7298 + 3.67890i −0.473162 + 0.126783i
\(843\) −23.9917 + 89.5383i −0.826318 + 3.08386i
\(844\) −17.9918 + 10.3875i −0.619302 + 0.357554i
\(845\) −17.1977 18.9209i −0.591621 0.650900i
\(846\) 74.2532i 2.55288i
\(847\) 0 0
\(848\) −1.26288 + 1.26288i −0.0433675 + 0.0433675i
\(849\) −12.0315 6.94640i −0.412921 0.238400i
\(850\) −2.31166 + 24.1714i −0.0792894 + 0.829072i
\(851\) −11.2417 19.4711i −0.385359 0.667462i
\(852\) 9.09003 + 33.9244i 0.311419 + 1.16223i
\(853\) −31.3166 31.3166i −1.07226 1.07226i −0.997177 0.0750839i \(-0.976078\pi\)
−0.0750839 0.997177i \(-0.523922\pi\)
\(854\) 0 0
\(855\) 5.19693 16.2533i 0.177731 0.555851i
\(856\) −2.34777 + 4.06645i −0.0802450 + 0.138988i
\(857\) −30.5751 8.19258i −1.04443 0.279853i −0.304479 0.952519i \(-0.598482\pi\)
−0.739946 + 0.672666i \(0.765149\pi\)
\(858\) −9.52923 2.55335i −0.325323 0.0871700i
\(859\) 21.0251 36.4165i 0.717367 1.24252i −0.244672 0.969606i \(-0.578680\pi\)
0.962039 0.272911i \(-0.0879863\pi\)
\(860\) −6.61472 12.8331i −0.225560 0.437604i
\(861\) 0 0
\(862\) 9.34887 + 9.34887i 0.318424 + 0.318424i
\(863\) −12.4187 46.3472i −0.422737 1.57768i −0.768815 0.639471i \(-0.779153\pi\)
0.346078 0.938206i \(-0.387513\pi\)
\(864\) −6.90529 11.9603i −0.234923 0.406898i
\(865\) 26.5695 41.3362i 0.903389 1.40547i
\(866\) −9.38046 5.41581i −0.318761 0.184037i
\(867\) 14.9434 14.9434i 0.507504 0.507504i
\(868\) 0 0
\(869\) 20.0316i 0.679524i
\(870\) 8.32904 7.57049i 0.282381 0.256663i
\(871\) −0.569660 + 0.328893i −0.0193022 + 0.0111441i
\(872\) −1.70861 + 6.37662i −0.0578609 + 0.215940i
\(873\) −74.7417 + 20.0270i −2.52962 + 0.677810i
\(874\) 8.60400 0.291035
\(875\) 0 0
\(876\) −32.3628 −1.09344
\(877\) 17.6842 4.73846i 0.597152 0.160006i 0.0524319 0.998625i \(-0.483303\pi\)
0.544720 + 0.838618i \(0.316636\pi\)
\(878\) −7.18694 + 26.8220i −0.242547 + 0.905199i
\(879\) 5.90352 3.40840i 0.199121 0.114962i
\(880\) −4.06501 + 3.69479i −0.137031 + 0.124551i
\(881\) 34.4306i 1.16000i −0.814618 0.579998i \(-0.803053\pi\)
0.814618 0.579998i \(-0.196947\pi\)
\(882\) 0 0
\(883\) 7.78975 7.78975i 0.262146 0.262146i −0.563779 0.825925i \(-0.690653\pi\)
0.825925 + 0.563779i \(0.190653\pi\)
\(884\) −5.26180 3.03790i −0.176973 0.102176i
\(885\) 26.5926 41.3722i 0.893901 1.39071i
\(886\) 16.6744 + 28.8810i 0.560189 + 0.970275i
\(887\) 7.45543 + 27.8241i 0.250329 + 0.934240i 0.970630 + 0.240578i \(0.0773371\pi\)
−0.720301 + 0.693662i \(0.755996\pi\)
\(888\) −6.19774 6.19774i −0.207982 0.207982i
\(889\) 0 0
\(890\) 8.01038 + 15.5408i 0.268508 + 0.520928i
\(891\) 27.5402 47.7011i 0.922633 1.59805i
\(892\) 7.32836 + 1.96363i 0.245372 + 0.0657471i
\(893\) −10.2634 2.75007i −0.343451 0.0920274i
\(894\) −33.9637 + 58.8268i −1.13592 + 1.96746i
\(895\) 9.15213 28.6231i 0.305922 0.956765i
\(896\) 0 0
\(897\) −23.3799 23.3799i −0.780632 0.780632i
\(898\) −4.71178 17.5846i −0.157234 0.586806i
\(899\) −0.538634 0.932941i −0.0179644 0.0311153i
\(900\) −3.47614 + 36.3475i −0.115871 + 1.21158i
\(901\) −7.51133 4.33667i −0.250239 0.144475i
\(902\) 13.2599 13.2599i 0.441506 0.441506i
\(903\) 0 0
\(904\) 18.2870i 0.608218i
\(905\) 19.7123 + 21.6875i 0.655260 + 0.720916i
\(906\) −18.6476 + 10.7662i −0.619525 + 0.357683i
\(907\) −4.74142 + 17.6952i −0.157436 + 0.587560i 0.841448 + 0.540338i \(0.181704\pi\)
−0.998884 + 0.0472221i \(0.984963\pi\)
\(908\) −19.6002 + 5.25185i −0.650454 + 0.174289i
\(909\) 2.92373 0.0969741
\(910\) 0 0
\(911\) 8.52576 0.282471 0.141236 0.989976i \(-0.454893\pi\)
0.141236 + 0.989976i \(0.454893\pi\)
\(912\) 3.23990 0.868128i 0.107284 0.0287466i
\(913\) 6.12261 22.8499i 0.202629 0.756221i
\(914\) 28.5161 16.4638i 0.943228 0.544573i
\(915\) 0.215186 4.51034i 0.00711382 0.149107i
\(916\) 7.15735i 0.236486i
\(917\) 0 0
\(918\) 47.4248 47.4248i 1.56525 1.56525i
\(919\) 28.3612 + 16.3743i 0.935549 + 0.540140i 0.888562 0.458756i \(-0.151705\pi\)
0.0469869 + 0.998896i \(0.485038\pi\)
\(920\) −17.9903 + 3.91218i −0.593124 + 0.128981i
\(921\) −30.9792 53.6575i −1.02080 1.76807i
\(922\) 5.51349 + 20.5766i 0.181577 + 0.677655i
\(923\) 9.67998 + 9.67998i 0.318620 + 0.318620i
\(924\) 0 0
\(925\) 2.26218 + 13.4648i 0.0743801 + 0.442719i
\(926\) 3.34957 5.80162i 0.110074 0.190653i
\(927\) −4.01421 1.07560i −0.131844 0.0353275i
\(928\) 1.51477 + 0.405882i 0.0497248 + 0.0133237i
\(929\) −0.315361 + 0.546221i −0.0103467 + 0.0179209i −0.871152 0.491013i \(-0.836627\pi\)
0.860806 + 0.508934i \(0.169960\pi\)
\(930\) 4.69616 + 1.50158i 0.153993 + 0.0492387i
\(931\) 0 0
\(932\) −2.75932 2.75932i −0.0903845 0.0903845i
\(933\) 25.2675 + 94.2994i 0.827219 + 3.08722i
\(934\) 2.55484 + 4.42512i 0.0835970 + 0.144794i
\(935\) −22.4411 14.4244i −0.733903 0.471727i
\(936\) −7.91238 4.56821i −0.258624 0.149317i
\(937\) −0.810245 + 0.810245i −0.0264696 + 0.0264696i −0.720218 0.693748i \(-0.755958\pi\)
0.693748 + 0.720218i \(0.255958\pi\)
\(938\) 0 0
\(939\) 62.4553i 2.03815i
\(940\) 22.7104 + 1.08350i 0.740732 + 0.0353399i
\(941\) 28.4240 16.4106i 0.926597 0.534971i 0.0408632 0.999165i \(-0.486989\pi\)
0.885734 + 0.464194i \(0.153656\pi\)
\(942\) −14.9198 + 55.6813i −0.486112 + 1.81420i
\(943\) 60.7074 16.2665i 1.97690 0.529710i
\(944\) 6.85240 0.223027
\(945\) 0 0
\(946\) 15.8618 0.515711
\(947\) −13.7289 + 3.67864i −0.446129 + 0.119540i −0.474887 0.880047i \(-0.657511\pi\)
0.0287587 + 0.999586i \(0.490845\pi\)
\(948\) −6.77394 + 25.2807i −0.220007 + 0.821079i
\(949\) −10.9244 + 6.30721i −0.354621 + 0.204741i
\(950\) −4.89526 1.82665i −0.158823 0.0592645i
\(951\) 44.2499i 1.43490i
\(952\) 0 0
\(953\) 23.7218 23.7218i 0.768424 0.768424i −0.209405 0.977829i \(-0.567153\pi\)
0.977829 + 0.209405i \(0.0671528\pi\)
\(954\) −11.2951 6.52122i −0.365692 0.211132i
\(955\) 2.76103 + 12.6967i 0.0893447 + 0.410856i
\(956\) −2.06911 3.58380i −0.0669197 0.115908i
\(957\) 3.20051 + 11.9444i 0.103458 + 0.386109i
\(958\) −19.2466 19.2466i −0.621829 0.621829i
\(959\) 0 0
\(960\) −6.37966 + 3.28835i −0.205903 + 0.106131i
\(961\) −15.2641 + 26.4381i −0.492389 + 0.852843i
\(962\) −3.29999 0.884229i −0.106396 0.0285087i
\(963\) −33.1215 8.87488i −1.06733 0.285989i
\(964\) 3.91802 6.78622i 0.126191 0.218569i
\(965\) −43.3326 + 22.3355i −1.39492 + 0.719004i
\(966\) 0 0
\(967\) −16.9594 16.9594i −0.545378 0.545378i 0.379723 0.925100i \(-0.376019\pi\)
−0.925100 + 0.379723i \(0.876019\pi\)
\(968\) 1.28499 + 4.79567i 0.0413013 + 0.154139i
\(969\) 8.14454 + 14.1067i 0.261640 + 0.453174i
\(970\) 5.03464 + 23.1521i 0.161653 + 0.743368i
\(971\) −44.8299 25.8826i −1.43866 0.830611i −0.440903 0.897555i \(-0.645342\pi\)
−0.997757 + 0.0669437i \(0.978675\pi\)
\(972\) 21.5910 21.5910i 0.692533 0.692533i
\(973\) 0 0
\(974\) 5.11531i 0.163905i
\(975\) 8.33840 + 18.2656i 0.267042 + 0.584968i
\(976\) 0.544847 0.314567i 0.0174401 0.0100691i
\(977\) 5.42231 20.2363i 0.173475 0.647418i −0.823331 0.567561i \(-0.807887\pi\)
0.996806 0.0798566i \(-0.0254462\pi\)
\(978\) −9.24671 + 2.47765i −0.295677 + 0.0792265i
\(979\) −19.2085 −0.613907
\(980\) 0 0
\(981\) −48.2090 −1.53920
\(982\) 2.05295 0.550086i 0.0655122 0.0175539i
\(983\) −2.85572 + 10.6577i −0.0910834 + 0.339928i −0.996397 0.0848169i \(-0.972969\pi\)
0.905313 + 0.424745i \(0.139636\pi\)
\(984\) 21.2185 12.2505i 0.676422 0.390533i
\(985\) 6.16921 + 0.294329i 0.196567 + 0.00937810i
\(986\) 7.61573i 0.242534i
\(987\) 0 0
\(988\) 0.924470 0.924470i 0.0294113 0.0294113i
\(989\) 46.0390 + 26.5806i 1.46395 + 0.845215i
\(990\) −33.7456 21.6905i −1.07251 0.689369i
\(991\) 18.4820 + 32.0118i 0.587101 + 1.01689i 0.994610 + 0.103687i \(0.0330640\pi\)
−0.407509 + 0.913201i \(0.633603\pi\)
\(992\) 0.177794 + 0.663536i 0.00564496 + 0.0210673i
\(993\) 38.6957 + 38.6957i 1.22797 + 1.22797i
\(994\) 0 0
\(995\) −14.2787 4.56555i −0.452664 0.144738i
\(996\) 15.4540 26.7671i 0.489679 0.848148i
\(997\) 42.4016 + 11.3615i 1.34287 + 0.359821i 0.857499 0.514486i \(-0.172017\pi\)
0.485372 + 0.874308i \(0.338684\pi\)
\(998\) −8.08020 2.16508i −0.255774 0.0685345i
\(999\) 18.8563 32.6600i 0.596586 1.03332i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 490.2.l.d.117.4 32
5.3 odd 4 inner 490.2.l.d.313.8 32
7.2 even 3 490.2.g.b.97.8 yes 16
7.3 odd 6 inner 490.2.l.d.227.8 32
7.4 even 3 inner 490.2.l.d.227.5 32
7.5 odd 6 490.2.g.b.97.5 16
7.6 odd 2 inner 490.2.l.d.117.1 32
35.3 even 12 inner 490.2.l.d.423.4 32
35.13 even 4 inner 490.2.l.d.313.5 32
35.18 odd 12 inner 490.2.l.d.423.1 32
35.23 odd 12 490.2.g.b.293.5 yes 16
35.33 even 12 490.2.g.b.293.8 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
490.2.g.b.97.5 16 7.5 odd 6
490.2.g.b.97.8 yes 16 7.2 even 3
490.2.g.b.293.5 yes 16 35.23 odd 12
490.2.g.b.293.8 yes 16 35.33 even 12
490.2.l.d.117.1 32 7.6 odd 2 inner
490.2.l.d.117.4 32 1.1 even 1 trivial
490.2.l.d.227.5 32 7.4 even 3 inner
490.2.l.d.227.8 32 7.3 odd 6 inner
490.2.l.d.313.5 32 35.13 even 4 inner
490.2.l.d.313.8 32 5.3 odd 4 inner
490.2.l.d.423.1 32 35.18 odd 12 inner
490.2.l.d.423.4 32 35.3 even 12 inner