Properties

Label 49.24.a.f.1.10
Level $49$
Weight $24$
Character 49.1
Self dual yes
Analytic conductor $164.250$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49,24,Mod(1,49)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49.1"); S:= CuspForms(chi, 24); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 24, names="a")
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 24 \)
Character orbit: \([\chi]\) \(=\) 49.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-966,-177148] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(164.249978299\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 7 x^{13} - 21591353 x^{12} - 1736098763 x^{11} + 177925612890704 x^{10} + \cdots - 50\!\cdots\!18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: multiple of \( 2^{49}\cdot 3^{13}\cdot 5^{3}\cdot 7^{23} \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(1291.79\) of defining polynomial
Character \(\chi\) \(=\) 49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2513.58 q^{2} -385363. q^{3} -2.07052e6 q^{4} -7.20022e7 q^{5} -9.68640e8 q^{6} -2.62899e10 q^{8} +5.43613e10 q^{9} -1.80983e11 q^{10} +9.26541e11 q^{11} +7.97903e11 q^{12} -5.15744e12 q^{13} +2.77470e13 q^{15} -4.87129e13 q^{16} -2.45074e13 q^{17} +1.36641e14 q^{18} -5.32381e14 q^{19} +1.49082e14 q^{20} +2.32894e15 q^{22} +1.17451e15 q^{23} +1.01311e16 q^{24} -6.73661e15 q^{25} -1.29636e16 q^{26} +1.53305e16 q^{27} +6.90610e16 q^{29} +6.97442e16 q^{30} +2.78413e17 q^{31} +9.80917e16 q^{32} -3.57054e17 q^{33} -6.16013e16 q^{34} -1.12556e17 q^{36} +1.43959e18 q^{37} -1.33818e18 q^{38} +1.98749e18 q^{39} +1.89293e18 q^{40} -1.70772e18 q^{41} +6.33058e18 q^{43} -1.91842e18 q^{44} -3.91413e18 q^{45} +2.95223e18 q^{46} +1.35510e19 q^{47} +1.87721e19 q^{48} -1.69330e19 q^{50} +9.44424e18 q^{51} +1.06786e19 q^{52} -7.01597e19 q^{53} +3.85343e19 q^{54} -6.67130e19 q^{55} +2.05160e20 q^{57} +1.73590e20 q^{58} -2.39631e20 q^{59} -5.74508e19 q^{60} -1.37828e20 q^{61} +6.99813e20 q^{62} +6.55194e20 q^{64} +3.71347e20 q^{65} -8.97485e20 q^{66} +6.78764e20 q^{67} +5.07431e19 q^{68} -4.52614e20 q^{69} +2.14404e21 q^{71} -1.42915e21 q^{72} -3.07547e21 q^{73} +3.61853e21 q^{74} +2.59604e21 q^{75} +1.10231e21 q^{76} +4.99571e21 q^{78} +6.81725e21 q^{79} +3.50743e21 q^{80} -1.10255e22 q^{81} -4.29249e21 q^{82} -8.36785e21 q^{83} +1.76459e21 q^{85} +1.59124e22 q^{86} -2.66135e22 q^{87} -2.43586e22 q^{88} -3.41597e22 q^{89} -9.83849e21 q^{90} -2.43186e21 q^{92} -1.07290e23 q^{93} +3.40615e22 q^{94} +3.83326e22 q^{95} -3.78009e22 q^{96} +1.21614e22 q^{97} +5.03680e22 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 966 q^{2} - 177148 q^{3} + 55357148 q^{4} - 74771022 q^{5} - 1504608254 q^{6} + 25222400616 q^{8} + 336909608980 q^{9} - 334296297894 q^{10} - 1355476566108 q^{11} - 4984668058916 q^{12} + 427040218556 q^{13}+ \cdots - 23\!\cdots\!84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2513.58 0.867856 0.433928 0.900948i \(-0.357127\pi\)
0.433928 + 0.900948i \(0.357127\pi\)
\(3\) −385363. −1.25596 −0.627979 0.778230i \(-0.716118\pi\)
−0.627979 + 0.778230i \(0.716118\pi\)
\(4\) −2.07052e6 −0.246826
\(5\) −7.20022e7 −0.659464 −0.329732 0.944075i \(-0.606958\pi\)
−0.329732 + 0.944075i \(0.606958\pi\)
\(6\) −9.68640e8 −1.08999
\(7\) 0 0
\(8\) −2.62899e10 −1.08207
\(9\) 5.43613e10 0.577432
\(10\) −1.80983e11 −0.572320
\(11\) 9.26541e11 0.979149 0.489575 0.871961i \(-0.337152\pi\)
0.489575 + 0.871961i \(0.337152\pi\)
\(12\) 7.97903e11 0.310003
\(13\) −5.15744e12 −0.798153 −0.399076 0.916918i \(-0.630669\pi\)
−0.399076 + 0.916918i \(0.630669\pi\)
\(14\) 0 0
\(15\) 2.77470e13 0.828259
\(16\) −4.87129e13 −0.692252
\(17\) −2.45074e13 −0.173434 −0.0867171 0.996233i \(-0.527638\pi\)
−0.0867171 + 0.996233i \(0.527638\pi\)
\(18\) 1.36641e14 0.501128
\(19\) −5.32381e14 −1.04847 −0.524235 0.851573i \(-0.675649\pi\)
−0.524235 + 0.851573i \(0.675649\pi\)
\(20\) 1.49082e14 0.162773
\(21\) 0 0
\(22\) 2.32894e15 0.849761
\(23\) 1.17451e15 0.257032 0.128516 0.991707i \(-0.458979\pi\)
0.128516 + 0.991707i \(0.458979\pi\)
\(24\) 1.01311e16 1.35903
\(25\) −6.73661e15 −0.565108
\(26\) −1.29636e16 −0.692682
\(27\) 1.53305e16 0.530728
\(28\) 0 0
\(29\) 6.90610e16 1.05113 0.525564 0.850754i \(-0.323854\pi\)
0.525564 + 0.850754i \(0.323854\pi\)
\(30\) 6.97442e16 0.718810
\(31\) 2.78413e17 1.96802 0.984011 0.178109i \(-0.0569980\pi\)
0.984011 + 0.178109i \(0.0569980\pi\)
\(32\) 9.80917e16 0.481291
\(33\) −3.57054e17 −1.22977
\(34\) −6.16013e16 −0.150516
\(35\) 0 0
\(36\) −1.12556e17 −0.142525
\(37\) 1.43959e18 1.33021 0.665104 0.746750i \(-0.268387\pi\)
0.665104 + 0.746750i \(0.268387\pi\)
\(38\) −1.33818e18 −0.909922
\(39\) 1.98749e18 1.00245
\(40\) 1.89293e18 0.713583
\(41\) −1.70772e18 −0.484621 −0.242311 0.970199i \(-0.577905\pi\)
−0.242311 + 0.970199i \(0.577905\pi\)
\(42\) 0 0
\(43\) 6.33058e18 1.03886 0.519429 0.854513i \(-0.326145\pi\)
0.519429 + 0.854513i \(0.326145\pi\)
\(44\) −1.91842e18 −0.241679
\(45\) −3.91413e18 −0.380796
\(46\) 2.95223e18 0.223067
\(47\) 1.35510e19 0.799549 0.399775 0.916613i \(-0.369088\pi\)
0.399775 + 0.916613i \(0.369088\pi\)
\(48\) 1.87721e19 0.869439
\(49\) 0 0
\(50\) −1.69330e19 −0.490432
\(51\) 9.44424e18 0.217826
\(52\) 1.06786e19 0.197005
\(53\) −7.01597e19 −1.03972 −0.519859 0.854252i \(-0.674015\pi\)
−0.519859 + 0.854252i \(0.674015\pi\)
\(54\) 3.85343e19 0.460595
\(55\) −6.67130e19 −0.645713
\(56\) 0 0
\(57\) 2.05160e20 1.31684
\(58\) 1.73590e20 0.912229
\(59\) −2.39631e20 −1.03453 −0.517267 0.855824i \(-0.673050\pi\)
−0.517267 + 0.855824i \(0.673050\pi\)
\(60\) −5.74508e19 −0.204436
\(61\) −1.37828e20 −0.405551 −0.202776 0.979225i \(-0.564996\pi\)
−0.202776 + 0.979225i \(0.564996\pi\)
\(62\) 6.99813e20 1.70796
\(63\) 0 0
\(64\) 6.55194e20 1.10994
\(65\) 3.71347e20 0.526353
\(66\) −8.97485e20 −1.06726
\(67\) 6.78764e20 0.678983 0.339491 0.940609i \(-0.389745\pi\)
0.339491 + 0.940609i \(0.389745\pi\)
\(68\) 5.07431e19 0.0428080
\(69\) −4.52614e20 −0.322822
\(70\) 0 0
\(71\) 2.14404e21 1.10093 0.550467 0.834857i \(-0.314450\pi\)
0.550467 + 0.834857i \(0.314450\pi\)
\(72\) −1.42915e21 −0.624819
\(73\) −3.07547e21 −1.14736 −0.573679 0.819080i \(-0.694484\pi\)
−0.573679 + 0.819080i \(0.694484\pi\)
\(74\) 3.61853e21 1.15443
\(75\) 2.59604e21 0.709752
\(76\) 1.10231e21 0.258789
\(77\) 0 0
\(78\) 4.99571e21 0.869980
\(79\) 6.81725e21 1.02541 0.512705 0.858565i \(-0.328643\pi\)
0.512705 + 0.858565i \(0.328643\pi\)
\(80\) 3.50743e21 0.456515
\(81\) −1.10255e22 −1.24400
\(82\) −4.29249e21 −0.420581
\(83\) −8.36785e21 −0.713208 −0.356604 0.934256i \(-0.616065\pi\)
−0.356604 + 0.934256i \(0.616065\pi\)
\(84\) 0 0
\(85\) 1.76459e21 0.114373
\(86\) 1.59124e22 0.901580
\(87\) −2.66135e22 −1.32017
\(88\) −2.43586e22 −1.05950
\(89\) −3.41597e22 −1.30476 −0.652378 0.757894i \(-0.726229\pi\)
−0.652378 + 0.757894i \(0.726229\pi\)
\(90\) −9.83849e21 −0.330476
\(91\) 0 0
\(92\) −2.43186e21 −0.0634422
\(93\) −1.07290e23 −2.47175
\(94\) 3.40615e22 0.693894
\(95\) 3.83326e22 0.691428
\(96\) −3.78009e22 −0.604481
\(97\) 1.21614e22 0.172626 0.0863131 0.996268i \(-0.472491\pi\)
0.0863131 + 0.996268i \(0.472491\pi\)
\(98\) 0 0
\(99\) 5.03680e22 0.565392
\(100\) 1.39483e22 0.139483
\(101\) −1.89192e22 −0.168736 −0.0843680 0.996435i \(-0.526887\pi\)
−0.0843680 + 0.996435i \(0.526887\pi\)
\(102\) 2.37388e22 0.189042
\(103\) −1.50443e23 −1.07089 −0.535445 0.844570i \(-0.679856\pi\)
−0.535445 + 0.844570i \(0.679856\pi\)
\(104\) 1.35588e23 0.863653
\(105\) 0 0
\(106\) −1.76352e23 −0.902325
\(107\) −2.91039e23 −1.33671 −0.668357 0.743841i \(-0.733002\pi\)
−0.668357 + 0.743841i \(0.733002\pi\)
\(108\) −3.17421e22 −0.130997
\(109\) −4.92276e23 −1.82728 −0.913638 0.406529i \(-0.866739\pi\)
−0.913638 + 0.406529i \(0.866739\pi\)
\(110\) −1.67689e23 −0.560386
\(111\) −5.54765e23 −1.67069
\(112\) 0 0
\(113\) 4.47921e23 1.09850 0.549249 0.835659i \(-0.314914\pi\)
0.549249 + 0.835659i \(0.314914\pi\)
\(114\) 5.15686e23 1.14282
\(115\) −8.45675e22 −0.169503
\(116\) −1.42992e23 −0.259445
\(117\) −2.80365e23 −0.460879
\(118\) −6.02331e23 −0.897826
\(119\) 0 0
\(120\) −7.29464e23 −0.896230
\(121\) −3.69518e22 −0.0412671
\(122\) −3.46443e23 −0.351960
\(123\) 6.58092e23 0.608664
\(124\) −5.76460e23 −0.485758
\(125\) 1.34338e24 1.03213
\(126\) 0 0
\(127\) 2.53761e24 1.62436 0.812181 0.583406i \(-0.198280\pi\)
0.812181 + 0.583406i \(0.198280\pi\)
\(128\) 8.24031e23 0.481980
\(129\) −2.43957e24 −1.30476
\(130\) 9.33411e23 0.456798
\(131\) 3.99180e24 1.78875 0.894373 0.447322i \(-0.147622\pi\)
0.894373 + 0.447322i \(0.147622\pi\)
\(132\) 7.39290e23 0.303539
\(133\) 0 0
\(134\) 1.70613e24 0.589259
\(135\) −1.10383e24 −0.349996
\(136\) 6.44296e23 0.187667
\(137\) 1.97280e24 0.528199 0.264099 0.964495i \(-0.414925\pi\)
0.264099 + 0.964495i \(0.414925\pi\)
\(138\) −1.13768e24 −0.280163
\(139\) 2.25247e24 0.510493 0.255246 0.966876i \(-0.417843\pi\)
0.255246 + 0.966876i \(0.417843\pi\)
\(140\) 0 0
\(141\) −5.22204e24 −1.00420
\(142\) 5.38921e24 0.955453
\(143\) −4.77858e24 −0.781510
\(144\) −2.64810e24 −0.399728
\(145\) −4.97255e24 −0.693181
\(146\) −7.73045e24 −0.995742
\(147\) 0 0
\(148\) −2.98071e24 −0.328330
\(149\) 1.21722e25 1.24088 0.620438 0.784256i \(-0.286955\pi\)
0.620438 + 0.784256i \(0.286955\pi\)
\(150\) 6.52535e24 0.615963
\(151\) −1.79404e25 −1.56890 −0.784451 0.620190i \(-0.787055\pi\)
−0.784451 + 0.620190i \(0.787055\pi\)
\(152\) 1.39962e25 1.13451
\(153\) −1.33225e24 −0.100146
\(154\) 0 0
\(155\) −2.00463e25 −1.29784
\(156\) −4.11514e24 −0.247430
\(157\) 7.66380e24 0.428152 0.214076 0.976817i \(-0.431326\pi\)
0.214076 + 0.976817i \(0.431326\pi\)
\(158\) 1.71357e25 0.889909
\(159\) 2.70369e25 1.30584
\(160\) −7.06282e24 −0.317394
\(161\) 0 0
\(162\) −2.77136e25 −1.07962
\(163\) −4.65929e24 −0.169107 −0.0845536 0.996419i \(-0.526946\pi\)
−0.0845536 + 0.996419i \(0.526946\pi\)
\(164\) 3.53587e24 0.119617
\(165\) 2.57087e25 0.810989
\(166\) −2.10333e25 −0.618962
\(167\) −1.36410e25 −0.374634 −0.187317 0.982300i \(-0.559979\pi\)
−0.187317 + 0.982300i \(0.559979\pi\)
\(168\) 0 0
\(169\) −1.51547e25 −0.362952
\(170\) 4.43543e24 0.0992597
\(171\) −2.89409e25 −0.605421
\(172\) −1.31076e25 −0.256417
\(173\) −8.71364e25 −1.59467 −0.797333 0.603540i \(-0.793756\pi\)
−0.797333 + 0.603540i \(0.793756\pi\)
\(174\) −6.68953e25 −1.14572
\(175\) 0 0
\(176\) −4.51345e25 −0.677817
\(177\) 9.23448e25 1.29933
\(178\) −8.58632e25 −1.13234
\(179\) −8.05330e24 −0.0995781 −0.0497891 0.998760i \(-0.515855\pi\)
−0.0497891 + 0.998760i \(0.515855\pi\)
\(180\) 8.10431e24 0.0939901
\(181\) 5.91500e24 0.0643652 0.0321826 0.999482i \(-0.489754\pi\)
0.0321826 + 0.999482i \(0.489754\pi\)
\(182\) 0 0
\(183\) 5.31139e25 0.509356
\(184\) −3.08778e25 −0.278126
\(185\) −1.03654e26 −0.877224
\(186\) −2.69682e26 −2.14513
\(187\) −2.27071e25 −0.169818
\(188\) −2.80576e25 −0.197349
\(189\) 0 0
\(190\) 9.63522e25 0.600060
\(191\) 2.80371e26 1.64380 0.821900 0.569632i \(-0.192914\pi\)
0.821900 + 0.569632i \(0.192914\pi\)
\(192\) −2.52488e26 −1.39404
\(193\) −5.04222e25 −0.262248 −0.131124 0.991366i \(-0.541859\pi\)
−0.131124 + 0.991366i \(0.541859\pi\)
\(194\) 3.05685e25 0.149815
\(195\) −1.43103e26 −0.661077
\(196\) 0 0
\(197\) 2.81161e25 0.115503 0.0577514 0.998331i \(-0.481607\pi\)
0.0577514 + 0.998331i \(0.481607\pi\)
\(198\) 1.26604e26 0.490679
\(199\) −4.65599e26 −1.70295 −0.851474 0.524396i \(-0.824291\pi\)
−0.851474 + 0.524396i \(0.824291\pi\)
\(200\) 1.77105e26 0.611483
\(201\) −2.61570e26 −0.852774
\(202\) −4.75550e25 −0.146439
\(203\) 0 0
\(204\) −1.95545e25 −0.0537651
\(205\) 1.22960e26 0.319590
\(206\) −3.78151e26 −0.929378
\(207\) 6.38481e25 0.148419
\(208\) 2.51234e26 0.552522
\(209\) −4.93273e26 −1.02661
\(210\) 0 0
\(211\) 5.35197e26 0.998310 0.499155 0.866513i \(-0.333644\pi\)
0.499155 + 0.866513i \(0.333644\pi\)
\(212\) 1.45267e26 0.256629
\(213\) −8.26233e26 −1.38273
\(214\) −7.31551e26 −1.16007
\(215\) −4.55816e26 −0.685090
\(216\) −4.03036e26 −0.574282
\(217\) 0 0
\(218\) −1.23738e27 −1.58581
\(219\) 1.18517e27 1.44103
\(220\) 1.38131e26 0.159379
\(221\) 1.26396e26 0.138427
\(222\) −1.39445e27 −1.44992
\(223\) −1.49821e26 −0.147934 −0.0739669 0.997261i \(-0.523566\pi\)
−0.0739669 + 0.997261i \(0.523566\pi\)
\(224\) 0 0
\(225\) −3.66211e26 −0.326311
\(226\) 1.12588e27 0.953338
\(227\) 7.45872e26 0.600298 0.300149 0.953892i \(-0.402964\pi\)
0.300149 + 0.953892i \(0.402964\pi\)
\(228\) −4.24788e26 −0.325029
\(229\) 5.18314e26 0.377124 0.188562 0.982061i \(-0.439617\pi\)
0.188562 + 0.982061i \(0.439617\pi\)
\(230\) −2.12567e26 −0.147105
\(231\) 0 0
\(232\) −1.81560e27 −1.13739
\(233\) −2.55085e27 −1.52087 −0.760434 0.649415i \(-0.775014\pi\)
−0.760434 + 0.649415i \(0.775014\pi\)
\(234\) −7.04721e26 −0.399977
\(235\) −9.75700e26 −0.527274
\(236\) 4.96161e26 0.255349
\(237\) −2.62711e27 −1.28787
\(238\) 0 0
\(239\) −4.16431e27 −1.85339 −0.926696 0.375811i \(-0.877364\pi\)
−0.926696 + 0.375811i \(0.877364\pi\)
\(240\) −1.35163e27 −0.573364
\(241\) 2.81017e27 1.13641 0.568207 0.822886i \(-0.307637\pi\)
0.568207 + 0.822886i \(0.307637\pi\)
\(242\) −9.28814e25 −0.0358139
\(243\) 2.80557e27 1.03169
\(244\) 2.85377e26 0.100100
\(245\) 0 0
\(246\) 1.65417e27 0.528233
\(247\) 2.74573e27 0.836840
\(248\) −7.31944e27 −2.12953
\(249\) 3.22466e27 0.895759
\(250\) 3.37670e27 0.895742
\(251\) 5.49506e27 1.39227 0.696136 0.717909i \(-0.254901\pi\)
0.696136 + 0.717909i \(0.254901\pi\)
\(252\) 0 0
\(253\) 1.08823e27 0.251673
\(254\) 6.37849e27 1.40971
\(255\) −6.80006e26 −0.143648
\(256\) −3.42490e27 −0.691653
\(257\) −5.83044e27 −1.12582 −0.562912 0.826517i \(-0.690319\pi\)
−0.562912 + 0.826517i \(0.690319\pi\)
\(258\) −6.13206e27 −1.13235
\(259\) 0 0
\(260\) −7.68883e26 −0.129917
\(261\) 3.75425e27 0.606956
\(262\) 1.00337e28 1.55237
\(263\) 1.10681e28 1.63902 0.819509 0.573067i \(-0.194246\pi\)
0.819509 + 0.573067i \(0.194246\pi\)
\(264\) 9.38691e27 1.33069
\(265\) 5.05165e27 0.685656
\(266\) 0 0
\(267\) 1.31639e28 1.63872
\(268\) −1.40540e27 −0.167590
\(269\) −1.58808e27 −0.181435 −0.0907177 0.995877i \(-0.528916\pi\)
−0.0907177 + 0.995877i \(0.528916\pi\)
\(270\) −2.77456e27 −0.303746
\(271\) −7.54776e27 −0.791902 −0.395951 0.918272i \(-0.629585\pi\)
−0.395951 + 0.918272i \(0.629585\pi\)
\(272\) 1.19383e27 0.120060
\(273\) 0 0
\(274\) 4.95880e27 0.458401
\(275\) −6.24175e27 −0.553325
\(276\) 9.37147e26 0.0796807
\(277\) −7.14977e27 −0.583143 −0.291571 0.956549i \(-0.594178\pi\)
−0.291571 + 0.956549i \(0.594178\pi\)
\(278\) 5.66177e27 0.443034
\(279\) 1.51349e28 1.13640
\(280\) 0 0
\(281\) −1.73530e27 −0.120019 −0.0600097 0.998198i \(-0.519113\pi\)
−0.0600097 + 0.998198i \(0.519113\pi\)
\(282\) −1.31260e28 −0.871502
\(283\) 4.93576e27 0.314637 0.157319 0.987548i \(-0.449715\pi\)
0.157319 + 0.987548i \(0.449715\pi\)
\(284\) −4.43928e27 −0.271739
\(285\) −1.47720e28 −0.868406
\(286\) −1.20114e28 −0.678239
\(287\) 0 0
\(288\) 5.33239e27 0.277913
\(289\) −1.93670e28 −0.969921
\(290\) −1.24989e28 −0.601582
\(291\) −4.68653e27 −0.216811
\(292\) 6.36784e27 0.283197
\(293\) 2.34613e28 1.00317 0.501586 0.865108i \(-0.332750\pi\)
0.501586 + 0.865108i \(0.332750\pi\)
\(294\) 0 0
\(295\) 1.72540e28 0.682237
\(296\) −3.78467e28 −1.43937
\(297\) 1.42043e28 0.519662
\(298\) 3.05959e28 1.07690
\(299\) −6.05748e27 −0.205151
\(300\) −5.37516e27 −0.175185
\(301\) 0 0
\(302\) −4.50945e28 −1.36158
\(303\) 7.29077e27 0.211925
\(304\) 2.59338e28 0.725806
\(305\) 9.92395e27 0.267446
\(306\) −3.34873e27 −0.0869127
\(307\) −3.49585e28 −0.873900 −0.436950 0.899486i \(-0.643941\pi\)
−0.436950 + 0.899486i \(0.643941\pi\)
\(308\) 0 0
\(309\) 5.79752e28 1.34499
\(310\) −5.03881e28 −1.12634
\(311\) 8.86916e28 1.91046 0.955230 0.295864i \(-0.0956075\pi\)
0.955230 + 0.295864i \(0.0956075\pi\)
\(312\) −5.22508e28 −1.08471
\(313\) −5.87749e28 −1.17607 −0.588033 0.808837i \(-0.700098\pi\)
−0.588033 + 0.808837i \(0.700098\pi\)
\(314\) 1.92636e28 0.371575
\(315\) 0 0
\(316\) −1.41153e28 −0.253098
\(317\) 1.10922e28 0.191795 0.0958974 0.995391i \(-0.469428\pi\)
0.0958974 + 0.995391i \(0.469428\pi\)
\(318\) 6.79595e28 1.13328
\(319\) 6.39879e28 1.02921
\(320\) −4.71755e28 −0.731967
\(321\) 1.12156e29 1.67886
\(322\) 0 0
\(323\) 1.30473e28 0.181841
\(324\) 2.28286e28 0.307052
\(325\) 3.47437e28 0.451042
\(326\) −1.17115e28 −0.146761
\(327\) 1.89705e29 2.29498
\(328\) 4.48957e28 0.524392
\(329\) 0 0
\(330\) 6.46209e28 0.703822
\(331\) −4.08718e28 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(332\) 1.73258e28 0.176038
\(333\) 7.82581e28 0.768105
\(334\) −3.42878e28 −0.325129
\(335\) −4.88725e28 −0.447764
\(336\) 0 0
\(337\) 4.89238e28 0.418578 0.209289 0.977854i \(-0.432885\pi\)
0.209289 + 0.977854i \(0.432885\pi\)
\(338\) −3.80925e28 −0.314990
\(339\) −1.72612e29 −1.37967
\(340\) −3.65362e27 −0.0282303
\(341\) 2.57961e29 1.92699
\(342\) −7.27454e28 −0.525418
\(343\) 0 0
\(344\) −1.66430e29 −1.12411
\(345\) 3.25892e28 0.212889
\(346\) −2.19024e29 −1.38394
\(347\) −1.31576e29 −0.804244 −0.402122 0.915586i \(-0.631727\pi\)
−0.402122 + 0.915586i \(0.631727\pi\)
\(348\) 5.51040e28 0.325853
\(349\) 1.32383e29 0.757426 0.378713 0.925514i \(-0.376367\pi\)
0.378713 + 0.925514i \(0.376367\pi\)
\(350\) 0 0
\(351\) −7.90660e28 −0.423602
\(352\) 9.08860e28 0.471255
\(353\) 1.57619e29 0.791040 0.395520 0.918457i \(-0.370564\pi\)
0.395520 + 0.918457i \(0.370564\pi\)
\(354\) 2.32116e29 1.12763
\(355\) −1.54376e29 −0.726026
\(356\) 7.07285e28 0.322047
\(357\) 0 0
\(358\) −2.02426e28 −0.0864195
\(359\) 1.73990e29 0.719347 0.359674 0.933078i \(-0.382888\pi\)
0.359674 + 0.933078i \(0.382888\pi\)
\(360\) 1.02902e29 0.412046
\(361\) 2.56002e28 0.0992913
\(362\) 1.48678e28 0.0558598
\(363\) 1.42399e28 0.0518298
\(364\) 0 0
\(365\) 2.21441e29 0.756641
\(366\) 1.33506e29 0.442047
\(367\) 3.22943e29 1.03625 0.518127 0.855304i \(-0.326630\pi\)
0.518127 + 0.855304i \(0.326630\pi\)
\(368\) −5.72139e28 −0.177931
\(369\) −9.28339e28 −0.279836
\(370\) −2.60542e29 −0.761305
\(371\) 0 0
\(372\) 2.22146e29 0.610092
\(373\) 1.17082e28 0.0311773 0.0155887 0.999878i \(-0.495038\pi\)
0.0155887 + 0.999878i \(0.495038\pi\)
\(374\) −5.70761e28 −0.147377
\(375\) −5.17690e29 −1.29631
\(376\) −3.56253e29 −0.865165
\(377\) −3.56178e29 −0.838961
\(378\) 0 0
\(379\) −5.49051e29 −1.21692 −0.608460 0.793585i \(-0.708212\pi\)
−0.608460 + 0.793585i \(0.708212\pi\)
\(380\) −7.93686e28 −0.170662
\(381\) −9.77902e29 −2.04013
\(382\) 7.04734e29 1.42658
\(383\) −5.92667e28 −0.116419 −0.0582096 0.998304i \(-0.518539\pi\)
−0.0582096 + 0.998304i \(0.518539\pi\)
\(384\) −3.17551e29 −0.605347
\(385\) 0 0
\(386\) −1.26740e29 −0.227594
\(387\) 3.44139e29 0.599871
\(388\) −2.51804e28 −0.0426086
\(389\) −7.31576e29 −1.20182 −0.600909 0.799317i \(-0.705195\pi\)
−0.600909 + 0.799317i \(0.705195\pi\)
\(390\) −3.59702e29 −0.573720
\(391\) −2.87843e28 −0.0445782
\(392\) 0 0
\(393\) −1.53829e30 −2.24659
\(394\) 7.06720e28 0.100240
\(395\) −4.90857e29 −0.676221
\(396\) −1.04288e29 −0.139553
\(397\) 2.05473e29 0.267094 0.133547 0.991042i \(-0.457363\pi\)
0.133547 + 0.991042i \(0.457363\pi\)
\(398\) −1.17032e30 −1.47791
\(399\) 0 0
\(400\) 3.28160e29 0.391197
\(401\) −3.15365e29 −0.365303 −0.182652 0.983178i \(-0.558468\pi\)
−0.182652 + 0.983178i \(0.558468\pi\)
\(402\) −6.57478e29 −0.740085
\(403\) −1.43590e30 −1.57078
\(404\) 3.91727e28 0.0416484
\(405\) 7.93863e29 0.820376
\(406\) 0 0
\(407\) 1.33384e30 1.30247
\(408\) −2.48288e29 −0.235702
\(409\) −9.57915e29 −0.884115 −0.442058 0.896987i \(-0.645751\pi\)
−0.442058 + 0.896987i \(0.645751\pi\)
\(410\) 3.09069e29 0.277358
\(411\) −7.60245e29 −0.663396
\(412\) 3.11496e29 0.264323
\(413\) 0 0
\(414\) 1.60487e29 0.128806
\(415\) 6.02504e29 0.470334
\(416\) −5.05902e29 −0.384143
\(417\) −8.68020e29 −0.641158
\(418\) −1.23988e30 −0.890949
\(419\) −5.13468e29 −0.358965 −0.179483 0.983761i \(-0.557442\pi\)
−0.179483 + 0.983761i \(0.557442\pi\)
\(420\) 0 0
\(421\) 2.43397e28 0.0161091 0.00805456 0.999968i \(-0.497436\pi\)
0.00805456 + 0.999968i \(0.497436\pi\)
\(422\) 1.34526e30 0.866390
\(423\) 7.36649e29 0.461686
\(424\) 1.84449e30 1.12504
\(425\) 1.65097e29 0.0980090
\(426\) −2.07680e30 −1.20001
\(427\) 0 0
\(428\) 6.02604e29 0.329935
\(429\) 1.84149e30 0.981545
\(430\) −1.14573e30 −0.594559
\(431\) −1.45777e30 −0.736549 −0.368274 0.929717i \(-0.620051\pi\)
−0.368274 + 0.929717i \(0.620051\pi\)
\(432\) −7.46790e29 −0.367397
\(433\) 2.75821e30 1.32135 0.660673 0.750673i \(-0.270271\pi\)
0.660673 + 0.750673i \(0.270271\pi\)
\(434\) 0 0
\(435\) 1.91623e30 0.870607
\(436\) 1.01927e30 0.451018
\(437\) −6.25289e29 −0.269491
\(438\) 2.97903e30 1.25061
\(439\) 3.44878e30 1.41034 0.705170 0.709038i \(-0.250871\pi\)
0.705170 + 0.709038i \(0.250871\pi\)
\(440\) 1.75388e30 0.698704
\(441\) 0 0
\(442\) 3.17705e29 0.120135
\(443\) −1.57805e30 −0.581403 −0.290702 0.956814i \(-0.593889\pi\)
−0.290702 + 0.956814i \(0.593889\pi\)
\(444\) 1.14865e30 0.412368
\(445\) 2.45958e30 0.860439
\(446\) −3.76588e29 −0.128385
\(447\) −4.69072e30 −1.55849
\(448\) 0 0
\(449\) −3.99683e30 −1.26149 −0.630743 0.775992i \(-0.717250\pi\)
−0.630743 + 0.775992i \(0.717250\pi\)
\(450\) −9.20500e29 −0.283191
\(451\) −1.58227e30 −0.474516
\(452\) −9.27430e29 −0.271137
\(453\) 6.91354e30 1.97048
\(454\) 1.87481e30 0.520973
\(455\) 0 0
\(456\) −5.39363e30 −1.42490
\(457\) 1.64681e30 0.424235 0.212118 0.977244i \(-0.431964\pi\)
0.212118 + 0.977244i \(0.431964\pi\)
\(458\) 1.30282e30 0.327290
\(459\) −3.75709e29 −0.0920463
\(460\) 1.75099e29 0.0418378
\(461\) 2.18794e30 0.509888 0.254944 0.966956i \(-0.417943\pi\)
0.254944 + 0.966956i \(0.417943\pi\)
\(462\) 0 0
\(463\) 5.94749e30 1.31872 0.659360 0.751827i \(-0.270827\pi\)
0.659360 + 0.751827i \(0.270827\pi\)
\(464\) −3.36416e30 −0.727645
\(465\) 7.72512e30 1.63003
\(466\) −6.41177e30 −1.31990
\(467\) 2.10652e30 0.423078 0.211539 0.977370i \(-0.432152\pi\)
0.211539 + 0.977370i \(0.432152\pi\)
\(468\) 5.80503e29 0.113757
\(469\) 0 0
\(470\) −2.45250e30 −0.457598
\(471\) −2.95334e30 −0.537742
\(472\) 6.29986e30 1.11943
\(473\) 5.86555e30 1.01720
\(474\) −6.60346e30 −1.11769
\(475\) 3.58644e30 0.592499
\(476\) 0 0
\(477\) −3.81397e30 −0.600366
\(478\) −1.04673e31 −1.60848
\(479\) 8.13298e30 1.22009 0.610044 0.792367i \(-0.291152\pi\)
0.610044 + 0.792367i \(0.291152\pi\)
\(480\) 2.72175e30 0.398633
\(481\) −7.42462e30 −1.06171
\(482\) 7.06359e30 0.986244
\(483\) 0 0
\(484\) 7.65096e28 0.0101858
\(485\) −8.75644e29 −0.113841
\(486\) 7.05203e30 0.895359
\(487\) −5.35921e30 −0.664534 −0.332267 0.943185i \(-0.607814\pi\)
−0.332267 + 0.943185i \(0.607814\pi\)
\(488\) 3.62349e30 0.438833
\(489\) 1.79552e30 0.212392
\(490\) 0 0
\(491\) 7.21743e30 0.814602 0.407301 0.913294i \(-0.366470\pi\)
0.407301 + 0.913294i \(0.366470\pi\)
\(492\) −1.36259e30 −0.150234
\(493\) −1.69251e30 −0.182302
\(494\) 6.90160e30 0.726257
\(495\) −3.62661e30 −0.372856
\(496\) −1.35623e31 −1.36237
\(497\) 0 0
\(498\) 8.10544e30 0.777390
\(499\) −7.03081e29 −0.0658945 −0.0329472 0.999457i \(-0.510489\pi\)
−0.0329472 + 0.999457i \(0.510489\pi\)
\(500\) −2.78151e30 −0.254757
\(501\) 5.25674e30 0.470525
\(502\) 1.38123e31 1.20829
\(503\) 1.27287e31 1.08831 0.544155 0.838984i \(-0.316850\pi\)
0.544155 + 0.838984i \(0.316850\pi\)
\(504\) 0 0
\(505\) 1.36223e30 0.111275
\(506\) 2.73536e30 0.218416
\(507\) 5.84005e30 0.455853
\(508\) −5.25419e30 −0.400934
\(509\) −8.95139e30 −0.667784 −0.333892 0.942611i \(-0.608362\pi\)
−0.333892 + 0.942611i \(0.608362\pi\)
\(510\) −1.70925e30 −0.124666
\(511\) 0 0
\(512\) −1.55212e31 −1.08224
\(513\) −8.16165e30 −0.556453
\(514\) −1.46553e31 −0.977053
\(515\) 1.08323e31 0.706213
\(516\) 5.05119e30 0.322049
\(517\) 1.25555e31 0.782878
\(518\) 0 0
\(519\) 3.35791e31 2.00283
\(520\) −9.76267e30 −0.569548
\(521\) −2.69654e31 −1.53876 −0.769382 0.638788i \(-0.779436\pi\)
−0.769382 + 0.638788i \(0.779436\pi\)
\(522\) 9.43660e30 0.526750
\(523\) −1.66071e31 −0.906825 −0.453412 0.891301i \(-0.649794\pi\)
−0.453412 + 0.891301i \(0.649794\pi\)
\(524\) −8.26511e30 −0.441508
\(525\) 0 0
\(526\) 2.78207e31 1.42243
\(527\) −6.82317e30 −0.341322
\(528\) 1.73931e31 0.851311
\(529\) −1.95010e31 −0.933934
\(530\) 1.26977e31 0.595051
\(531\) −1.30266e31 −0.597373
\(532\) 0 0
\(533\) 8.80747e30 0.386802
\(534\) 3.30885e31 1.42217
\(535\) 2.09555e31 0.881514
\(536\) −1.78446e31 −0.734704
\(537\) 3.10344e30 0.125066
\(538\) −3.99177e30 −0.157460
\(539\) 0 0
\(540\) 2.28550e30 0.0863879
\(541\) −5.87543e30 −0.217406 −0.108703 0.994074i \(-0.534670\pi\)
−0.108703 + 0.994074i \(0.534670\pi\)
\(542\) −1.89719e31 −0.687257
\(543\) −2.27942e30 −0.0808401
\(544\) −2.40397e30 −0.0834722
\(545\) 3.54450e31 1.20502
\(546\) 0 0
\(547\) −4.88371e31 −1.59183 −0.795913 0.605411i \(-0.793009\pi\)
−0.795913 + 0.605411i \(0.793009\pi\)
\(548\) −4.08474e30 −0.130373
\(549\) −7.49253e30 −0.234178
\(550\) −1.56891e31 −0.480206
\(551\) −3.67668e31 −1.10208
\(552\) 1.18991e31 0.349314
\(553\) 0 0
\(554\) −1.79715e31 −0.506084
\(555\) 3.99443e31 1.10176
\(556\) −4.66380e30 −0.126003
\(557\) 7.07650e30 0.187277 0.0936383 0.995606i \(-0.470150\pi\)
0.0936383 + 0.995606i \(0.470150\pi\)
\(558\) 3.80427e31 0.986231
\(559\) −3.26496e31 −0.829168
\(560\) 0 0
\(561\) 8.75047e30 0.213284
\(562\) −4.36181e30 −0.104160
\(563\) 1.45808e31 0.341142 0.170571 0.985345i \(-0.445439\pi\)
0.170571 + 0.985345i \(0.445439\pi\)
\(564\) 1.08124e31 0.247862
\(565\) −3.22513e31 −0.724419
\(566\) 1.24064e31 0.273060
\(567\) 0 0
\(568\) −5.63665e31 −1.19128
\(569\) −2.12452e31 −0.440018 −0.220009 0.975498i \(-0.570609\pi\)
−0.220009 + 0.975498i \(0.570609\pi\)
\(570\) −3.71305e31 −0.753651
\(571\) 7.34941e31 1.46197 0.730983 0.682396i \(-0.239062\pi\)
0.730983 + 0.682396i \(0.239062\pi\)
\(572\) 9.89417e30 0.192897
\(573\) −1.08044e32 −2.06455
\(574\) 0 0
\(575\) −7.91223e30 −0.145251
\(576\) 3.56172e31 0.640917
\(577\) −5.51644e31 −0.973054 −0.486527 0.873666i \(-0.661736\pi\)
−0.486527 + 0.873666i \(0.661736\pi\)
\(578\) −4.86804e31 −0.841752
\(579\) 1.94308e31 0.329373
\(580\) 1.02958e31 0.171095
\(581\) 0 0
\(582\) −1.17800e31 −0.188161
\(583\) −6.50059e31 −1.01804
\(584\) 8.08538e31 1.24152
\(585\) 2.01869e31 0.303933
\(586\) 5.89719e31 0.870608
\(587\) −4.14937e30 −0.0600681 −0.0300340 0.999549i \(-0.509562\pi\)
−0.0300340 + 0.999549i \(0.509562\pi\)
\(588\) 0 0
\(589\) −1.48222e32 −2.06341
\(590\) 4.33692e31 0.592084
\(591\) −1.08349e31 −0.145067
\(592\) −7.01267e31 −0.920839
\(593\) 2.38093e31 0.306632 0.153316 0.988177i \(-0.451005\pi\)
0.153316 + 0.988177i \(0.451005\pi\)
\(594\) 3.57036e31 0.450991
\(595\) 0 0
\(596\) −2.52029e31 −0.306280
\(597\) 1.79424e32 2.13883
\(598\) −1.52260e31 −0.178042
\(599\) −5.95324e31 −0.682881 −0.341440 0.939903i \(-0.610915\pi\)
−0.341440 + 0.939903i \(0.610915\pi\)
\(600\) −6.82495e31 −0.767998
\(601\) −1.13077e32 −1.24830 −0.624150 0.781304i \(-0.714555\pi\)
−0.624150 + 0.781304i \(0.714555\pi\)
\(602\) 0 0
\(603\) 3.68985e31 0.392066
\(604\) 3.71459e31 0.387245
\(605\) 2.66061e30 0.0272142
\(606\) 1.83259e31 0.183921
\(607\) 3.93266e31 0.387272 0.193636 0.981073i \(-0.437972\pi\)
0.193636 + 0.981073i \(0.437972\pi\)
\(608\) −5.22222e31 −0.504619
\(609\) 0 0
\(610\) 2.49446e31 0.232105
\(611\) −6.98884e31 −0.638162
\(612\) 2.75846e30 0.0247187
\(613\) −7.97272e31 −0.701150 −0.350575 0.936535i \(-0.614014\pi\)
−0.350575 + 0.936535i \(0.614014\pi\)
\(614\) −8.78710e31 −0.758420
\(615\) −4.73841e31 −0.401392
\(616\) 0 0
\(617\) 1.31619e32 1.07409 0.537044 0.843554i \(-0.319541\pi\)
0.537044 + 0.843554i \(0.319541\pi\)
\(618\) 1.45725e32 1.16726
\(619\) −1.94614e32 −1.53014 −0.765070 0.643947i \(-0.777296\pi\)
−0.765070 + 0.643947i \(0.777296\pi\)
\(620\) 4.15064e31 0.320340
\(621\) 1.80058e31 0.136414
\(622\) 2.22933e32 1.65800
\(623\) 0 0
\(624\) −9.68162e31 −0.693945
\(625\) −1.64200e31 −0.115546
\(626\) −1.47735e32 −1.02066
\(627\) 1.90089e32 1.28938
\(628\) −1.58681e31 −0.105679
\(629\) −3.52807e31 −0.230704
\(630\) 0 0
\(631\) 2.09276e32 1.31941 0.659707 0.751523i \(-0.270680\pi\)
0.659707 + 0.751523i \(0.270680\pi\)
\(632\) −1.79225e32 −1.10956
\(633\) −2.06245e32 −1.25384
\(634\) 2.78812e31 0.166450
\(635\) −1.82714e32 −1.07121
\(636\) −5.59806e31 −0.322315
\(637\) 0 0
\(638\) 1.60839e32 0.893208
\(639\) 1.16553e32 0.635715
\(640\) −5.93321e31 −0.317848
\(641\) −2.56078e32 −1.34743 −0.673714 0.738992i \(-0.735302\pi\)
−0.673714 + 0.738992i \(0.735302\pi\)
\(642\) 2.81912e32 1.45701
\(643\) 1.90581e32 0.967507 0.483754 0.875204i \(-0.339273\pi\)
0.483754 + 0.875204i \(0.339273\pi\)
\(644\) 0 0
\(645\) 1.75655e32 0.860444
\(646\) 3.27954e31 0.157812
\(647\) 1.17375e32 0.554851 0.277426 0.960747i \(-0.410519\pi\)
0.277426 + 0.960747i \(0.410519\pi\)
\(648\) 2.89860e32 1.34609
\(649\) −2.22028e32 −1.01296
\(650\) 8.73310e31 0.391440
\(651\) 0 0
\(652\) 9.64717e30 0.0417400
\(653\) −4.31869e32 −1.83591 −0.917954 0.396687i \(-0.870160\pi\)
−0.917954 + 0.396687i \(0.870160\pi\)
\(654\) 4.76839e32 1.99172
\(655\) −2.87418e32 −1.17961
\(656\) 8.31879e31 0.335480
\(657\) −1.67187e32 −0.662522
\(658\) 0 0
\(659\) −4.05209e32 −1.55059 −0.775295 0.631600i \(-0.782399\pi\)
−0.775295 + 0.631600i \(0.782399\pi\)
\(660\) −5.32305e31 −0.200173
\(661\) 9.73763e31 0.359862 0.179931 0.983679i \(-0.442412\pi\)
0.179931 + 0.983679i \(0.442412\pi\)
\(662\) −1.02734e32 −0.373121
\(663\) −4.87081e31 −0.173858
\(664\) 2.19990e32 0.771737
\(665\) 0 0
\(666\) 1.96708e32 0.666605
\(667\) 8.11130e31 0.270174
\(668\) 2.82440e31 0.0924693
\(669\) 5.77355e31 0.185799
\(670\) −1.22845e32 −0.388595
\(671\) −1.27704e32 −0.397095
\(672\) 0 0
\(673\) −3.34090e31 −0.100390 −0.0501949 0.998739i \(-0.515984\pi\)
−0.0501949 + 0.998739i \(0.515984\pi\)
\(674\) 1.22974e32 0.363265
\(675\) −1.03275e32 −0.299918
\(676\) 3.13781e31 0.0895859
\(677\) 1.42876e32 0.401042 0.200521 0.979689i \(-0.435736\pi\)
0.200521 + 0.979689i \(0.435736\pi\)
\(678\) −4.33874e32 −1.19735
\(679\) 0 0
\(680\) −4.63907e31 −0.123760
\(681\) −2.87432e32 −0.753950
\(682\) 6.48406e32 1.67235
\(683\) 8.01003e31 0.203140 0.101570 0.994828i \(-0.467613\pi\)
0.101570 + 0.994828i \(0.467613\pi\)
\(684\) 5.99229e31 0.149433
\(685\) −1.42046e32 −0.348328
\(686\) 0 0
\(687\) −1.99739e32 −0.473653
\(688\) −3.08381e32 −0.719152
\(689\) 3.61845e32 0.829853
\(690\) 8.19155e31 0.184757
\(691\) −6.06677e32 −1.34574 −0.672868 0.739762i \(-0.734938\pi\)
−0.672868 + 0.739762i \(0.734938\pi\)
\(692\) 1.80418e32 0.393604
\(693\) 0 0
\(694\) −3.30727e32 −0.697968
\(695\) −1.62183e32 −0.336651
\(696\) 6.99666e32 1.42851
\(697\) 4.18518e31 0.0840498
\(698\) 3.32756e32 0.657337
\(699\) 9.83003e32 1.91015
\(700\) 0 0
\(701\) 5.03914e32 0.947544 0.473772 0.880648i \(-0.342892\pi\)
0.473772 + 0.880648i \(0.342892\pi\)
\(702\) −1.98739e32 −0.367625
\(703\) −7.66412e32 −1.39469
\(704\) 6.07065e32 1.08680
\(705\) 3.75999e32 0.662234
\(706\) 3.96187e32 0.686509
\(707\) 0 0
\(708\) −1.91202e32 −0.320708
\(709\) −1.95608e32 −0.322816 −0.161408 0.986888i \(-0.551603\pi\)
−0.161408 + 0.986888i \(0.551603\pi\)
\(710\) −3.88035e32 −0.630086
\(711\) 3.70595e32 0.592105
\(712\) 8.98055e32 1.41183
\(713\) 3.27000e32 0.505845
\(714\) 0 0
\(715\) 3.44069e32 0.515378
\(716\) 1.66745e31 0.0245784
\(717\) 1.60477e33 2.32778
\(718\) 4.37338e32 0.624290
\(719\) −3.61354e32 −0.507635 −0.253817 0.967252i \(-0.581686\pi\)
−0.253817 + 0.967252i \(0.581686\pi\)
\(720\) 1.90669e32 0.263606
\(721\) 0 0
\(722\) 6.43483e31 0.0861706
\(723\) −1.08293e33 −1.42729
\(724\) −1.22472e31 −0.0158870
\(725\) −4.65237e32 −0.594001
\(726\) 3.57930e31 0.0449808
\(727\) −5.93026e32 −0.733547 −0.366773 0.930310i \(-0.619538\pi\)
−0.366773 + 0.930310i \(0.619538\pi\)
\(728\) 0 0
\(729\) −4.31845e31 −0.0517561
\(730\) 5.56610e32 0.656656
\(731\) −1.55146e32 −0.180174
\(732\) −1.09974e32 −0.125722
\(733\) 1.20014e33 1.35063 0.675316 0.737529i \(-0.264007\pi\)
0.675316 + 0.737529i \(0.264007\pi\)
\(734\) 8.11743e32 0.899319
\(735\) 0 0
\(736\) 1.15210e32 0.123707
\(737\) 6.28903e32 0.664825
\(738\) −2.33345e32 −0.242857
\(739\) 1.98559e32 0.203460 0.101730 0.994812i \(-0.467562\pi\)
0.101730 + 0.994812i \(0.467562\pi\)
\(740\) 2.14618e32 0.216521
\(741\) −1.05810e33 −1.05104
\(742\) 0 0
\(743\) 9.02149e32 0.868774 0.434387 0.900726i \(-0.356965\pi\)
0.434387 + 0.900726i \(0.356965\pi\)
\(744\) 2.82064e33 2.67460
\(745\) −8.76428e32 −0.818312
\(746\) 2.94295e31 0.0270574
\(747\) −4.54887e32 −0.411829
\(748\) 4.70156e31 0.0419154
\(749\) 0 0
\(750\) −1.30126e33 −1.12501
\(751\) 3.97352e32 0.338311 0.169155 0.985589i \(-0.445896\pi\)
0.169155 + 0.985589i \(0.445896\pi\)
\(752\) −6.60107e32 −0.553489
\(753\) −2.11759e33 −1.74864
\(754\) −8.95282e32 −0.728098
\(755\) 1.29175e33 1.03463
\(756\) 0 0
\(757\) 8.67116e32 0.673712 0.336856 0.941556i \(-0.390636\pi\)
0.336856 + 0.941556i \(0.390636\pi\)
\(758\) −1.38008e33 −1.05611
\(759\) −4.19365e32 −0.316091
\(760\) −1.00776e33 −0.748171
\(761\) −2.16137e32 −0.158054 −0.0790272 0.996872i \(-0.525181\pi\)
−0.0790272 + 0.996872i \(0.525181\pi\)
\(762\) −2.45803e33 −1.77054
\(763\) 0 0
\(764\) −5.80514e32 −0.405732
\(765\) 9.59252e31 0.0660429
\(766\) −1.48971e32 −0.101035
\(767\) 1.23588e33 0.825716
\(768\) 1.31983e33 0.868688
\(769\) −7.41782e32 −0.480976 −0.240488 0.970652i \(-0.577307\pi\)
−0.240488 + 0.970652i \(0.577307\pi\)
\(770\) 0 0
\(771\) 2.24684e33 1.41399
\(772\) 1.04400e32 0.0647296
\(773\) −8.03942e32 −0.491090 −0.245545 0.969385i \(-0.578967\pi\)
−0.245545 + 0.969385i \(0.578967\pi\)
\(774\) 8.65020e32 0.520601
\(775\) −1.87556e33 −1.11214
\(776\) −3.19720e32 −0.186793
\(777\) 0 0
\(778\) −1.83887e33 −1.04301
\(779\) 9.09158e32 0.508111
\(780\) 2.96299e32 0.163171
\(781\) 1.98654e33 1.07798
\(782\) −7.23515e31 −0.0386874
\(783\) 1.05874e33 0.557863
\(784\) 0 0
\(785\) −5.51811e32 −0.282351
\(786\) −3.86662e33 −1.94972
\(787\) −2.14021e33 −1.06352 −0.531762 0.846894i \(-0.678470\pi\)
−0.531762 + 0.846894i \(0.678470\pi\)
\(788\) −5.82150e31 −0.0285091
\(789\) −4.26525e33 −2.05854
\(790\) −1.23381e33 −0.586862
\(791\) 0 0
\(792\) −1.32417e33 −0.611791
\(793\) 7.10842e32 0.323692
\(794\) 5.16473e32 0.231799
\(795\) −1.94672e33 −0.861155
\(796\) 9.64033e32 0.420331
\(797\) −9.61312e31 −0.0413136 −0.0206568 0.999787i \(-0.506576\pi\)
−0.0206568 + 0.999787i \(0.506576\pi\)
\(798\) 0 0
\(799\) −3.32099e32 −0.138669
\(800\) −6.60805e32 −0.271981
\(801\) −1.85697e33 −0.753408
\(802\) −7.92696e32 −0.317031
\(803\) −2.84955e33 −1.12344
\(804\) 5.41588e32 0.210487
\(805\) 0 0
\(806\) −3.60925e33 −1.36321
\(807\) 6.11988e32 0.227875
\(808\) 4.97384e32 0.182583
\(809\) −3.70647e33 −1.34138 −0.670691 0.741737i \(-0.734002\pi\)
−0.670691 + 0.741737i \(0.734002\pi\)
\(810\) 1.99544e33 0.711968
\(811\) −3.98885e33 −1.40316 −0.701580 0.712590i \(-0.747522\pi\)
−0.701580 + 0.712590i \(0.747522\pi\)
\(812\) 0 0
\(813\) 2.90863e33 0.994596
\(814\) 3.35272e33 1.13036
\(815\) 3.35479e32 0.111520
\(816\) −4.60056e32 −0.150790
\(817\) −3.37028e33 −1.08921
\(818\) −2.40780e33 −0.767285
\(819\) 0 0
\(820\) −2.54591e32 −0.0788830
\(821\) 4.22086e33 1.28960 0.644799 0.764352i \(-0.276941\pi\)
0.644799 + 0.764352i \(0.276941\pi\)
\(822\) −1.91094e33 −0.575732
\(823\) −4.93005e33 −1.46471 −0.732357 0.680921i \(-0.761580\pi\)
−0.732357 + 0.680921i \(0.761580\pi\)
\(824\) 3.95513e33 1.15877
\(825\) 2.40534e33 0.694953
\(826\) 0 0
\(827\) −6.03766e32 −0.169651 −0.0848253 0.996396i \(-0.527033\pi\)
−0.0848253 + 0.996396i \(0.527033\pi\)
\(828\) −1.32199e32 −0.0366335
\(829\) −4.31323e33 −1.17876 −0.589381 0.807856i \(-0.700628\pi\)
−0.589381 + 0.807856i \(0.700628\pi\)
\(830\) 1.51444e33 0.408183
\(831\) 2.75526e33 0.732403
\(832\) −3.37913e33 −0.885904
\(833\) 0 0
\(834\) −2.18184e33 −0.556433
\(835\) 9.82183e32 0.247058
\(836\) 1.02133e33 0.253393
\(837\) 4.26820e33 1.04448
\(838\) −1.29064e33 −0.311530
\(839\) 2.82182e33 0.671842 0.335921 0.941890i \(-0.390953\pi\)
0.335921 + 0.941890i \(0.390953\pi\)
\(840\) 0 0
\(841\) 4.52701e32 0.104871
\(842\) 6.11799e31 0.0139804
\(843\) 6.68720e32 0.150739
\(844\) −1.10814e33 −0.246409
\(845\) 1.09117e33 0.239354
\(846\) 1.85163e33 0.400677
\(847\) 0 0
\(848\) 3.41768e33 0.719746
\(849\) −1.90206e33 −0.395171
\(850\) 4.14984e32 0.0850577
\(851\) 1.69082e33 0.341907
\(852\) 1.71073e33 0.341293
\(853\) 8.25823e32 0.162545 0.0812724 0.996692i \(-0.474102\pi\)
0.0812724 + 0.996692i \(0.474102\pi\)
\(854\) 0 0
\(855\) 2.08381e33 0.399253
\(856\) 7.65138e33 1.44641
\(857\) 2.54873e33 0.475383 0.237692 0.971341i \(-0.423609\pi\)
0.237692 + 0.971341i \(0.423609\pi\)
\(858\) 4.62873e33 0.851840
\(859\) 4.42760e33 0.803984 0.401992 0.915643i \(-0.368318\pi\)
0.401992 + 0.915643i \(0.368318\pi\)
\(860\) 9.43778e32 0.169098
\(861\) 0 0
\(862\) −3.66423e33 −0.639218
\(863\) −1.11946e34 −1.92701 −0.963505 0.267691i \(-0.913739\pi\)
−0.963505 + 0.267691i \(0.913739\pi\)
\(864\) 1.50379e33 0.255434
\(865\) 6.27402e33 1.05162
\(866\) 6.93299e33 1.14674
\(867\) 7.46330e33 1.21818
\(868\) 0 0
\(869\) 6.31646e33 1.00403
\(870\) 4.81661e33 0.755562
\(871\) −3.50069e33 −0.541932
\(872\) 1.29419e34 1.97723
\(873\) 6.61107e32 0.0996800
\(874\) −1.57171e33 −0.233879
\(875\) 0 0
\(876\) −2.45393e33 −0.355684
\(877\) 6.04480e33 0.864742 0.432371 0.901696i \(-0.357677\pi\)
0.432371 + 0.901696i \(0.357677\pi\)
\(878\) 8.66879e33 1.22397
\(879\) −9.04112e33 −1.25994
\(880\) 3.24978e33 0.446996
\(881\) −7.67902e33 −1.04252 −0.521258 0.853399i \(-0.674537\pi\)
−0.521258 + 0.853399i \(0.674537\pi\)
\(882\) 0 0
\(883\) −1.70686e33 −0.225762 −0.112881 0.993609i \(-0.536008\pi\)
−0.112881 + 0.993609i \(0.536008\pi\)
\(884\) −2.61705e32 −0.0341673
\(885\) −6.64903e33 −0.856862
\(886\) −3.96655e33 −0.504574
\(887\) −6.39269e33 −0.802716 −0.401358 0.915921i \(-0.631462\pi\)
−0.401358 + 0.915921i \(0.631462\pi\)
\(888\) 1.45847e34 1.80779
\(889\) 0 0
\(890\) 6.18234e33 0.746738
\(891\) −1.02156e34 −1.21807
\(892\) 3.10208e32 0.0365138
\(893\) −7.21429e33 −0.838304
\(894\) −1.17905e34 −1.35254
\(895\) 5.79855e32 0.0656681
\(896\) 0 0
\(897\) 2.33433e33 0.257661
\(898\) −1.00463e34 −1.09479
\(899\) 1.92275e34 2.06864
\(900\) 7.58248e32 0.0805420
\(901\) 1.71943e33 0.180322
\(902\) −3.97717e33 −0.411812
\(903\) 0 0
\(904\) −1.17758e34 −1.18865
\(905\) −4.25893e32 −0.0424465
\(906\) 1.73777e34 1.71009
\(907\) −1.60453e34 −1.55906 −0.779531 0.626363i \(-0.784543\pi\)
−0.779531 + 0.626363i \(0.784543\pi\)
\(908\) −1.54435e33 −0.148169
\(909\) −1.02847e33 −0.0974336
\(910\) 0 0
\(911\) −2.12344e33 −0.196146 −0.0980730 0.995179i \(-0.531268\pi\)
−0.0980730 + 0.995179i \(0.531268\pi\)
\(912\) −9.99393e33 −0.911582
\(913\) −7.75316e33 −0.698337
\(914\) 4.13938e33 0.368175
\(915\) −3.82432e33 −0.335901
\(916\) −1.07318e33 −0.0930840
\(917\) 0 0
\(918\) −9.44376e32 −0.0798829
\(919\) −7.46924e33 −0.623947 −0.311974 0.950091i \(-0.600990\pi\)
−0.311974 + 0.950091i \(0.600990\pi\)
\(920\) 2.22327e33 0.183414
\(921\) 1.34717e34 1.09758
\(922\) 5.49956e33 0.442509
\(923\) −1.10578e34 −0.878714
\(924\) 0 0
\(925\) −9.69797e33 −0.751711
\(926\) 1.49495e34 1.14446
\(927\) −8.17829e33 −0.618366
\(928\) 6.77431e33 0.505898
\(929\) −1.26293e33 −0.0931533 −0.0465767 0.998915i \(-0.514831\pi\)
−0.0465767 + 0.998915i \(0.514831\pi\)
\(930\) 1.94177e34 1.41463
\(931\) 0 0
\(932\) 5.28159e33 0.375389
\(933\) −3.41784e34 −2.39946
\(934\) 5.29490e33 0.367171
\(935\) 1.63496e33 0.111989
\(936\) 7.37077e33 0.498701
\(937\) −7.33696e33 −0.490355 −0.245178 0.969478i \(-0.578846\pi\)
−0.245178 + 0.969478i \(0.578846\pi\)
\(938\) 0 0
\(939\) 2.26496e34 1.47709
\(940\) 2.02021e33 0.130145
\(941\) 2.33812e34 1.48794 0.743971 0.668212i \(-0.232940\pi\)
0.743971 + 0.668212i \(0.232940\pi\)
\(942\) −7.42347e33 −0.466682
\(943\) −2.00574e33 −0.124563
\(944\) 1.16731e34 0.716157
\(945\) 0 0
\(946\) 1.47435e34 0.882781
\(947\) −1.00540e34 −0.594724 −0.297362 0.954765i \(-0.596107\pi\)
−0.297362 + 0.954765i \(0.596107\pi\)
\(948\) 5.43950e33 0.317880
\(949\) 1.58616e34 0.915767
\(950\) 9.01482e33 0.514204
\(951\) −4.27453e33 −0.240886
\(952\) 0 0
\(953\) 5.87817e33 0.323351 0.161675 0.986844i \(-0.448310\pi\)
0.161675 + 0.986844i \(0.448310\pi\)
\(954\) −9.58673e33 −0.521032
\(955\) −2.01873e34 −1.08403
\(956\) 8.62230e33 0.457465
\(957\) −2.46585e34 −1.29265
\(958\) 2.04429e34 1.05886
\(959\) 0 0
\(960\) 1.81797e34 0.919320
\(961\) 5.75004e34 2.87311
\(962\) −1.86624e34 −0.921411
\(963\) −1.58213e34 −0.771861
\(964\) −5.81852e33 −0.280496
\(965\) 3.63051e33 0.172943
\(966\) 0 0
\(967\) 2.63145e33 0.122402 0.0612012 0.998125i \(-0.480507\pi\)
0.0612012 + 0.998125i \(0.480507\pi\)
\(968\) 9.71459e32 0.0446537
\(969\) −5.02794e33 −0.228384
\(970\) −2.20100e33 −0.0987974
\(971\) −1.83507e34 −0.814014 −0.407007 0.913425i \(-0.633428\pi\)
−0.407007 + 0.913425i \(0.633428\pi\)
\(972\) −5.80900e33 −0.254648
\(973\) 0 0
\(974\) −1.34708e34 −0.576720
\(975\) −1.33889e34 −0.566490
\(976\) 6.71402e33 0.280743
\(977\) −4.47994e33 −0.185133 −0.0925666 0.995706i \(-0.529507\pi\)
−0.0925666 + 0.995706i \(0.529507\pi\)
\(978\) 4.51317e33 0.184325
\(979\) −3.16504e34 −1.27755
\(980\) 0 0
\(981\) −2.67608e34 −1.05513
\(982\) 1.81416e34 0.706957
\(983\) −1.86230e34 −0.717274 −0.358637 0.933477i \(-0.616758\pi\)
−0.358637 + 0.933477i \(0.616758\pi\)
\(984\) −1.73011e34 −0.658614
\(985\) −2.02442e33 −0.0761699
\(986\) −4.25425e33 −0.158212
\(987\) 0 0
\(988\) −5.68509e33 −0.206554
\(989\) 7.43535e33 0.267020
\(990\) −9.11577e33 −0.323585
\(991\) −1.44747e34 −0.507881 −0.253941 0.967220i \(-0.581727\pi\)
−0.253941 + 0.967220i \(0.581727\pi\)
\(992\) 2.73100e34 0.947190
\(993\) 1.57505e34 0.539979
\(994\) 0 0
\(995\) 3.35242e34 1.12303
\(996\) −6.67673e33 −0.221096
\(997\) 2.88400e33 0.0944063 0.0472032 0.998885i \(-0.484969\pi\)
0.0472032 + 0.998885i \(0.484969\pi\)
\(998\) −1.76725e33 −0.0571869
\(999\) 2.20696e34 0.705979
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 49.24.a.f.1.10 14
7.3 odd 6 7.24.c.a.2.5 28
7.5 odd 6 7.24.c.a.4.5 yes 28
7.6 odd 2 49.24.a.g.1.10 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.24.c.a.2.5 28 7.3 odd 6
7.24.c.a.4.5 yes 28 7.5 odd 6
49.24.a.f.1.10 14 1.1 even 1 trivial
49.24.a.g.1.10 14 7.6 odd 2