Properties

Label 49.24.a.d.1.4
Level $49$
Weight $24$
Character 49.1
Self dual yes
Analytic conductor $164.250$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49,24,Mod(1,49)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49.1"); S:= CuspForms(chi, 24); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 24, names="a")
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 24 \)
Character orbit: \([\chi]\) \(=\) 49.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-2115,-129352] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(164.249978299\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3 x^{5} - 27997302 x^{4} - 8334207232 x^{3} + 155343730039680 x^{2} + \cdots - 52\!\cdots\!92 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{11}\cdot 3^{4}\cdot 5\cdot 7^{3} \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1242.12\) of defining polynomial
Character \(\chi\) \(=\) 49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+890.125 q^{2} +64762.8 q^{3} -7.59629e6 q^{4} -1.51631e8 q^{5} +5.76470e7 q^{6} -1.42285e10 q^{8} -8.99490e10 q^{9} -1.34970e11 q^{10} +1.07109e12 q^{11} -4.91957e11 q^{12} +2.28738e12 q^{13} -9.82003e12 q^{15} +5.10571e13 q^{16} -1.43774e14 q^{17} -8.00658e13 q^{18} -2.49170e14 q^{19} +1.15183e15 q^{20} +9.53407e14 q^{22} +5.64345e15 q^{23} -9.21481e14 q^{24} +1.10709e16 q^{25} +2.03605e15 q^{26} -1.19223e16 q^{27} +9.30270e16 q^{29} -8.74105e15 q^{30} -1.39574e17 q^{31} +1.64805e17 q^{32} +6.93670e16 q^{33} -1.27976e17 q^{34} +6.83278e17 q^{36} -8.48399e17 q^{37} -2.21793e17 q^{38} +1.48137e17 q^{39} +2.15748e18 q^{40} +4.30314e18 q^{41} +1.11166e19 q^{43} -8.13633e18 q^{44} +1.36390e19 q^{45} +5.02338e18 q^{46} +2.03654e19 q^{47} +3.30660e18 q^{48} +9.85450e18 q^{50} -9.31118e18 q^{51} -1.73756e19 q^{52} +2.85416e19 q^{53} -1.06124e19 q^{54} -1.62411e20 q^{55} -1.61370e19 q^{57} +8.28056e19 q^{58} +2.78122e20 q^{59} +7.45957e19 q^{60} -4.38464e20 q^{61} -1.24239e20 q^{62} -2.81601e20 q^{64} -3.46837e20 q^{65} +6.17453e19 q^{66} -1.17983e21 q^{67} +1.09215e21 q^{68} +3.65486e20 q^{69} -8.77727e20 q^{71} +1.27984e21 q^{72} -3.16262e21 q^{73} -7.55181e20 q^{74} +7.16984e20 q^{75} +1.89277e21 q^{76} +1.31860e20 q^{78} -5.58011e21 q^{79} -7.74182e21 q^{80} +7.69596e21 q^{81} +3.83033e21 q^{82} -8.16381e21 q^{83} +2.18005e22 q^{85} +9.89512e21 q^{86} +6.02469e21 q^{87} -1.52401e22 q^{88} -1.74656e22 q^{89} +1.21404e22 q^{90} -4.28693e22 q^{92} -9.03922e21 q^{93} +1.81277e22 q^{94} +3.77819e22 q^{95} +1.06732e22 q^{96} -8.64253e22 q^{97} -9.63437e22 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2115 q^{2} - 129352 q^{3} + 6408501 q^{4} - 71437860 q^{5} - 3587653778 q^{6} - 49163897313 q^{8} + 379016247310 q^{9} + 181303960020 q^{10} - 1168850705976 q^{11} + 4703061003298 q^{12} - 11000714535636 q^{13}+ \cdots - 90\!\cdots\!04 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 890.125 0.307331 0.153665 0.988123i \(-0.450892\pi\)
0.153665 + 0.988123i \(0.450892\pi\)
\(3\) 64762.8 0.211072 0.105536 0.994415i \(-0.466344\pi\)
0.105536 + 0.994415i \(0.466344\pi\)
\(4\) −7.59629e6 −0.905548
\(5\) −1.51631e8 −1.38878 −0.694388 0.719601i \(-0.744325\pi\)
−0.694388 + 0.719601i \(0.744325\pi\)
\(6\) 5.76470e7 0.0648690
\(7\) 0 0
\(8\) −1.42285e10 −0.585633
\(9\) −8.99490e10 −0.955448
\(10\) −1.34970e11 −0.426813
\(11\) 1.07109e12 1.13191 0.565954 0.824436i \(-0.308508\pi\)
0.565954 + 0.824436i \(0.308508\pi\)
\(12\) −4.91957e11 −0.191136
\(13\) 2.28738e12 0.353989 0.176994 0.984212i \(-0.443363\pi\)
0.176994 + 0.984212i \(0.443363\pi\)
\(14\) 0 0
\(15\) −9.82003e12 −0.293132
\(16\) 5.10571e13 0.725565
\(17\) −1.43774e14 −1.01746 −0.508729 0.860927i \(-0.669885\pi\)
−0.508729 + 0.860927i \(0.669885\pi\)
\(18\) −8.00658e13 −0.293639
\(19\) −2.49170e14 −0.490716 −0.245358 0.969433i \(-0.578905\pi\)
−0.245358 + 0.969433i \(0.578905\pi\)
\(20\) 1.15183e15 1.25760
\(21\) 0 0
\(22\) 9.53407e14 0.347870
\(23\) 5.64345e15 1.23502 0.617511 0.786562i \(-0.288141\pi\)
0.617511 + 0.786562i \(0.288141\pi\)
\(24\) −9.21481e14 −0.123611
\(25\) 1.10709e16 0.928696
\(26\) 2.03605e15 0.108792
\(27\) −1.19223e16 −0.412741
\(28\) 0 0
\(29\) 9.30270e16 1.41590 0.707949 0.706264i \(-0.249621\pi\)
0.707949 + 0.706264i \(0.249621\pi\)
\(30\) −8.74105e15 −0.0900884
\(31\) −1.39574e17 −0.986611 −0.493305 0.869856i \(-0.664211\pi\)
−0.493305 + 0.869856i \(0.664211\pi\)
\(32\) 1.64805e17 0.808622
\(33\) 6.93670e16 0.238915
\(34\) −1.27976e17 −0.312696
\(35\) 0 0
\(36\) 6.83278e17 0.865204
\(37\) −8.48399e17 −0.783936 −0.391968 0.919979i \(-0.628206\pi\)
−0.391968 + 0.919979i \(0.628206\pi\)
\(38\) −2.21793e17 −0.150812
\(39\) 1.48137e17 0.0747172
\(40\) 2.15748e18 0.813313
\(41\) 4.30314e18 1.22115 0.610577 0.791957i \(-0.290937\pi\)
0.610577 + 0.791957i \(0.290937\pi\)
\(42\) 0 0
\(43\) 1.11166e19 1.82424 0.912122 0.409918i \(-0.134443\pi\)
0.912122 + 0.409918i \(0.134443\pi\)
\(44\) −8.13633e18 −1.02500
\(45\) 1.36390e19 1.32690
\(46\) 5.02338e18 0.379560
\(47\) 2.03654e19 1.20162 0.600811 0.799391i \(-0.294845\pi\)
0.600811 + 0.799391i \(0.294845\pi\)
\(48\) 3.30660e18 0.153147
\(49\) 0 0
\(50\) 9.85450e18 0.285417
\(51\) −9.31118e18 −0.214757
\(52\) −1.73756e19 −0.320554
\(53\) 2.85416e19 0.422966 0.211483 0.977382i \(-0.432171\pi\)
0.211483 + 0.977382i \(0.432171\pi\)
\(54\) −1.06124e19 −0.126848
\(55\) −1.62411e20 −1.57197
\(56\) 0 0
\(57\) −1.61370e19 −0.103577
\(58\) 8.28056e19 0.435149
\(59\) 2.78122e20 1.20071 0.600355 0.799734i \(-0.295026\pi\)
0.600355 + 0.799734i \(0.295026\pi\)
\(60\) 7.45957e19 0.265445
\(61\) −4.38464e20 −1.29015 −0.645077 0.764118i \(-0.723175\pi\)
−0.645077 + 0.764118i \(0.723175\pi\)
\(62\) −1.24239e20 −0.303216
\(63\) 0 0
\(64\) −2.81601e20 −0.477051
\(65\) −3.46837e20 −0.491611
\(66\) 6.17453e19 0.0734258
\(67\) −1.17983e21 −1.18021 −0.590105 0.807327i \(-0.700913\pi\)
−0.590105 + 0.807327i \(0.700913\pi\)
\(68\) 1.09215e21 0.921357
\(69\) 3.65486e20 0.260679
\(70\) 0 0
\(71\) −8.77727e20 −0.450701 −0.225350 0.974278i \(-0.572353\pi\)
−0.225350 + 0.974278i \(0.572353\pi\)
\(72\) 1.27984e21 0.559542
\(73\) −3.16262e21 −1.17987 −0.589934 0.807451i \(-0.700846\pi\)
−0.589934 + 0.807451i \(0.700846\pi\)
\(74\) −7.55181e20 −0.240928
\(75\) 7.16984e20 0.196022
\(76\) 1.89277e21 0.444367
\(77\) 0 0
\(78\) 1.31860e20 0.0229629
\(79\) −5.58011e21 −0.839327 −0.419664 0.907680i \(-0.637852\pi\)
−0.419664 + 0.907680i \(0.637852\pi\)
\(80\) −7.74182e21 −1.00765
\(81\) 7.69596e21 0.868330
\(82\) 3.83033e21 0.375298
\(83\) −8.16381e21 −0.695817 −0.347908 0.937529i \(-0.613108\pi\)
−0.347908 + 0.937529i \(0.613108\pi\)
\(84\) 0 0
\(85\) 2.18005e22 1.41302
\(86\) 9.89512e21 0.560646
\(87\) 6.02469e21 0.298857
\(88\) −1.52401e22 −0.662884
\(89\) −1.74656e22 −0.667110 −0.333555 0.942731i \(-0.608248\pi\)
−0.333555 + 0.942731i \(0.608248\pi\)
\(90\) 1.21404e22 0.407798
\(91\) 0 0
\(92\) −4.28693e22 −1.11837
\(93\) −9.03922e21 −0.208246
\(94\) 1.81277e22 0.369295
\(95\) 3.77819e22 0.681494
\(96\) 1.06732e22 0.170678
\(97\) −8.64253e22 −1.22678 −0.613389 0.789781i \(-0.710194\pi\)
−0.613389 + 0.789781i \(0.710194\pi\)
\(98\) 0 0
\(99\) −9.63437e22 −1.08148
\(100\) −8.40979e22 −0.840979
\(101\) 1.28361e23 1.14482 0.572409 0.819968i \(-0.306009\pi\)
0.572409 + 0.819968i \(0.306009\pi\)
\(102\) −8.28812e21 −0.0660015
\(103\) 7.38101e22 0.525397 0.262698 0.964878i \(-0.415388\pi\)
0.262698 + 0.964878i \(0.415388\pi\)
\(104\) −3.25461e22 −0.207308
\(105\) 0 0
\(106\) 2.54056e22 0.129990
\(107\) 1.73662e22 0.0797611 0.0398805 0.999204i \(-0.487302\pi\)
0.0398805 + 0.999204i \(0.487302\pi\)
\(108\) 9.05654e22 0.373757
\(109\) 3.48819e23 1.29478 0.647389 0.762160i \(-0.275861\pi\)
0.647389 + 0.762160i \(0.275861\pi\)
\(110\) −1.44566e23 −0.483114
\(111\) −5.49447e22 −0.165467
\(112\) 0 0
\(113\) 4.30441e23 1.05563 0.527814 0.849360i \(-0.323012\pi\)
0.527814 + 0.849360i \(0.323012\pi\)
\(114\) −1.43639e22 −0.0318322
\(115\) −8.55720e23 −1.71517
\(116\) −7.06660e23 −1.28216
\(117\) −2.05747e23 −0.338218
\(118\) 2.47564e23 0.369015
\(119\) 0 0
\(120\) 1.39725e23 0.171668
\(121\) 2.51811e23 0.281218
\(122\) −3.90288e23 −0.396504
\(123\) 2.78683e23 0.257752
\(124\) 1.06025e24 0.893423
\(125\) 1.28887e23 0.0990247
\(126\) 0 0
\(127\) −1.15919e24 −0.742013 −0.371007 0.928630i \(-0.620987\pi\)
−0.371007 + 0.928630i \(0.620987\pi\)
\(128\) −1.63314e24 −0.955234
\(129\) 7.19939e23 0.385047
\(130\) −3.08728e23 −0.151087
\(131\) −1.59910e24 −0.716566 −0.358283 0.933613i \(-0.616638\pi\)
−0.358283 + 0.933613i \(0.616638\pi\)
\(132\) −5.26932e23 −0.216349
\(133\) 0 0
\(134\) −1.05020e24 −0.362714
\(135\) 1.80779e24 0.573204
\(136\) 2.04569e24 0.595858
\(137\) −2.70096e24 −0.723155 −0.361578 0.932342i \(-0.617762\pi\)
−0.361578 + 0.932342i \(0.617762\pi\)
\(138\) 3.25328e23 0.0801147
\(139\) −1.71289e24 −0.388203 −0.194101 0.980981i \(-0.562179\pi\)
−0.194101 + 0.980981i \(0.562179\pi\)
\(140\) 0 0
\(141\) 1.31892e24 0.253629
\(142\) −7.81286e23 −0.138514
\(143\) 2.45000e24 0.400683
\(144\) −4.59253e24 −0.693240
\(145\) −1.41057e25 −1.96636
\(146\) −2.81512e24 −0.362610
\(147\) 0 0
\(148\) 6.44468e24 0.709891
\(149\) −1.25752e24 −0.128196 −0.0640979 0.997944i \(-0.520417\pi\)
−0.0640979 + 0.997944i \(0.520417\pi\)
\(150\) 6.38205e23 0.0602436
\(151\) 9.98857e24 0.873511 0.436755 0.899580i \(-0.356128\pi\)
0.436755 + 0.899580i \(0.356128\pi\)
\(152\) 3.54533e24 0.287380
\(153\) 1.29323e25 0.972129
\(154\) 0 0
\(155\) 2.11637e25 1.37018
\(156\) −1.12529e24 −0.0676600
\(157\) 2.08240e25 1.16337 0.581687 0.813413i \(-0.302393\pi\)
0.581687 + 0.813413i \(0.302393\pi\)
\(158\) −4.96699e24 −0.257951
\(159\) 1.84843e24 0.0892764
\(160\) −2.49895e25 −1.12299
\(161\) 0 0
\(162\) 6.85036e24 0.266865
\(163\) −3.72893e25 −1.35340 −0.676701 0.736258i \(-0.736591\pi\)
−0.676701 + 0.736258i \(0.736591\pi\)
\(164\) −3.26879e25 −1.10581
\(165\) −1.05182e25 −0.331799
\(166\) −7.26681e24 −0.213846
\(167\) 6.32711e25 1.73766 0.868832 0.495107i \(-0.164871\pi\)
0.868832 + 0.495107i \(0.164871\pi\)
\(168\) 0 0
\(169\) −3.65218e25 −0.874692
\(170\) 1.94052e25 0.434265
\(171\) 2.24126e25 0.468854
\(172\) −8.44445e25 −1.65194
\(173\) −9.95491e25 −1.82183 −0.910914 0.412597i \(-0.864622\pi\)
−0.910914 + 0.412597i \(0.864622\pi\)
\(174\) 5.36272e24 0.0918479
\(175\) 0 0
\(176\) 5.46869e25 0.821273
\(177\) 1.80120e25 0.253436
\(178\) −1.55465e25 −0.205023
\(179\) −2.81958e25 −0.348638 −0.174319 0.984689i \(-0.555772\pi\)
−0.174319 + 0.984689i \(0.555772\pi\)
\(180\) −1.03606e26 −1.20157
\(181\) −1.49046e26 −1.62188 −0.810938 0.585132i \(-0.801043\pi\)
−0.810938 + 0.585132i \(0.801043\pi\)
\(182\) 0 0
\(183\) −2.83962e25 −0.272316
\(184\) −8.02981e25 −0.723270
\(185\) 1.28643e26 1.08871
\(186\) −8.04603e24 −0.0640004
\(187\) −1.53995e26 −1.15167
\(188\) −1.54701e26 −1.08813
\(189\) 0 0
\(190\) 3.36306e25 0.209444
\(191\) −1.42222e26 −0.833843 −0.416921 0.908943i \(-0.636891\pi\)
−0.416921 + 0.908943i \(0.636891\pi\)
\(192\) −1.82373e25 −0.100692
\(193\) −3.09575e25 −0.161011 −0.0805057 0.996754i \(-0.525654\pi\)
−0.0805057 + 0.996754i \(0.525654\pi\)
\(194\) −7.69293e25 −0.377026
\(195\) −2.24621e25 −0.103765
\(196\) 0 0
\(197\) 2.26722e26 0.931393 0.465697 0.884944i \(-0.345804\pi\)
0.465697 + 0.884944i \(0.345804\pi\)
\(198\) −8.57579e25 −0.332372
\(199\) 2.38298e26 0.871586 0.435793 0.900047i \(-0.356468\pi\)
0.435793 + 0.900047i \(0.356468\pi\)
\(200\) −1.57523e26 −0.543876
\(201\) −7.64091e25 −0.249109
\(202\) 1.14257e26 0.351838
\(203\) 0 0
\(204\) 7.07304e25 0.194473
\(205\) −6.52487e26 −1.69591
\(206\) 6.57002e25 0.161471
\(207\) −5.07623e26 −1.18000
\(208\) 1.16787e26 0.256842
\(209\) −2.66885e26 −0.555446
\(210\) 0 0
\(211\) 9.55207e26 1.78176 0.890880 0.454239i \(-0.150089\pi\)
0.890880 + 0.454239i \(0.150089\pi\)
\(212\) −2.16810e26 −0.383016
\(213\) −5.68440e25 −0.0951304
\(214\) 1.54581e25 0.0245130
\(215\) −1.68561e27 −2.53347
\(216\) 1.69637e26 0.241715
\(217\) 0 0
\(218\) 3.10492e26 0.397925
\(219\) −2.04820e26 −0.249038
\(220\) 1.23372e27 1.42349
\(221\) −3.28865e26 −0.360169
\(222\) −4.89077e25 −0.0508531
\(223\) −4.99671e26 −0.493376 −0.246688 0.969095i \(-0.579342\pi\)
−0.246688 + 0.969095i \(0.579342\pi\)
\(224\) 0 0
\(225\) −9.95818e26 −0.887322
\(226\) 3.83146e26 0.324427
\(227\) −1.75238e27 −1.41037 −0.705183 0.709025i \(-0.749135\pi\)
−0.705183 + 0.709025i \(0.749135\pi\)
\(228\) 1.22581e26 0.0937935
\(229\) −2.15445e27 −1.56757 −0.783787 0.621030i \(-0.786715\pi\)
−0.783787 + 0.621030i \(0.786715\pi\)
\(230\) −7.61698e26 −0.527124
\(231\) 0 0
\(232\) −1.32364e27 −0.829197
\(233\) 4.55206e26 0.271403 0.135702 0.990750i \(-0.456671\pi\)
0.135702 + 0.990750i \(0.456671\pi\)
\(234\) −1.83141e26 −0.103945
\(235\) −3.08802e27 −1.66878
\(236\) −2.11270e27 −1.08730
\(237\) −3.61384e26 −0.177159
\(238\) 0 0
\(239\) 1.28095e27 0.570108 0.285054 0.958512i \(-0.407989\pi\)
0.285054 + 0.958512i \(0.407989\pi\)
\(240\) −5.01382e26 −0.212686
\(241\) 2.72097e27 1.10034 0.550170 0.835052i \(-0.314563\pi\)
0.550170 + 0.835052i \(0.314563\pi\)
\(242\) 2.24143e26 0.0864269
\(243\) 1.62082e27 0.596021
\(244\) 3.33070e27 1.16830
\(245\) 0 0
\(246\) 2.48063e26 0.0792151
\(247\) −5.69947e26 −0.173708
\(248\) 1.98594e27 0.577792
\(249\) −5.28711e26 −0.146868
\(250\) 1.14725e26 0.0304333
\(251\) 5.98415e26 0.151619 0.0758097 0.997122i \(-0.475846\pi\)
0.0758097 + 0.997122i \(0.475846\pi\)
\(252\) 0 0
\(253\) 6.04467e27 1.39793
\(254\) −1.03182e27 −0.228043
\(255\) 1.41186e27 0.298250
\(256\) 9.08538e26 0.183478
\(257\) 8.42017e26 0.162588 0.0812942 0.996690i \(-0.474095\pi\)
0.0812942 + 0.996690i \(0.474095\pi\)
\(258\) 6.40836e26 0.118337
\(259\) 0 0
\(260\) 2.63467e27 0.445177
\(261\) −8.36768e27 −1.35282
\(262\) −1.42340e27 −0.220223
\(263\) 4.80396e27 0.711391 0.355696 0.934602i \(-0.384244\pi\)
0.355696 + 0.934602i \(0.384244\pi\)
\(264\) −9.86992e26 −0.139916
\(265\) −4.32778e27 −0.587405
\(266\) 0 0
\(267\) −1.13112e27 −0.140808
\(268\) 8.96232e27 1.06874
\(269\) −1.07995e28 −1.23382 −0.616910 0.787034i \(-0.711616\pi\)
−0.616910 + 0.787034i \(0.711616\pi\)
\(270\) 1.60916e27 0.176163
\(271\) 1.30317e28 1.36727 0.683635 0.729824i \(-0.260398\pi\)
0.683635 + 0.729824i \(0.260398\pi\)
\(272\) −7.34066e27 −0.738232
\(273\) 0 0
\(274\) −2.40419e27 −0.222248
\(275\) 1.18580e28 1.05120
\(276\) −2.77634e27 −0.236057
\(277\) −2.16382e25 −0.00176484 −0.000882418 1.00000i \(-0.500281\pi\)
−0.000882418 1.00000i \(0.500281\pi\)
\(278\) −1.52468e27 −0.119307
\(279\) 1.25546e28 0.942656
\(280\) 0 0
\(281\) −1.54279e28 −1.06705 −0.533525 0.845784i \(-0.679133\pi\)
−0.533525 + 0.845784i \(0.679133\pi\)
\(282\) 1.17400e27 0.0779480
\(283\) 1.41163e28 0.899865 0.449932 0.893063i \(-0.351448\pi\)
0.449932 + 0.893063i \(0.351448\pi\)
\(284\) 6.66746e27 0.408131
\(285\) 2.44686e27 0.143845
\(286\) 2.18080e27 0.123142
\(287\) 0 0
\(288\) −1.48240e28 −0.772596
\(289\) 7.03291e26 0.0352217
\(290\) −1.25559e28 −0.604324
\(291\) −5.59714e27 −0.258939
\(292\) 2.40241e28 1.06843
\(293\) −1.36980e27 −0.0585704 −0.0292852 0.999571i \(-0.509323\pi\)
−0.0292852 + 0.999571i \(0.509323\pi\)
\(294\) 0 0
\(295\) −4.21719e28 −1.66752
\(296\) 1.20715e28 0.459099
\(297\) −1.27699e28 −0.467185
\(298\) −1.11935e27 −0.0393985
\(299\) 1.29087e28 0.437184
\(300\) −5.44642e27 −0.177507
\(301\) 0 0
\(302\) 8.89107e27 0.268457
\(303\) 8.31301e27 0.241640
\(304\) −1.27219e28 −0.356046
\(305\) 6.64846e28 1.79173
\(306\) 1.15114e28 0.298765
\(307\) 1.59921e28 0.399773 0.199886 0.979819i \(-0.435943\pi\)
0.199886 + 0.979819i \(0.435943\pi\)
\(308\) 0 0
\(309\) 4.78015e27 0.110897
\(310\) 1.88384e28 0.421099
\(311\) −4.03507e28 −0.869175 −0.434587 0.900630i \(-0.643106\pi\)
−0.434587 + 0.900630i \(0.643106\pi\)
\(312\) −2.10778e27 −0.0437569
\(313\) 8.30769e28 1.66234 0.831172 0.556016i \(-0.187671\pi\)
0.831172 + 0.556016i \(0.187671\pi\)
\(314\) 1.85360e28 0.357540
\(315\) 0 0
\(316\) 4.23881e28 0.760051
\(317\) 8.99748e27 0.155575 0.0777874 0.996970i \(-0.475214\pi\)
0.0777874 + 0.996970i \(0.475214\pi\)
\(318\) 1.64534e27 0.0274374
\(319\) 9.96406e28 1.60267
\(320\) 4.26993e28 0.662516
\(321\) 1.12468e27 0.0168354
\(322\) 0 0
\(323\) 3.58241e28 0.499283
\(324\) −5.84607e28 −0.786315
\(325\) 2.53234e28 0.328748
\(326\) −3.31922e28 −0.415942
\(327\) 2.25905e28 0.273292
\(328\) −6.12274e28 −0.715149
\(329\) 0 0
\(330\) −9.36248e27 −0.101972
\(331\) 1.46834e29 1.54456 0.772280 0.635282i \(-0.219116\pi\)
0.772280 + 0.635282i \(0.219116\pi\)
\(332\) 6.20147e28 0.630096
\(333\) 7.63126e28 0.749010
\(334\) 5.63192e28 0.534038
\(335\) 1.78898e29 1.63904
\(336\) 0 0
\(337\) −9.43637e28 −0.807349 −0.403674 0.914903i \(-0.632267\pi\)
−0.403674 + 0.914903i \(0.632267\pi\)
\(338\) −3.25090e28 −0.268820
\(339\) 2.78765e28 0.222814
\(340\) −1.65603e29 −1.27956
\(341\) −1.49497e29 −1.11675
\(342\) 1.99500e28 0.144093
\(343\) 0 0
\(344\) −1.58172e29 −1.06834
\(345\) −5.54189e28 −0.362024
\(346\) −8.86111e28 −0.559903
\(347\) −1.03559e29 −0.632993 −0.316496 0.948594i \(-0.602506\pi\)
−0.316496 + 0.948594i \(0.602506\pi\)
\(348\) −4.57653e28 −0.270629
\(349\) −2.97469e29 −1.70196 −0.850980 0.525198i \(-0.823991\pi\)
−0.850980 + 0.525198i \(0.823991\pi\)
\(350\) 0 0
\(351\) −2.72709e28 −0.146106
\(352\) 1.76521e29 0.915286
\(353\) 9.46025e27 0.0474781 0.0237391 0.999718i \(-0.492443\pi\)
0.0237391 + 0.999718i \(0.492443\pi\)
\(354\) 1.60329e28 0.0778888
\(355\) 1.33090e29 0.625922
\(356\) 1.32673e29 0.604100
\(357\) 0 0
\(358\) −2.50978e28 −0.107147
\(359\) −1.61274e29 −0.666775 −0.333387 0.942790i \(-0.608192\pi\)
−0.333387 + 0.942790i \(0.608192\pi\)
\(360\) −1.94063e29 −0.777079
\(361\) −1.95744e29 −0.759198
\(362\) −1.32670e29 −0.498452
\(363\) 1.63080e28 0.0593573
\(364\) 0 0
\(365\) 4.79550e29 1.63857
\(366\) −2.52762e28 −0.0836909
\(367\) 1.76716e29 0.567042 0.283521 0.958966i \(-0.408497\pi\)
0.283521 + 0.958966i \(0.408497\pi\)
\(368\) 2.88138e29 0.896089
\(369\) −3.87063e29 −1.16675
\(370\) 1.14509e29 0.334594
\(371\) 0 0
\(372\) 6.86645e28 0.188577
\(373\) 2.37051e29 0.631233 0.315616 0.948887i \(-0.397789\pi\)
0.315616 + 0.948887i \(0.397789\pi\)
\(374\) −1.37075e29 −0.353944
\(375\) 8.34708e27 0.0209014
\(376\) −2.89770e29 −0.703710
\(377\) 2.12788e29 0.501212
\(378\) 0 0
\(379\) 3.78863e29 0.839715 0.419857 0.907590i \(-0.362080\pi\)
0.419857 + 0.907590i \(0.362080\pi\)
\(380\) −2.87002e29 −0.617125
\(381\) −7.50724e28 −0.156618
\(382\) −1.26596e29 −0.256266
\(383\) 3.44468e29 0.676648 0.338324 0.941030i \(-0.390140\pi\)
0.338324 + 0.941030i \(0.390140\pi\)
\(384\) −1.05767e29 −0.201623
\(385\) 0 0
\(386\) −2.75560e28 −0.0494837
\(387\) −9.99923e29 −1.74297
\(388\) 6.56511e29 1.11091
\(389\) −9.79654e29 −1.60936 −0.804679 0.593710i \(-0.797662\pi\)
−0.804679 + 0.593710i \(0.797662\pi\)
\(390\) −1.99941e28 −0.0318903
\(391\) −8.11380e29 −1.25658
\(392\) 0 0
\(393\) −1.03562e29 −0.151247
\(394\) 2.01811e29 0.286246
\(395\) 8.46116e29 1.16564
\(396\) 7.31855e29 0.979333
\(397\) −1.10909e30 −1.44171 −0.720854 0.693087i \(-0.756250\pi\)
−0.720854 + 0.693087i \(0.756250\pi\)
\(398\) 2.12115e29 0.267865
\(399\) 0 0
\(400\) 5.65249e29 0.673829
\(401\) −1.45018e30 −1.67981 −0.839906 0.542731i \(-0.817390\pi\)
−0.839906 + 0.542731i \(0.817390\pi\)
\(402\) −6.80136e28 −0.0765590
\(403\) −3.19259e29 −0.349249
\(404\) −9.75066e29 −1.03669
\(405\) −1.16694e30 −1.20592
\(406\) 0 0
\(407\) −9.08715e29 −0.887344
\(408\) 1.32485e29 0.125769
\(409\) 7.84921e29 0.724449 0.362225 0.932091i \(-0.382017\pi\)
0.362225 + 0.932091i \(0.382017\pi\)
\(410\) −5.80795e29 −0.521205
\(411\) −1.74922e29 −0.152638
\(412\) −5.60682e29 −0.475772
\(413\) 0 0
\(414\) −4.51848e29 −0.362650
\(415\) 1.23788e30 0.966333
\(416\) 3.76971e29 0.286243
\(417\) −1.10931e29 −0.0819389
\(418\) −2.37561e29 −0.170706
\(419\) 7.98737e29 0.558397 0.279198 0.960233i \(-0.409931\pi\)
0.279198 + 0.960233i \(0.409931\pi\)
\(420\) 0 0
\(421\) 1.80176e30 1.19248 0.596242 0.802805i \(-0.296660\pi\)
0.596242 + 0.802805i \(0.296660\pi\)
\(422\) 8.50253e29 0.547590
\(423\) −1.83185e30 −1.14809
\(424\) −4.06105e29 −0.247703
\(425\) −1.59171e30 −0.944910
\(426\) −5.05983e28 −0.0292365
\(427\) 0 0
\(428\) −1.31918e29 −0.0722275
\(429\) 1.58669e29 0.0845731
\(430\) −1.50040e30 −0.778612
\(431\) −1.32586e30 −0.669897 −0.334949 0.942236i \(-0.608719\pi\)
−0.334949 + 0.942236i \(0.608719\pi\)
\(432\) −6.08719e29 −0.299470
\(433\) 1.29410e29 0.0619948 0.0309974 0.999519i \(-0.490132\pi\)
0.0309974 + 0.999519i \(0.490132\pi\)
\(434\) 0 0
\(435\) −9.13527e29 −0.415045
\(436\) −2.64973e30 −1.17248
\(437\) −1.40618e30 −0.606045
\(438\) −1.82315e29 −0.0765369
\(439\) 3.47403e30 1.42066 0.710332 0.703867i \(-0.248545\pi\)
0.710332 + 0.703867i \(0.248545\pi\)
\(440\) 2.31087e30 0.920596
\(441\) 0 0
\(442\) −2.92731e29 −0.110691
\(443\) −1.57809e29 −0.0581420 −0.0290710 0.999577i \(-0.509255\pi\)
−0.0290710 + 0.999577i \(0.509255\pi\)
\(444\) 4.17376e29 0.149838
\(445\) 2.64831e30 0.926466
\(446\) −4.44769e29 −0.151630
\(447\) −8.14407e28 −0.0270586
\(448\) 0 0
\(449\) 4.63613e30 1.46327 0.731633 0.681699i \(-0.238759\pi\)
0.731633 + 0.681699i \(0.238759\pi\)
\(450\) −8.86402e29 −0.272701
\(451\) 4.60906e30 1.38224
\(452\) −3.26975e30 −0.955922
\(453\) 6.46888e29 0.184374
\(454\) −1.55984e30 −0.433449
\(455\) 0 0
\(456\) 2.29606e29 0.0606579
\(457\) 1.44276e30 0.371671 0.185835 0.982581i \(-0.440501\pi\)
0.185835 + 0.982581i \(0.440501\pi\)
\(458\) −1.91773e30 −0.481764
\(459\) 1.71412e30 0.419947
\(460\) 6.50030e30 1.55317
\(461\) 3.35071e30 0.780866 0.390433 0.920631i \(-0.372325\pi\)
0.390433 + 0.920631i \(0.372325\pi\)
\(462\) 0 0
\(463\) −4.83600e30 −1.07227 −0.536136 0.844131i \(-0.680117\pi\)
−0.536136 + 0.844131i \(0.680117\pi\)
\(464\) 4.74969e30 1.02733
\(465\) 1.37062e30 0.289207
\(466\) 4.05190e29 0.0834105
\(467\) −2.03898e30 −0.409514 −0.204757 0.978813i \(-0.565640\pi\)
−0.204757 + 0.978813i \(0.565640\pi\)
\(468\) 1.56292e30 0.306273
\(469\) 0 0
\(470\) −2.74872e30 −0.512868
\(471\) 1.34862e30 0.245556
\(472\) −3.95728e30 −0.703175
\(473\) 1.19069e31 2.06488
\(474\) −3.21676e29 −0.0544463
\(475\) −2.75855e30 −0.455726
\(476\) 0 0
\(477\) −2.56728e30 −0.404122
\(478\) 1.14021e30 0.175212
\(479\) 6.03133e30 0.904804 0.452402 0.891814i \(-0.350567\pi\)
0.452402 + 0.891814i \(0.350567\pi\)
\(480\) −1.61839e30 −0.237033
\(481\) −1.94061e30 −0.277505
\(482\) 2.42200e30 0.338168
\(483\) 0 0
\(484\) −1.91283e30 −0.254656
\(485\) 1.31047e31 1.70372
\(486\) 1.44273e30 0.183176
\(487\) 2.14394e30 0.265845 0.132923 0.991126i \(-0.457564\pi\)
0.132923 + 0.991126i \(0.457564\pi\)
\(488\) 6.23871e30 0.755557
\(489\) −2.41496e30 −0.285666
\(490\) 0 0
\(491\) 1.03750e30 0.117099 0.0585494 0.998285i \(-0.481352\pi\)
0.0585494 + 0.998285i \(0.481352\pi\)
\(492\) −2.11696e30 −0.233407
\(493\) −1.33748e31 −1.44062
\(494\) −5.07324e29 −0.0533858
\(495\) 1.46087e31 1.50193
\(496\) −7.12625e30 −0.715850
\(497\) 0 0
\(498\) −4.70619e29 −0.0451369
\(499\) −1.61562e31 −1.51420 −0.757098 0.653301i \(-0.773383\pi\)
−0.757098 + 0.653301i \(0.773383\pi\)
\(500\) −9.79062e29 −0.0896716
\(501\) 4.09761e30 0.366773
\(502\) 5.32664e29 0.0465973
\(503\) 7.76157e30 0.663618 0.331809 0.943347i \(-0.392341\pi\)
0.331809 + 0.943347i \(0.392341\pi\)
\(504\) 0 0
\(505\) −1.94634e31 −1.58990
\(506\) 5.38051e30 0.429628
\(507\) −2.36525e30 −0.184623
\(508\) 8.80553e30 0.671928
\(509\) 1.72478e31 1.28671 0.643354 0.765569i \(-0.277542\pi\)
0.643354 + 0.765569i \(0.277542\pi\)
\(510\) 1.25673e30 0.0916612
\(511\) 0 0
\(512\) 1.45085e31 1.01162
\(513\) 2.97069e30 0.202539
\(514\) 7.49500e29 0.0499684
\(515\) −1.11919e31 −0.729658
\(516\) −5.46887e30 −0.348679
\(517\) 2.18133e31 1.36013
\(518\) 0 0
\(519\) −6.44708e30 −0.384537
\(520\) 4.93498e30 0.287904
\(521\) −2.72128e31 −1.55288 −0.776442 0.630189i \(-0.782977\pi\)
−0.776442 + 0.630189i \(0.782977\pi\)
\(522\) −7.44828e30 −0.415762
\(523\) 1.50504e31 0.821823 0.410911 0.911675i \(-0.365211\pi\)
0.410911 + 0.911675i \(0.365211\pi\)
\(524\) 1.21472e31 0.648885
\(525\) 0 0
\(526\) 4.27613e30 0.218632
\(527\) 2.00671e31 1.00384
\(528\) 3.54168e30 0.173348
\(529\) 1.09681e31 0.525280
\(530\) −3.85226e30 −0.180527
\(531\) −2.50168e31 −1.14722
\(532\) 0 0
\(533\) 9.84290e30 0.432275
\(534\) −1.00684e30 −0.0432748
\(535\) −2.63325e30 −0.110770
\(536\) 1.67873e31 0.691170
\(537\) −1.82604e30 −0.0735879
\(538\) −9.61289e30 −0.379191
\(539\) 0 0
\(540\) −1.37325e31 −0.519064
\(541\) −4.59192e31 −1.69913 −0.849563 0.527486i \(-0.823135\pi\)
−0.849563 + 0.527486i \(0.823135\pi\)
\(542\) 1.15998e31 0.420204
\(543\) −9.65265e30 −0.342333
\(544\) −2.36946e31 −0.822739
\(545\) −5.28916e31 −1.79816
\(546\) 0 0
\(547\) 5.24770e30 0.171047 0.0855234 0.996336i \(-0.472744\pi\)
0.0855234 + 0.996336i \(0.472744\pi\)
\(548\) 2.05173e31 0.654852
\(549\) 3.94394e31 1.23267
\(550\) 1.05551e31 0.323066
\(551\) −2.31796e31 −0.694804
\(552\) −5.20033e30 −0.152662
\(553\) 0 0
\(554\) −1.92607e28 −0.000542389 0
\(555\) 8.33130e30 0.229797
\(556\) 1.30116e31 0.351536
\(557\) −2.34913e31 −0.621689 −0.310844 0.950461i \(-0.600612\pi\)
−0.310844 + 0.950461i \(0.600612\pi\)
\(558\) 1.11751e31 0.289707
\(559\) 2.54278e31 0.645762
\(560\) 0 0
\(561\) −9.97315e30 −0.243086
\(562\) −1.37328e31 −0.327937
\(563\) 5.53528e31 1.29507 0.647534 0.762036i \(-0.275800\pi\)
0.647534 + 0.762036i \(0.275800\pi\)
\(564\) −1.00189e31 −0.229673
\(565\) −6.52680e31 −1.46603
\(566\) 1.25653e31 0.276556
\(567\) 0 0
\(568\) 1.24888e31 0.263945
\(569\) −7.33365e31 −1.51890 −0.759450 0.650566i \(-0.774532\pi\)
−0.759450 + 0.650566i \(0.774532\pi\)
\(570\) 2.17801e30 0.0442078
\(571\) −6.80577e31 −1.35382 −0.676912 0.736064i \(-0.736682\pi\)
−0.676912 + 0.736064i \(0.736682\pi\)
\(572\) −1.86109e31 −0.362838
\(573\) −9.21072e30 −0.176001
\(574\) 0 0
\(575\) 6.24782e31 1.14696
\(576\) 2.53297e31 0.455797
\(577\) −9.84369e31 −1.73634 −0.868172 0.496263i \(-0.834705\pi\)
−0.868172 + 0.496263i \(0.834705\pi\)
\(578\) 6.26017e29 0.0108247
\(579\) −2.00489e30 −0.0339850
\(580\) 1.07151e32 1.78064
\(581\) 0 0
\(582\) −4.98216e30 −0.0795798
\(583\) 3.05707e31 0.478759
\(584\) 4.49995e31 0.690971
\(585\) 3.11976e31 0.469709
\(586\) −1.21929e30 −0.0180005
\(587\) −1.12149e30 −0.0162352 −0.00811762 0.999967i \(-0.502584\pi\)
−0.00811762 + 0.999967i \(0.502584\pi\)
\(588\) 0 0
\(589\) 3.47778e31 0.484146
\(590\) −3.75382e31 −0.512479
\(591\) 1.46832e31 0.196591
\(592\) −4.33168e31 −0.568796
\(593\) −5.28192e31 −0.680242 −0.340121 0.940382i \(-0.610468\pi\)
−0.340121 + 0.940382i \(0.610468\pi\)
\(594\) −1.13668e31 −0.143580
\(595\) 0 0
\(596\) 9.55250e30 0.116087
\(597\) 1.54329e31 0.183968
\(598\) 1.14904e31 0.134360
\(599\) −5.09045e31 −0.583912 −0.291956 0.956432i \(-0.594306\pi\)
−0.291956 + 0.956432i \(0.594306\pi\)
\(600\) −1.02016e31 −0.114797
\(601\) −8.48335e31 −0.936507 −0.468254 0.883594i \(-0.655117\pi\)
−0.468254 + 0.883594i \(0.655117\pi\)
\(602\) 0 0
\(603\) 1.06124e32 1.12763
\(604\) −7.58760e31 −0.791006
\(605\) −3.81823e31 −0.390548
\(606\) 7.39961e30 0.0742632
\(607\) −1.18404e32 −1.16600 −0.582998 0.812473i \(-0.698121\pi\)
−0.582998 + 0.812473i \(0.698121\pi\)
\(608\) −4.10645e31 −0.396803
\(609\) 0 0
\(610\) 5.91796e31 0.550654
\(611\) 4.65834e31 0.425361
\(612\) −9.82374e31 −0.880309
\(613\) 3.60490e31 0.317028 0.158514 0.987357i \(-0.449330\pi\)
0.158514 + 0.987357i \(0.449330\pi\)
\(614\) 1.42349e31 0.122862
\(615\) −4.22569e31 −0.357960
\(616\) 0 0
\(617\) −1.96078e32 −1.60011 −0.800053 0.599929i \(-0.795196\pi\)
−0.800053 + 0.599929i \(0.795196\pi\)
\(618\) 4.25493e30 0.0340820
\(619\) 5.83396e31 0.458692 0.229346 0.973345i \(-0.426341\pi\)
0.229346 + 0.973345i \(0.426341\pi\)
\(620\) −1.60766e32 −1.24076
\(621\) −6.72831e31 −0.509744
\(622\) −3.59172e31 −0.267124
\(623\) 0 0
\(624\) 7.56345e30 0.0542122
\(625\) −1.51519e32 −1.06622
\(626\) 7.39488e31 0.510889
\(627\) −1.72842e31 −0.117239
\(628\) −1.58185e32 −1.05349
\(629\) 1.21977e32 0.797622
\(630\) 0 0
\(631\) −1.52200e32 −0.959571 −0.479785 0.877386i \(-0.659285\pi\)
−0.479785 + 0.877386i \(0.659285\pi\)
\(632\) 7.93969e31 0.491538
\(633\) 6.18619e31 0.376080
\(634\) 8.00888e30 0.0478129
\(635\) 1.75769e32 1.03049
\(636\) −1.40412e31 −0.0808440
\(637\) 0 0
\(638\) 8.86926e31 0.492549
\(639\) 7.89506e31 0.430621
\(640\) 2.47635e32 1.32661
\(641\) 1.75673e32 0.924354 0.462177 0.886788i \(-0.347068\pi\)
0.462177 + 0.886788i \(0.347068\pi\)
\(642\) 1.00111e30 0.00517402
\(643\) −2.66226e32 −1.35153 −0.675764 0.737118i \(-0.736186\pi\)
−0.675764 + 0.737118i \(0.736186\pi\)
\(644\) 0 0
\(645\) −1.09165e32 −0.534744
\(646\) 3.18880e31 0.153445
\(647\) 2.94266e30 0.0139104 0.00695521 0.999976i \(-0.497786\pi\)
0.00695521 + 0.999976i \(0.497786\pi\)
\(648\) −1.09502e32 −0.508523
\(649\) 2.97895e32 1.35909
\(650\) 2.25410e31 0.101034
\(651\) 0 0
\(652\) 2.83260e32 1.22557
\(653\) −3.99686e32 −1.69909 −0.849547 0.527513i \(-0.823124\pi\)
−0.849547 + 0.527513i \(0.823124\pi\)
\(654\) 2.01084e31 0.0839910
\(655\) 2.42473e32 0.995149
\(656\) 2.19706e32 0.886027
\(657\) 2.84474e32 1.12730
\(658\) 0 0
\(659\) −1.82318e32 −0.697667 −0.348833 0.937185i \(-0.613422\pi\)
−0.348833 + 0.937185i \(0.613422\pi\)
\(660\) 7.98990e31 0.300460
\(661\) −2.68368e32 −0.991778 −0.495889 0.868386i \(-0.665158\pi\)
−0.495889 + 0.868386i \(0.665158\pi\)
\(662\) 1.30701e32 0.474691
\(663\) −2.12982e31 −0.0760217
\(664\) 1.16159e32 0.407494
\(665\) 0 0
\(666\) 6.79278e31 0.230194
\(667\) 5.24993e32 1.74867
\(668\) −4.80625e32 −1.57354
\(669\) −3.23601e31 −0.104138
\(670\) 1.59242e32 0.503729
\(671\) −4.69636e32 −1.46034
\(672\) 0 0
\(673\) 1.65242e32 0.496533 0.248266 0.968692i \(-0.420139\pi\)
0.248266 + 0.968692i \(0.420139\pi\)
\(674\) −8.39955e31 −0.248123
\(675\) −1.31991e32 −0.383311
\(676\) 2.77430e32 0.792075
\(677\) 1.18214e32 0.331818 0.165909 0.986141i \(-0.446944\pi\)
0.165909 + 0.986141i \(0.446944\pi\)
\(678\) 2.48136e31 0.0684776
\(679\) 0 0
\(680\) −3.10189e32 −0.827512
\(681\) −1.13489e32 −0.297689
\(682\) −1.33071e32 −0.343213
\(683\) 4.55143e32 1.15428 0.577138 0.816646i \(-0.304169\pi\)
0.577138 + 0.816646i \(0.304169\pi\)
\(684\) −1.70253e32 −0.424570
\(685\) 4.09548e32 1.00430
\(686\) 0 0
\(687\) −1.39528e32 −0.330871
\(688\) 5.67579e32 1.32361
\(689\) 6.52854e31 0.149725
\(690\) −4.93297e31 −0.111261
\(691\) 7.45692e32 1.65410 0.827051 0.562127i \(-0.190017\pi\)
0.827051 + 0.562127i \(0.190017\pi\)
\(692\) 7.56204e32 1.64975
\(693\) 0 0
\(694\) −9.21804e31 −0.194538
\(695\) 2.59726e32 0.539126
\(696\) −8.57226e31 −0.175021
\(697\) −6.18678e32 −1.24247
\(698\) −2.64785e32 −0.523065
\(699\) 2.94804e31 0.0572857
\(700\) 0 0
\(701\) −4.19522e32 −0.788856 −0.394428 0.918927i \(-0.629057\pi\)
−0.394428 + 0.918927i \(0.629057\pi\)
\(702\) −2.42745e31 −0.0449028
\(703\) 2.11396e32 0.384690
\(704\) −3.01621e32 −0.539978
\(705\) −1.99989e32 −0.352234
\(706\) 8.42080e30 0.0145915
\(707\) 0 0
\(708\) −1.36824e32 −0.229499
\(709\) −1.39513e31 −0.0230242 −0.0115121 0.999934i \(-0.503664\pi\)
−0.0115121 + 0.999934i \(0.503664\pi\)
\(710\) 1.18467e32 0.192365
\(711\) 5.01925e32 0.801934
\(712\) 2.48510e32 0.390682
\(713\) −7.87681e32 −1.21849
\(714\) 0 0
\(715\) −3.71495e32 −0.556459
\(716\) 2.14184e32 0.315709
\(717\) 8.29580e31 0.120334
\(718\) −1.43554e32 −0.204920
\(719\) 1.33967e33 1.88198 0.940989 0.338438i \(-0.109899\pi\)
0.940989 + 0.338438i \(0.109899\pi\)
\(720\) 6.96368e32 0.962754
\(721\) 0 0
\(722\) −1.74236e32 −0.233325
\(723\) 1.76217e32 0.232251
\(724\) 1.13220e33 1.46869
\(725\) 1.02989e33 1.31494
\(726\) 1.45161e31 0.0182423
\(727\) −8.66750e32 −1.07213 −0.536066 0.844176i \(-0.680090\pi\)
−0.536066 + 0.844176i \(0.680090\pi\)
\(728\) 0 0
\(729\) −6.19553e32 −0.742527
\(730\) 4.26859e32 0.503584
\(731\) −1.59827e33 −1.85609
\(732\) 2.15706e32 0.246595
\(733\) −6.91088e32 −0.777745 −0.388873 0.921292i \(-0.627135\pi\)
−0.388873 + 0.921292i \(0.627135\pi\)
\(734\) 1.57299e32 0.174270
\(735\) 0 0
\(736\) 9.30069e32 0.998666
\(737\) −1.26371e33 −1.33589
\(738\) −3.44534e32 −0.358578
\(739\) −8.60116e32 −0.881345 −0.440673 0.897668i \(-0.645260\pi\)
−0.440673 + 0.897668i \(0.645260\pi\)
\(740\) −9.77212e32 −0.985879
\(741\) −3.69114e31 −0.0366649
\(742\) 0 0
\(743\) 1.92705e33 1.85576 0.927878 0.372884i \(-0.121631\pi\)
0.927878 + 0.372884i \(0.121631\pi\)
\(744\) 1.28615e32 0.121956
\(745\) 1.90679e32 0.178035
\(746\) 2.11005e32 0.193997
\(747\) 7.34326e32 0.664817
\(748\) 1.16979e33 1.04289
\(749\) 0 0
\(750\) 7.42994e30 0.00642363
\(751\) 3.81351e32 0.324687 0.162344 0.986734i \(-0.448095\pi\)
0.162344 + 0.986734i \(0.448095\pi\)
\(752\) 1.03980e33 0.871854
\(753\) 3.87550e31 0.0320026
\(754\) 1.89408e32 0.154038
\(755\) −1.51457e33 −1.21311
\(756\) 0 0
\(757\) 4.16996e32 0.323988 0.161994 0.986792i \(-0.448207\pi\)
0.161994 + 0.986792i \(0.448207\pi\)
\(758\) 3.37236e32 0.258070
\(759\) 3.91470e32 0.295065
\(760\) −5.37581e32 −0.399106
\(761\) −4.40419e32 −0.322064 −0.161032 0.986949i \(-0.551482\pi\)
−0.161032 + 0.986949i \(0.551482\pi\)
\(762\) −6.68238e31 −0.0481336
\(763\) 0 0
\(764\) 1.08036e33 0.755085
\(765\) −1.96093e33 −1.35007
\(766\) 3.06620e32 0.207955
\(767\) 6.36171e32 0.425038
\(768\) 5.88395e31 0.0387271
\(769\) 5.79153e32 0.375526 0.187763 0.982214i \(-0.439876\pi\)
0.187763 + 0.982214i \(0.439876\pi\)
\(770\) 0 0
\(771\) 5.45314e31 0.0343179
\(772\) 2.35162e32 0.145803
\(773\) −1.64315e33 −1.00372 −0.501861 0.864948i \(-0.667351\pi\)
−0.501861 + 0.864948i \(0.667351\pi\)
\(774\) −8.90056e32 −0.535669
\(775\) −1.54522e33 −0.916262
\(776\) 1.22971e33 0.718442
\(777\) 0 0
\(778\) −8.72015e32 −0.494605
\(779\) −1.07221e33 −0.599240
\(780\) 1.70629e32 0.0939646
\(781\) −9.40127e32 −0.510152
\(782\) −7.22229e32 −0.386187
\(783\) −1.10910e33 −0.584399
\(784\) 0 0
\(785\) −3.15756e33 −1.61566
\(786\) −9.21834e31 −0.0464829
\(787\) 7.89669e32 0.392406 0.196203 0.980563i \(-0.437139\pi\)
0.196203 + 0.980563i \(0.437139\pi\)
\(788\) −1.72225e33 −0.843421
\(789\) 3.11118e32 0.150155
\(790\) 7.53149e32 0.358236
\(791\) 0 0
\(792\) 1.37083e33 0.633351
\(793\) −1.00293e33 −0.456700
\(794\) −9.87231e32 −0.443081
\(795\) −2.80279e32 −0.123985
\(796\) −1.81018e33 −0.789263
\(797\) −3.81417e33 −1.63919 −0.819595 0.572943i \(-0.805802\pi\)
−0.819595 + 0.572943i \(0.805802\pi\)
\(798\) 0 0
\(799\) −2.92801e33 −1.22260
\(800\) 1.82454e33 0.750964
\(801\) 1.57101e33 0.637389
\(802\) −1.29084e33 −0.516258
\(803\) −3.38746e33 −1.33550
\(804\) 5.80425e32 0.225581
\(805\) 0 0
\(806\) −2.84181e32 −0.107335
\(807\) −6.99405e32 −0.260425
\(808\) −1.82639e33 −0.670444
\(809\) 1.17133e32 0.0423909 0.0211955 0.999775i \(-0.493253\pi\)
0.0211955 + 0.999775i \(0.493253\pi\)
\(810\) −1.03872e33 −0.370615
\(811\) −2.96884e33 −1.04435 −0.522175 0.852838i \(-0.674879\pi\)
−0.522175 + 0.852838i \(0.674879\pi\)
\(812\) 0 0
\(813\) 8.43969e32 0.288593
\(814\) −8.08870e32 −0.272708
\(815\) 5.65420e33 1.87957
\(816\) −4.75402e32 −0.155820
\(817\) −2.76992e33 −0.895186
\(818\) 6.98678e32 0.222645
\(819\) 0 0
\(820\) 4.95648e33 1.53573
\(821\) −1.00945e33 −0.308418 −0.154209 0.988038i \(-0.549283\pi\)
−0.154209 + 0.988038i \(0.549283\pi\)
\(822\) −1.55702e32 −0.0469103
\(823\) 2.59825e33 0.771940 0.385970 0.922511i \(-0.373867\pi\)
0.385970 + 0.922511i \(0.373867\pi\)
\(824\) −1.05021e33 −0.307690
\(825\) 7.67957e32 0.221879
\(826\) 0 0
\(827\) 3.90779e33 1.09804 0.549020 0.835809i \(-0.315001\pi\)
0.549020 + 0.835809i \(0.315001\pi\)
\(828\) 3.85605e33 1.06855
\(829\) −8.72376e32 −0.238411 −0.119206 0.992870i \(-0.538035\pi\)
−0.119206 + 0.992870i \(0.538035\pi\)
\(830\) 1.10187e33 0.296984
\(831\) −1.40135e30 −0.000372508 0
\(832\) −6.44128e32 −0.168871
\(833\) 0 0
\(834\) −9.87428e31 −0.0251823
\(835\) −9.59384e33 −2.41323
\(836\) 2.02733e33 0.502983
\(837\) 1.66405e33 0.407215
\(838\) 7.10976e32 0.171612
\(839\) 4.58873e33 1.09252 0.546261 0.837615i \(-0.316051\pi\)
0.546261 + 0.837615i \(0.316051\pi\)
\(840\) 0 0
\(841\) 4.33730e33 1.00477
\(842\) 1.60379e33 0.366487
\(843\) −9.99156e32 −0.225225
\(844\) −7.25603e33 −1.61347
\(845\) 5.53782e33 1.21475
\(846\) −1.63057e33 −0.352842
\(847\) 0 0
\(848\) 1.45725e33 0.306889
\(849\) 9.14212e32 0.189937
\(850\) −1.41682e33 −0.290400
\(851\) −4.78790e33 −0.968178
\(852\) 4.31804e32 0.0861452
\(853\) −5.41155e33 −1.06514 −0.532571 0.846385i \(-0.678774\pi\)
−0.532571 + 0.846385i \(0.678774\pi\)
\(854\) 0 0
\(855\) −3.39844e33 −0.651132
\(856\) −2.47096e32 −0.0467107
\(857\) 7.57182e32 0.141228 0.0706140 0.997504i \(-0.477504\pi\)
0.0706140 + 0.997504i \(0.477504\pi\)
\(858\) 1.41235e32 0.0259919
\(859\) 3.11427e33 0.565504 0.282752 0.959193i \(-0.408753\pi\)
0.282752 + 0.959193i \(0.408753\pi\)
\(860\) 1.28044e34 2.29417
\(861\) 0 0
\(862\) −1.18018e33 −0.205880
\(863\) 4.25085e33 0.731731 0.365865 0.930668i \(-0.380773\pi\)
0.365865 + 0.930668i \(0.380773\pi\)
\(864\) −1.96486e33 −0.333751
\(865\) 1.50947e34 2.53011
\(866\) 1.15191e32 0.0190529
\(867\) 4.55471e31 0.00743432
\(868\) 0 0
\(869\) −5.97682e33 −0.950042
\(870\) −8.13153e32 −0.127556
\(871\) −2.69872e33 −0.417781
\(872\) −4.96319e33 −0.758265
\(873\) 7.77386e33 1.17212
\(874\) −1.25168e33 −0.186256
\(875\) 0 0
\(876\) 1.55587e33 0.225515
\(877\) −1.78706e33 −0.255650 −0.127825 0.991797i \(-0.540800\pi\)
−0.127825 + 0.991797i \(0.540800\pi\)
\(878\) 3.09232e33 0.436614
\(879\) −8.87119e31 −0.0123626
\(880\) −8.29221e33 −1.14056
\(881\) −7.17012e33 −0.973427 −0.486713 0.873562i \(-0.661804\pi\)
−0.486713 + 0.873562i \(0.661804\pi\)
\(882\) 0 0
\(883\) −9.31409e33 −1.23195 −0.615974 0.787766i \(-0.711237\pi\)
−0.615974 + 0.787766i \(0.711237\pi\)
\(884\) 2.49815e33 0.326150
\(885\) −2.73117e33 −0.351966
\(886\) −1.40470e32 −0.0178688
\(887\) −1.54894e33 −0.194497 −0.0972486 0.995260i \(-0.531004\pi\)
−0.0972486 + 0.995260i \(0.531004\pi\)
\(888\) 7.81784e32 0.0969031
\(889\) 0 0
\(890\) 2.35733e33 0.284731
\(891\) 8.24309e33 0.982871
\(892\) 3.79564e33 0.446776
\(893\) −5.07446e33 −0.589655
\(894\) −7.24924e31 −0.00831593
\(895\) 4.27535e33 0.484180
\(896\) 0 0
\(897\) 8.36005e32 0.0922775
\(898\) 4.12674e33 0.449706
\(899\) −1.29842e34 −1.39694
\(900\) 7.56452e33 0.803512
\(901\) −4.10353e33 −0.430350
\(902\) 4.10264e33 0.424804
\(903\) 0 0
\(904\) −6.12455e33 −0.618211
\(905\) 2.26000e34 2.25242
\(906\) 5.75811e32 0.0566638
\(907\) 7.63345e32 0.0741715 0.0370857 0.999312i \(-0.488193\pi\)
0.0370857 + 0.999312i \(0.488193\pi\)
\(908\) 1.33116e34 1.27715
\(909\) −1.15459e34 −1.09382
\(910\) 0 0
\(911\) −5.46652e33 −0.504952 −0.252476 0.967603i \(-0.581245\pi\)
−0.252476 + 0.967603i \(0.581245\pi\)
\(912\) −8.23907e32 −0.0751515
\(913\) −8.74421e33 −0.787601
\(914\) 1.28424e33 0.114226
\(915\) 4.30573e33 0.378185
\(916\) 1.63658e34 1.41951
\(917\) 0 0
\(918\) 1.52578e33 0.129063
\(919\) −2.05334e34 −1.71527 −0.857636 0.514258i \(-0.828068\pi\)
−0.857636 + 0.514258i \(0.828068\pi\)
\(920\) 1.21757e34 1.00446
\(921\) 1.03569e33 0.0843809
\(922\) 2.98255e33 0.239984
\(923\) −2.00769e33 −0.159543
\(924\) 0 0
\(925\) −9.39256e33 −0.728038
\(926\) −4.30465e33 −0.329542
\(927\) −6.63914e33 −0.501990
\(928\) 1.53313e34 1.14493
\(929\) 2.41565e34 1.78178 0.890889 0.454221i \(-0.150082\pi\)
0.890889 + 0.454221i \(0.150082\pi\)
\(930\) 1.22003e33 0.0888822
\(931\) 0 0
\(932\) −3.45787e33 −0.245768
\(933\) −2.61323e33 −0.183459
\(934\) −1.81495e33 −0.125856
\(935\) 2.33504e34 1.59941
\(936\) 2.92749e33 0.198072
\(937\) −1.64580e34 −1.09994 −0.549972 0.835183i \(-0.685362\pi\)
−0.549972 + 0.835183i \(0.685362\pi\)
\(938\) 0 0
\(939\) 5.38030e33 0.350875
\(940\) 2.34575e34 1.51116
\(941\) −1.62246e33 −0.103251 −0.0516254 0.998667i \(-0.516440\pi\)
−0.0516254 + 0.998667i \(0.516440\pi\)
\(942\) 1.20044e33 0.0754668
\(943\) 2.42845e34 1.50815
\(944\) 1.42001e34 0.871192
\(945\) 0 0
\(946\) 1.05986e34 0.634601
\(947\) −2.60058e34 −1.53832 −0.769158 0.639059i \(-0.779324\pi\)
−0.769158 + 0.639059i \(0.779324\pi\)
\(948\) 2.74517e33 0.160426
\(949\) −7.23411e33 −0.417660
\(950\) −2.45545e33 −0.140059
\(951\) 5.82702e32 0.0328375
\(952\) 0 0
\(953\) 8.06981e33 0.443910 0.221955 0.975057i \(-0.428756\pi\)
0.221955 + 0.975057i \(0.428756\pi\)
\(954\) −2.28520e33 −0.124199
\(955\) 2.15653e34 1.15802
\(956\) −9.73047e33 −0.516260
\(957\) 6.45300e33 0.338279
\(958\) 5.36863e33 0.278074
\(959\) 0 0
\(960\) 2.76533e33 0.139839
\(961\) −5.32336e32 −0.0265991
\(962\) −1.72739e33 −0.0852857
\(963\) −1.56207e33 −0.0762076
\(964\) −2.06692e34 −0.996411
\(965\) 4.69410e33 0.223609
\(966\) 0 0
\(967\) 1.00931e34 0.469484 0.234742 0.972058i \(-0.424576\pi\)
0.234742 + 0.972058i \(0.424576\pi\)
\(968\) −3.58290e33 −0.164691
\(969\) 2.32007e33 0.105385
\(970\) 1.16648e34 0.523605
\(971\) −1.07287e34 −0.475910 −0.237955 0.971276i \(-0.576477\pi\)
−0.237955 + 0.971276i \(0.576477\pi\)
\(972\) −1.23122e34 −0.539726
\(973\) 0 0
\(974\) 1.90837e33 0.0817024
\(975\) 1.64001e33 0.0693896
\(976\) −2.23867e34 −0.936090
\(977\) −3.65579e33 −0.151075 −0.0755377 0.997143i \(-0.524067\pi\)
−0.0755377 + 0.997143i \(0.524067\pi\)
\(978\) −2.14962e33 −0.0877939
\(979\) −1.87073e34 −0.755108
\(980\) 0 0
\(981\) −3.13759e34 −1.23709
\(982\) 9.23507e32 0.0359880
\(983\) −2.92597e34 −1.12695 −0.563475 0.826133i \(-0.690536\pi\)
−0.563475 + 0.826133i \(0.690536\pi\)
\(984\) −3.96526e33 −0.150948
\(985\) −3.43781e34 −1.29350
\(986\) −1.19053e34 −0.442746
\(987\) 0 0
\(988\) 4.32948e33 0.157301
\(989\) 6.27358e34 2.25298
\(990\) 1.30035e34 0.461590
\(991\) −4.79847e34 −1.68367 −0.841833 0.539739i \(-0.818523\pi\)
−0.841833 + 0.539739i \(0.818523\pi\)
\(992\) −2.30025e34 −0.797795
\(993\) 9.50938e33 0.326014
\(994\) 0 0
\(995\) −3.61333e34 −1.21044
\(996\) 4.01624e33 0.132996
\(997\) 2.15477e34 0.705355 0.352677 0.935745i \(-0.385271\pi\)
0.352677 + 0.935745i \(0.385271\pi\)
\(998\) −1.43810e34 −0.465359
\(999\) 1.01149e34 0.323562
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 49.24.a.d.1.4 6
7.6 odd 2 7.24.a.b.1.4 6
21.20 even 2 63.24.a.e.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.24.a.b.1.4 6 7.6 odd 2
49.24.a.d.1.4 6 1.1 even 1 trivial
63.24.a.e.1.3 6 21.20 even 2