Properties

Label 49.10.c.h.30.3
Level $49$
Weight $10$
Character 49.30
Analytic conductor $25.237$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49,10,Mod(18,49)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49.18"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 49.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,66,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2367559720\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 5242 x^{14} + 24024 x^{13} + 10505991 x^{12} - 53910056 x^{11} + \cdots + 89\!\cdots\!16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6}\cdot 7^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 30.3
Root \(-6.41022 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 49.30
Dual form 49.10.c.h.18.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.14844 - 1.98916i) q^{2} +(-129.061 - 223.541i) q^{3} +(253.362 + 438.836i) q^{4} +(486.452 - 842.560i) q^{5} -592.877 q^{6} +2339.89 q^{8} +(-23472.1 + 40654.8i) q^{9} +(-1117.32 - 1935.26i) q^{10} +(21020.6 + 36408.7i) q^{11} +(65398.4 - 113273. i) q^{12} -151604. q^{13} -251128. q^{15} +(-127034. + 220030. i) q^{16} +(171136. + 296415. i) q^{17} +(53912.6 + 93379.4i) q^{18} +(-203488. + 352452. i) q^{19} +492994. q^{20} +96563.6 q^{22} +(1.14471e6 - 1.98270e6i) q^{23} +(-301989. - 523061. i) q^{24} +(503291. + 871725. i) q^{25} +(-174109. + 301565. i) q^{26} +7.03671e6 q^{27} +2.39735e6 q^{29} +(-288406. + 499535. i) q^{30} +(2.95097e6 + 5.11123e6i) q^{31} +(890795. + 1.54290e6i) q^{32} +(5.42588e6 - 9.39789e6i) q^{33} +786157. q^{34} -2.37877e7 q^{36} +(-974418. + 1.68774e6i) q^{37} +(467389. + 809541. i) q^{38} +(1.95662e7 + 3.38897e7i) q^{39} +(1.13825e6 - 1.97150e6i) q^{40} -1.25171e6 q^{41} -8.53275e6 q^{43} +(-1.06516e7 + 1.84492e7i) q^{44} +(2.28361e7 + 3.95533e7i) q^{45} +(-2.62927e6 - 4.55402e6i) q^{46} +(2.97343e6 - 5.15013e6i) q^{47} +6.55807e7 q^{48} +2.31200e6 q^{50} +(4.41739e7 - 7.65114e7i) q^{51} +(-3.84108e7 - 6.65294e7i) q^{52} +(3.01631e6 + 5.22439e6i) q^{53} +(8.08125e6 - 1.39971e7i) q^{54} +4.09020e7 q^{55} +1.05050e8 q^{57} +(2.75322e6 - 4.76871e6i) q^{58} +(3.71000e7 + 6.42590e7i) q^{59} +(-6.36264e7 - 1.10204e8i) q^{60} +(-2.53092e7 + 4.38368e7i) q^{61} +1.35561e7 q^{62} -1.25991e8 q^{64} +(-7.37482e7 + 1.27736e8i) q^{65} +(-1.24626e7 - 2.15859e7i) q^{66} +(5.00939e7 + 8.67652e7i) q^{67} +(-8.67185e7 + 1.50201e8i) q^{68} -5.90951e8 q^{69} +5.12492e7 q^{71} +(-5.49221e7 + 9.51279e7i) q^{72} +(-1.54723e8 - 2.67988e8i) q^{73} +(2.23813e6 + 3.87655e6i) q^{74} +(1.29911e8 - 2.25012e8i) q^{75} -2.06225e8 q^{76} +8.98826e7 q^{78} +(-4.60906e7 + 7.98313e7i) q^{79} +(1.23592e8 + 2.14068e8i) q^{80} +(-4.46165e8 - 7.72781e8i) q^{81} +(-1.43751e6 + 2.48985e6i) q^{82} +2.52452e8 q^{83} +3.32997e8 q^{85} +(-9.79936e6 + 1.69730e7i) q^{86} +(-3.09405e8 - 5.35905e8i) q^{87} +(4.91858e7 + 8.51923e7i) q^{88} +(-4.15826e8 + 7.20232e8i) q^{89} +1.04904e8 q^{90} +1.16011e9 q^{92} +(7.61711e8 - 1.31932e9i) q^{93} +(-6.82962e6 - 1.18292e7i) q^{94} +(1.97975e8 + 3.42902e8i) q^{95} +(2.29934e8 - 3.98258e8i) q^{96} +5.95209e8 q^{97} -1.97358e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 66 q^{2} - 1706 q^{4} - 117084 q^{8} - 27940 q^{9} + 82092 q^{11} - 164672 q^{15} - 1569570 q^{16} + 307774 q^{18} - 2600152 q^{22} + 2388480 q^{23} + 6191476 q^{25} - 36887784 q^{29} + 16703832 q^{30}+ \cdots - 6259461064 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/49\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14844 1.98916i 0.0507544 0.0879093i −0.839532 0.543310i \(-0.817171\pi\)
0.890286 + 0.455401i \(0.150504\pi\)
\(3\) −129.061 223.541i −0.919920 1.59335i −0.799534 0.600621i \(-0.794920\pi\)
−0.120386 0.992727i \(-0.538413\pi\)
\(4\) 253.362 + 438.836i 0.494848 + 0.857102i
\(5\) 486.452 842.560i 0.348077 0.602887i −0.637831 0.770176i \(-0.720168\pi\)
0.985908 + 0.167289i \(0.0535015\pi\)
\(6\) −592.877 −0.186760
\(7\) 0 0
\(8\) 2339.89 0.201972
\(9\) −23472.1 + 40654.8i −1.19250 + 2.06548i
\(10\) −1117.32 1935.26i −0.0353329 0.0611984i
\(11\) 21020.6 + 36408.7i 0.432890 + 0.749787i 0.997121 0.0758301i \(-0.0241607\pi\)
−0.564231 + 0.825617i \(0.690827\pi\)
\(12\) 65398.4 113273.i 0.910441 1.57693i
\(13\) −151604. −1.47220 −0.736099 0.676874i \(-0.763334\pi\)
−0.736099 + 0.676874i \(0.763334\pi\)
\(14\) 0 0
\(15\) −251128. −1.28081
\(16\) −127034. + 220030.i −0.484597 + 0.839347i
\(17\) 171136. + 296415.i 0.496958 + 0.860757i 0.999994 0.00350855i \(-0.00111681\pi\)
−0.503035 + 0.864266i \(0.667783\pi\)
\(18\) 53912.6 + 93379.4i 0.121050 + 0.209664i
\(19\) −203488. + 352452.i −0.358218 + 0.620452i −0.987663 0.156593i \(-0.949949\pi\)
0.629445 + 0.777045i \(0.283282\pi\)
\(20\) 492994. 0.688981
\(21\) 0 0
\(22\) 96563.6 0.0878843
\(23\) 1.14471e6 1.98270e6i 0.852944 1.47734i −0.0255956 0.999672i \(-0.508148\pi\)
0.878539 0.477670i \(-0.158518\pi\)
\(24\) −301989. 523061.i −0.185798 0.321811i
\(25\) 503291. + 871725.i 0.257685 + 0.446323i
\(26\) −174109. + 301565.i −0.0747205 + 0.129420i
\(27\) 7.03671e6 2.54820
\(28\) 0 0
\(29\) 2.39735e6 0.629420 0.314710 0.949188i \(-0.398093\pi\)
0.314710 + 0.949188i \(0.398093\pi\)
\(30\) −288406. + 499535.i −0.0650069 + 0.112595i
\(31\) 2.95097e6 + 5.11123e6i 0.573901 + 0.994025i 0.996160 + 0.0875502i \(0.0279038\pi\)
−0.422259 + 0.906475i \(0.638763\pi\)
\(32\) 890795. + 1.54290e6i 0.150177 + 0.260114i
\(33\) 5.42588e6 9.39789e6i 0.796447 1.37949i
\(34\) 786157. 0.100891
\(35\) 0 0
\(36\) −2.37877e7 −2.36043
\(37\) −974418. + 1.68774e6i −0.0854747 + 0.148047i −0.905593 0.424147i \(-0.860574\pi\)
0.820119 + 0.572193i \(0.193907\pi\)
\(38\) 467389. + 809541.i 0.0363623 + 0.0629814i
\(39\) 1.95662e7 + 3.38897e7i 1.35430 + 2.34572i
\(40\) 1.13825e6 1.97150e6i 0.0703017 0.121766i
\(41\) −1.25171e6 −0.0691793 −0.0345896 0.999402i \(-0.511012\pi\)
−0.0345896 + 0.999402i \(0.511012\pi\)
\(42\) 0 0
\(43\) −8.53275e6 −0.380611 −0.190305 0.981725i \(-0.560948\pi\)
−0.190305 + 0.981725i \(0.560948\pi\)
\(44\) −1.06516e7 + 1.84492e7i −0.428429 + 0.742061i
\(45\) 2.28361e7 + 3.95533e7i 0.830167 + 1.43789i
\(46\) −2.62927e6 4.55402e6i −0.0865814 0.149963i
\(47\) 2.97343e6 5.15013e6i 0.0888827 0.153949i −0.818156 0.574996i \(-0.805004\pi\)
0.907039 + 0.421046i \(0.138337\pi\)
\(48\) 6.55807e7 1.78316
\(49\) 0 0
\(50\) 2.31200e6 0.0523146
\(51\) 4.41739e7 7.65114e7i 0.914324 1.58366i
\(52\) −3.84108e7 6.65294e7i −0.728514 1.26182i
\(53\) 3.01631e6 + 5.22439e6i 0.0525090 + 0.0909483i 0.891085 0.453836i \(-0.149945\pi\)
−0.838576 + 0.544784i \(0.816612\pi\)
\(54\) 8.08125e6 1.39971e7i 0.129332 0.224010i
\(55\) 4.09020e7 0.602716
\(56\) 0 0
\(57\) 1.05050e8 1.31813
\(58\) 2.75322e6 4.76871e6i 0.0319459 0.0553319i
\(59\) 3.71000e7 + 6.42590e7i 0.398602 + 0.690399i 0.993554 0.113363i \(-0.0361622\pi\)
−0.594952 + 0.803761i \(0.702829\pi\)
\(60\) −6.36264e7 1.10204e8i −0.633807 1.09779i
\(61\) −2.53092e7 + 4.38368e7i −0.234042 + 0.405372i −0.958994 0.283427i \(-0.908529\pi\)
0.724952 + 0.688799i \(0.241862\pi\)
\(62\) 1.35561e7 0.116512
\(63\) 0 0
\(64\) −1.25991e8 −0.938705
\(65\) −7.37482e7 + 1.27736e8i −0.512438 + 0.887569i
\(66\) −1.24626e7 2.15859e7i −0.0808465 0.140030i
\(67\) 5.00939e7 + 8.67652e7i 0.303702 + 0.526028i 0.976972 0.213370i \(-0.0684438\pi\)
−0.673269 + 0.739397i \(0.735111\pi\)
\(68\) −8.67185e7 + 1.50201e8i −0.491838 + 0.851888i
\(69\) −5.90951e8 −3.13856
\(70\) 0 0
\(71\) 5.12492e7 0.239345 0.119673 0.992813i \(-0.461816\pi\)
0.119673 + 0.992813i \(0.461816\pi\)
\(72\) −5.49221e7 + 9.51279e7i −0.240852 + 0.417169i
\(73\) −1.54723e8 2.67988e8i −0.637679 1.10449i −0.985941 0.167095i \(-0.946561\pi\)
0.348262 0.937397i \(-0.386772\pi\)
\(74\) 2.23813e6 + 3.87655e6i 0.00867644 + 0.0150280i
\(75\) 1.29911e8 2.25012e8i 0.474099 0.821163i
\(76\) −2.06225e8 −0.709055
\(77\) 0 0
\(78\) 8.98826e7 0.274948
\(79\) −4.60906e7 + 7.98313e7i −0.133135 + 0.230596i −0.924883 0.380251i \(-0.875838\pi\)
0.791749 + 0.610847i \(0.209171\pi\)
\(80\) 1.23592e8 + 2.14068e8i 0.337354 + 0.584314i
\(81\) −4.46165e8 7.72781e8i −1.15163 1.99468i
\(82\) −1.43751e6 + 2.48985e6i −0.00351115 + 0.00608150i
\(83\) 2.52452e8 0.583886 0.291943 0.956436i \(-0.405698\pi\)
0.291943 + 0.956436i \(0.405698\pi\)
\(84\) 0 0
\(85\) 3.32997e8 0.691919
\(86\) −9.79936e6 + 1.69730e7i −0.0193177 + 0.0334592i
\(87\) −3.09405e8 5.35905e8i −0.579016 1.00288i
\(88\) 4.91858e7 + 8.51923e7i 0.0874315 + 0.151436i
\(89\) −4.15826e8 + 7.20232e8i −0.702517 + 1.21680i 0.265063 + 0.964231i \(0.414607\pi\)
−0.967580 + 0.252564i \(0.918726\pi\)
\(90\) 1.04904e8 0.168539
\(91\) 0 0
\(92\) 1.16011e9 1.68831
\(93\) 7.61711e8 1.31932e9i 1.05589 1.82885i
\(94\) −6.82962e6 1.18292e7i −0.00902238 0.0156272i
\(95\) 1.97975e8 + 3.42902e8i 0.249375 + 0.431930i
\(96\) 2.29934e8 3.98258e8i 0.276301 0.478568i
\(97\) 5.95209e8 0.682648 0.341324 0.939946i \(-0.389125\pi\)
0.341324 + 0.939946i \(0.389125\pi\)
\(98\) 0 0
\(99\) −1.97358e9 −2.06489
\(100\) −2.55030e8 + 4.41724e8i −0.255030 + 0.441724i
\(101\) −1.37110e7 2.37482e7i −0.0131106 0.0227083i 0.859396 0.511311i \(-0.170840\pi\)
−0.872506 + 0.488603i \(0.837507\pi\)
\(102\) −1.01462e8 1.75738e8i −0.0928120 0.160755i
\(103\) −2.88490e8 + 4.99680e8i −0.252559 + 0.437446i −0.964230 0.265068i \(-0.914606\pi\)
0.711670 + 0.702514i \(0.247939\pi\)
\(104\) −3.54737e8 −0.297342
\(105\) 0 0
\(106\) 1.38562e7 0.0106603
\(107\) −1.01701e9 + 1.76151e9i −0.750062 + 1.29915i 0.197730 + 0.980257i \(0.436643\pi\)
−0.947792 + 0.318889i \(0.896690\pi\)
\(108\) 1.78284e9 + 3.08796e9i 1.26097 + 2.18406i
\(109\) 1.09627e9 + 1.89880e9i 0.743874 + 1.28843i 0.950719 + 0.310054i \(0.100347\pi\)
−0.206845 + 0.978374i \(0.566319\pi\)
\(110\) 4.69736e7 8.13606e7i 0.0305905 0.0529843i
\(111\) 5.03038e8 0.314519
\(112\) 0 0
\(113\) −2.12853e9 −1.22808 −0.614040 0.789275i \(-0.710457\pi\)
−0.614040 + 0.789275i \(0.710457\pi\)
\(114\) 1.20643e8 2.08961e8i 0.0669009 0.115876i
\(115\) −1.11369e9 1.92898e9i −0.593780 1.02846i
\(116\) 6.07398e8 + 1.05204e9i 0.311467 + 0.539477i
\(117\) 3.55846e9 6.16344e9i 1.75560 3.04079i
\(118\) 1.70429e8 0.0809233
\(119\) 0 0
\(120\) −5.87613e8 −0.258688
\(121\) 2.95246e8 5.11381e8i 0.125213 0.216876i
\(122\) 5.81322e7 + 1.00688e8i 0.0237573 + 0.0411489i
\(123\) 1.61547e8 + 2.79808e8i 0.0636394 + 0.110227i
\(124\) −1.49533e9 + 2.58998e9i −0.567987 + 0.983783i
\(125\) 2.87951e9 1.05493
\(126\) 0 0
\(127\) 2.97800e9 1.01580 0.507900 0.861416i \(-0.330422\pi\)
0.507900 + 0.861416i \(0.330422\pi\)
\(128\) −6.00780e8 + 1.04058e9i −0.197820 + 0.342635i
\(129\) 1.10125e9 + 1.90741e9i 0.350131 + 0.606445i
\(130\) 1.69391e8 + 2.93394e8i 0.0520170 + 0.0900961i
\(131\) −2.45606e9 + 4.25402e9i −0.728648 + 1.26206i 0.228806 + 0.973472i \(0.426518\pi\)
−0.957455 + 0.288584i \(0.906815\pi\)
\(132\) 5.49885e9 1.57648
\(133\) 0 0
\(134\) 2.30120e8 0.0616570
\(135\) 3.42302e9 5.92885e9i 0.886968 1.53627i
\(136\) 4.00439e8 + 6.93580e8i 0.100372 + 0.173849i
\(137\) 1.27904e9 + 2.21537e9i 0.310200 + 0.537283i 0.978406 0.206694i \(-0.0662705\pi\)
−0.668205 + 0.743977i \(0.732937\pi\)
\(138\) −6.78673e8 + 1.17550e9i −0.159296 + 0.275909i
\(139\) −3.28332e9 −0.746012 −0.373006 0.927829i \(-0.621673\pi\)
−0.373006 + 0.927829i \(0.621673\pi\)
\(140\) 0 0
\(141\) −1.53502e9 −0.327060
\(142\) 5.88568e7 1.01943e8i 0.0121478 0.0210407i
\(143\) −3.18680e9 5.51971e9i −0.637299 1.10383i
\(144\) −5.96351e9 1.03291e10i −1.15577 2.00185i
\(145\) 1.16620e9 2.01991e9i 0.219087 0.379469i
\(146\) −7.10761e8 −0.129460
\(147\) 0 0
\(148\) −9.87523e8 −0.169188
\(149\) 3.30704e9 5.72796e9i 0.549669 0.952054i −0.448629 0.893718i \(-0.648087\pi\)
0.998297 0.0583355i \(-0.0185793\pi\)
\(150\) −2.98390e8 5.16826e8i −0.0481252 0.0833554i
\(151\) 2.34531e9 + 4.06219e9i 0.367116 + 0.635864i 0.989113 0.147156i \(-0.0470118\pi\)
−0.621997 + 0.783019i \(0.713679\pi\)
\(152\) −4.76140e8 + 8.24699e8i −0.0723500 + 0.125314i
\(153\) −1.60676e10 −2.37050
\(154\) 0 0
\(155\) 5.74202e9 0.799047
\(156\) −9.91467e9 + 1.71727e10i −1.34035 + 2.32155i
\(157\) 2.44743e9 + 4.23906e9i 0.321485 + 0.556829i 0.980795 0.195043i \(-0.0624846\pi\)
−0.659309 + 0.751872i \(0.729151\pi\)
\(158\) 1.05865e8 + 1.83363e8i 0.0135143 + 0.0234075i
\(159\) 7.78576e8 1.34853e9i 0.0966082 0.167330i
\(160\) 1.73332e9 0.209092
\(161\) 0 0
\(162\) −2.04958e9 −0.233801
\(163\) −6.11577e9 + 1.05928e10i −0.678590 + 1.17535i 0.296816 + 0.954935i \(0.404075\pi\)
−0.975406 + 0.220417i \(0.929258\pi\)
\(164\) −3.17136e8 5.49295e8i −0.0342332 0.0592937i
\(165\) −5.27886e9 9.14325e9i −0.554450 0.960335i
\(166\) 2.89927e8 5.02168e8i 0.0296348 0.0513290i
\(167\) −1.29106e10 −1.28447 −0.642234 0.766509i \(-0.721992\pi\)
−0.642234 + 0.766509i \(0.721992\pi\)
\(168\) 0 0
\(169\) 1.23793e10 1.16736
\(170\) 3.82428e8 6.62385e8i 0.0351180 0.0608261i
\(171\) −9.55257e9 1.65455e10i −0.854354 1.47978i
\(172\) −2.16188e9 3.74448e9i −0.188344 0.326222i
\(173\) 3.90017e9 6.75529e9i 0.331036 0.573372i −0.651679 0.758495i \(-0.725935\pi\)
0.982715 + 0.185123i \(0.0592684\pi\)
\(174\) −1.42133e9 −0.117551
\(175\) 0 0
\(176\) −1.06813e10 −0.839108
\(177\) 9.57633e9 1.65867e10i 0.733363 1.27022i
\(178\) 9.55105e8 + 1.65429e9i 0.0713117 + 0.123516i
\(179\) 5.24434e9 + 9.08347e9i 0.381814 + 0.661322i 0.991322 0.131458i \(-0.0419660\pi\)
−0.609507 + 0.792781i \(0.708633\pi\)
\(180\) −1.15716e10 + 2.00426e10i −0.821613 + 1.42308i
\(181\) 7.08232e9 0.490481 0.245240 0.969462i \(-0.421133\pi\)
0.245240 + 0.969462i \(0.421133\pi\)
\(182\) 0 0
\(183\) 1.30657e10 0.861199
\(184\) 2.67850e9 4.63930e9i 0.172271 0.298381i
\(185\) 9.48016e8 + 1.64201e9i 0.0595036 + 0.103063i
\(186\) −1.74956e9 3.03033e9i −0.107182 0.185644i
\(187\) −7.19473e9 + 1.24616e10i −0.430256 + 0.745226i
\(188\) 3.01342e9 0.175934
\(189\) 0 0
\(190\) 9.09449e8 0.0506276
\(191\) 9.87174e9 1.70984e10i 0.536715 0.929617i −0.462363 0.886691i \(-0.652998\pi\)
0.999078 0.0429269i \(-0.0136682\pi\)
\(192\) 1.62605e10 + 2.81641e10i 0.863534 + 1.49568i
\(193\) −1.68337e10 2.91567e10i −0.873314 1.51262i −0.858548 0.512733i \(-0.828633\pi\)
−0.0147660 0.999891i \(-0.504700\pi\)
\(194\) 6.83563e8 1.18397e9i 0.0346474 0.0600111i
\(195\) 3.80721e10 1.88561
\(196\) 0 0
\(197\) −3.47614e10 −1.64437 −0.822185 0.569220i \(-0.807245\pi\)
−0.822185 + 0.569220i \(0.807245\pi\)
\(198\) −2.26655e9 + 3.92577e9i −0.104802 + 0.181523i
\(199\) −8.95627e9 1.55127e10i −0.404845 0.701211i 0.589459 0.807798i \(-0.299341\pi\)
−0.994303 + 0.106587i \(0.966008\pi\)
\(200\) 1.17765e9 + 2.03974e9i 0.0520451 + 0.0901447i
\(201\) 1.29304e10 2.23960e10i 0.558764 0.967807i
\(202\) −6.29852e7 −0.00266169
\(203\) 0 0
\(204\) 4.47680e10 1.80981
\(205\) −6.08897e8 + 1.05464e9i −0.0240797 + 0.0417073i
\(206\) 6.62628e8 + 1.14771e9i 0.0256370 + 0.0444046i
\(207\) 5.37375e10 + 9.30760e10i 2.03428 + 3.52347i
\(208\) 1.92589e10 3.33574e10i 0.713422 1.23568i
\(209\) −1.71097e10 −0.620276
\(210\) 0 0
\(211\) −5.08291e10 −1.76539 −0.882696 0.469945i \(-0.844274\pi\)
−0.882696 + 0.469945i \(0.844274\pi\)
\(212\) −1.52844e9 + 2.64733e9i −0.0519680 + 0.0900112i
\(213\) −6.61429e9 1.14563e10i −0.220178 0.381360i
\(214\) 2.33595e9 + 4.04598e9i 0.0761380 + 0.131875i
\(215\) −4.15077e9 + 7.18935e9i −0.132482 + 0.229465i
\(216\) 1.64651e10 0.514664
\(217\) 0 0
\(218\) 5.03602e9 0.151020
\(219\) −3.99374e10 + 6.91737e10i −1.17323 + 2.03209i
\(220\) 1.03630e10 + 1.79493e10i 0.298253 + 0.516589i
\(221\) −2.59449e10 4.49378e10i −0.731621 1.26720i
\(222\) 5.77710e8 1.00062e9i 0.0159633 0.0276492i
\(223\) 1.48248e10 0.401436 0.200718 0.979649i \(-0.435672\pi\)
0.200718 + 0.979649i \(0.435672\pi\)
\(224\) 0 0
\(225\) −4.72531e10 −1.22916
\(226\) −2.44449e9 + 4.23399e9i −0.0623306 + 0.107960i
\(227\) 3.55990e10 + 6.16594e10i 0.889861 + 1.54128i 0.840039 + 0.542526i \(0.182532\pi\)
0.0498216 + 0.998758i \(0.484135\pi\)
\(228\) 2.66156e10 + 4.60996e10i 0.652273 + 1.12977i
\(229\) 2.87930e10 4.98710e10i 0.691875 1.19836i −0.279348 0.960190i \(-0.590118\pi\)
0.971223 0.238172i \(-0.0765483\pi\)
\(230\) −5.11605e9 −0.120548
\(231\) 0 0
\(232\) 5.60954e9 0.127125
\(233\) 2.58931e10 4.48482e10i 0.575549 0.996881i −0.420432 0.907324i \(-0.638122\pi\)
0.995982 0.0895570i \(-0.0285451\pi\)
\(234\) −8.17338e9 1.41567e10i −0.178209 0.308667i
\(235\) −2.89286e9 5.01058e9i −0.0618760 0.107172i
\(236\) −1.87994e10 + 3.25616e10i −0.394495 + 0.683285i
\(237\) 2.37940e10 0.489892
\(238\) 0 0
\(239\) 1.49198e10 0.295782 0.147891 0.989004i \(-0.452751\pi\)
0.147891 + 0.989004i \(0.452751\pi\)
\(240\) 3.19019e10 5.52557e10i 0.620677 1.07504i
\(241\) −2.02765e10 3.51199e10i −0.387183 0.670621i 0.604886 0.796312i \(-0.293219\pi\)
−0.992069 + 0.125691i \(0.959885\pi\)
\(242\) −6.78146e8 1.17458e9i −0.0127103 0.0220148i
\(243\) −4.59134e10 + 7.95244e10i −0.844717 + 1.46309i
\(244\) −2.56495e10 −0.463261
\(245\) 0 0
\(246\) 7.42109e8 0.0129199
\(247\) 3.08496e10 5.34331e10i 0.527368 0.913428i
\(248\) 6.90494e9 + 1.19597e10i 0.115912 + 0.200765i
\(249\) −3.25818e10 5.64333e10i −0.537128 0.930333i
\(250\) 3.30695e9 5.72781e9i 0.0535424 0.0927382i
\(251\) 2.61634e10 0.416066 0.208033 0.978122i \(-0.433294\pi\)
0.208033 + 0.978122i \(0.433294\pi\)
\(252\) 0 0
\(253\) 9.62498e10 1.47692
\(254\) 3.42006e9 5.92372e9i 0.0515563 0.0892982i
\(255\) −4.29770e10 7.44383e10i −0.636510 1.10247i
\(256\) −3.08738e10 5.34749e10i −0.449272 0.778162i
\(257\) −1.39752e10 + 2.42058e10i −0.199829 + 0.346114i −0.948473 0.316858i \(-0.897372\pi\)
0.748644 + 0.662973i \(0.230705\pi\)
\(258\) 5.05887e9 0.0710828
\(259\) 0 0
\(260\) −7.47400e10 −1.01432
\(261\) −5.62708e10 + 9.74638e10i −0.750586 + 1.30005i
\(262\) 5.64128e9 + 9.77099e9i 0.0739643 + 0.128110i
\(263\) −1.75270e10 3.03576e10i −0.225895 0.391262i 0.730693 0.682707i \(-0.239197\pi\)
−0.956588 + 0.291445i \(0.905864\pi\)
\(264\) 1.26960e10 2.19900e10i 0.160860 0.278618i
\(265\) 5.86916e9 0.0731087
\(266\) 0 0
\(267\) 2.14668e11 2.58504
\(268\) −2.53838e10 + 4.39660e10i −0.300573 + 0.520608i
\(269\) 5.65451e10 + 9.79391e10i 0.658431 + 1.14044i 0.981022 + 0.193897i \(0.0621127\pi\)
−0.322591 + 0.946538i \(0.604554\pi\)
\(270\) −7.86229e9 1.36179e10i −0.0900351 0.155945i
\(271\) −5.76329e9 + 9.98230e9i −0.0649095 + 0.112427i −0.896654 0.442732i \(-0.854009\pi\)
0.831744 + 0.555159i \(0.187343\pi\)
\(272\) −8.69603e10 −0.963298
\(273\) 0 0
\(274\) 5.87562e9 0.0629762
\(275\) −2.11589e10 + 3.66483e10i −0.223098 + 0.386417i
\(276\) −1.49725e11 2.59331e11i −1.55311 2.69007i
\(277\) 3.08863e10 + 5.34966e10i 0.315215 + 0.545968i 0.979483 0.201526i \(-0.0645902\pi\)
−0.664268 + 0.747494i \(0.731257\pi\)
\(278\) −3.77070e9 + 6.53104e9i −0.0378634 + 0.0655814i
\(279\) −2.77061e11 −2.73752
\(280\) 0 0
\(281\) −1.96493e11 −1.88005 −0.940026 0.341104i \(-0.889199\pi\)
−0.940026 + 0.341104i \(0.889199\pi\)
\(282\) −1.76288e9 + 3.05339e9i −0.0165997 + 0.0287516i
\(283\) 3.44971e10 + 5.97507e10i 0.319701 + 0.553738i 0.980425 0.196890i \(-0.0630843\pi\)
−0.660725 + 0.750628i \(0.729751\pi\)
\(284\) 1.29846e10 + 2.24900e10i 0.118440 + 0.205143i
\(285\) 5.11017e10 8.85107e10i 0.458810 0.794683i
\(286\) −1.46394e10 −0.129383
\(287\) 0 0
\(288\) −8.36352e10 −0.716346
\(289\) 7.19193e8 1.24568e9i 0.00606464 0.0105043i
\(290\) −2.67862e9 4.63950e9i −0.0222392 0.0385195i
\(291\) −7.68183e10 1.33053e11i −0.627981 1.08770i
\(292\) 7.84019e10 1.35796e11i 0.631108 1.09311i
\(293\) −1.00405e11 −0.795887 −0.397944 0.917410i \(-0.630276\pi\)
−0.397944 + 0.917410i \(0.630276\pi\)
\(294\) 0 0
\(295\) 7.21894e10 0.554976
\(296\) −2.28003e9 + 3.94913e9i −0.0172635 + 0.0299012i
\(297\) 1.47916e11 + 2.56197e11i 1.10309 + 1.91060i
\(298\) −7.59588e9 1.31565e10i −0.0557962 0.0966419i
\(299\) −1.73543e11 + 3.00585e11i −1.25570 + 2.17494i
\(300\) 1.31658e11 0.938427
\(301\) 0 0
\(302\) 1.07738e10 0.0745311
\(303\) −3.53912e9 + 6.12994e9i −0.0241215 + 0.0417796i
\(304\) −5.16999e10 8.95469e10i −0.347183 0.601339i
\(305\) 2.46234e10 + 4.26490e10i 0.162929 + 0.282202i
\(306\) −1.84527e10 + 3.19611e10i −0.120313 + 0.208389i
\(307\) 1.52467e11 0.979612 0.489806 0.871831i \(-0.337068\pi\)
0.489806 + 0.871831i \(0.337068\pi\)
\(308\) 0 0
\(309\) 1.48932e11 0.929337
\(310\) 6.59438e9 1.14218e10i 0.0405552 0.0702436i
\(311\) −5.38186e10 9.32166e10i −0.326220 0.565030i 0.655538 0.755162i \(-0.272442\pi\)
−0.981759 + 0.190132i \(0.939108\pi\)
\(312\) 4.57828e10 + 7.92981e10i 0.273531 + 0.473770i
\(313\) −3.73541e9 + 6.46991e9i −0.0219983 + 0.0381021i −0.876815 0.480828i \(-0.840336\pi\)
0.854817 + 0.518930i \(0.173669\pi\)
\(314\) 1.12429e10 0.0652672
\(315\) 0 0
\(316\) −4.67105e10 −0.263525
\(317\) 8.14322e10 1.41045e11i 0.452929 0.784495i −0.545638 0.838021i \(-0.683713\pi\)
0.998566 + 0.0535257i \(0.0170459\pi\)
\(318\) −1.78830e9 3.09742e9i −0.00980659 0.0169855i
\(319\) 5.03936e10 + 8.72843e10i 0.272469 + 0.471931i
\(320\) −6.12886e10 + 1.06155e11i −0.326742 + 0.565933i
\(321\) 5.25025e11 2.75999
\(322\) 0 0
\(323\) −1.39296e11 −0.712079
\(324\) 2.26083e11 3.91587e11i 1.13976 1.97413i
\(325\) −7.63010e10 1.32157e11i −0.379363 0.657076i
\(326\) 1.40472e10 + 2.43305e10i 0.0688829 + 0.119309i
\(327\) 2.82973e11 4.90123e11i 1.36861 2.37050i
\(328\) −2.92886e9 −0.0139723
\(329\) 0 0
\(330\) −2.42499e10 −0.112563
\(331\) −1.48919e11 + 2.57936e11i −0.681908 + 1.18110i 0.292490 + 0.956268i \(0.405516\pi\)
−0.974398 + 0.224830i \(0.927817\pi\)
\(332\) 6.39618e10 + 1.10785e11i 0.288935 + 0.500449i
\(333\) −4.57432e10 7.92296e10i −0.203858 0.353092i
\(334\) −1.48271e10 + 2.56813e10i −0.0651924 + 0.112917i
\(335\) 9.74731e10 0.422847
\(336\) 0 0
\(337\) 3.90243e11 1.64816 0.824082 0.566471i \(-0.191692\pi\)
0.824082 + 0.566471i \(0.191692\pi\)
\(338\) 1.42169e10 2.46244e10i 0.0592489 0.102622i
\(339\) 2.74711e11 + 4.75813e11i 1.12974 + 1.95676i
\(340\) 8.43689e10 + 1.46131e11i 0.342395 + 0.593045i
\(341\) −1.24062e11 + 2.14882e11i −0.496871 + 0.860606i
\(342\) −4.38823e10 −0.173449
\(343\) 0 0
\(344\) −1.99657e10 −0.0768726
\(345\) −2.87469e11 + 4.97912e11i −1.09246 + 1.89220i
\(346\) −8.95823e9 1.55161e10i −0.0336031 0.0582023i
\(347\) 1.22486e11 + 2.12152e11i 0.453528 + 0.785534i 0.998602 0.0528539i \(-0.0168318\pi\)
−0.545074 + 0.838388i \(0.683498\pi\)
\(348\) 1.56783e11 2.71556e11i 0.573050 0.992551i
\(349\) 1.04110e11 0.375646 0.187823 0.982203i \(-0.439857\pi\)
0.187823 + 0.982203i \(0.439857\pi\)
\(350\) 0 0
\(351\) −1.06679e12 −3.75145
\(352\) −3.74500e10 + 6.48653e10i −0.130020 + 0.225201i
\(353\) −6.64052e10 1.15017e11i −0.227623 0.394254i 0.729480 0.684002i \(-0.239762\pi\)
−0.957103 + 0.289747i \(0.906429\pi\)
\(354\) −2.19957e10 3.80977e10i −0.0744429 0.128939i
\(355\) 2.49303e10 4.31806e10i 0.0833106 0.144298i
\(356\) −4.21419e11 −1.39056
\(357\) 0 0
\(358\) 2.40913e10 0.0775151
\(359\) 2.46058e11 4.26185e11i 0.781831 1.35417i −0.149044 0.988831i \(-0.547619\pi\)
0.930874 0.365340i \(-0.119047\pi\)
\(360\) 5.34340e10 + 9.25503e10i 0.167670 + 0.290413i
\(361\) 7.85290e10 + 1.36016e11i 0.243359 + 0.421511i
\(362\) 8.13363e9 1.40879e10i 0.0248941 0.0431178i
\(363\) −1.52419e11 −0.460744
\(364\) 0 0
\(365\) −3.01061e11 −0.887845
\(366\) 1.50052e10 2.59898e10i 0.0437097 0.0757074i
\(367\) −2.83216e10 4.90544e10i −0.0814930 0.141150i 0.822398 0.568912i \(-0.192635\pi\)
−0.903891 + 0.427762i \(0.859302\pi\)
\(368\) 2.90835e11 + 5.03741e11i 0.826668 + 1.43183i
\(369\) 2.93802e10 5.08880e10i 0.0824966 0.142888i
\(370\) 4.35497e9 0.0120803
\(371\) 0 0
\(372\) 7.71955e11 2.09001
\(373\) −1.50720e11 + 2.61055e11i −0.403164 + 0.698301i −0.994106 0.108413i \(-0.965423\pi\)
0.590942 + 0.806714i \(0.298756\pi\)
\(374\) 1.65255e10 + 2.86229e10i 0.0436748 + 0.0756470i
\(375\) −3.71633e11 6.43688e11i −0.970451 1.68087i
\(376\) 6.95750e9 1.20507e10i 0.0179518 0.0310934i
\(377\) −3.63448e11 −0.926630
\(378\) 0 0
\(379\) 7.40526e10 0.184359 0.0921795 0.995742i \(-0.470617\pi\)
0.0921795 + 0.995742i \(0.470617\pi\)
\(380\) −1.00319e11 + 1.73757e11i −0.246806 + 0.427480i
\(381\) −3.84344e11 6.65704e11i −0.934454 1.61852i
\(382\) −2.26742e10 3.92729e10i −0.0544813 0.0943644i
\(383\) −3.77448e11 + 6.53759e11i −0.896318 + 1.55247i −0.0641539 + 0.997940i \(0.520435\pi\)
−0.832164 + 0.554529i \(0.812898\pi\)
\(384\) 3.10150e11 0.727915
\(385\) 0 0
\(386\) −7.73299e10 −0.177298
\(387\) 2.00281e11 3.46897e11i 0.453880 0.786143i
\(388\) 1.50803e11 + 2.61199e11i 0.337807 + 0.585099i
\(389\) 3.30773e10 + 5.72915e10i 0.0732413 + 0.126858i 0.900320 0.435228i \(-0.143332\pi\)
−0.827079 + 0.562086i \(0.809999\pi\)
\(390\) 4.37236e10 7.57315e10i 0.0957029 0.165762i
\(391\) 7.83603e11 1.69551
\(392\) 0 0
\(393\) 1.26793e12 2.68119
\(394\) −3.99215e10 + 6.91460e10i −0.0834591 + 0.144555i
\(395\) 4.48418e10 + 7.76683e10i 0.0926821 + 0.160530i
\(396\) −5.00032e11 8.66080e11i −1.02181 1.76982i
\(397\) −1.39608e11 + 2.41808e11i −0.282068 + 0.488555i −0.971894 0.235420i \(-0.924354\pi\)
0.689826 + 0.723975i \(0.257687\pi\)
\(398\) −4.11430e10 −0.0821907
\(399\) 0 0
\(400\) −2.55741e11 −0.499493
\(401\) 2.65648e11 4.60115e11i 0.513046 0.888622i −0.486839 0.873492i \(-0.661850\pi\)
0.999886 0.0151306i \(-0.00481642\pi\)
\(402\) −2.96995e10 5.14411e10i −0.0567195 0.0982410i
\(403\) −4.47379e11 7.74883e11i −0.844895 1.46340i
\(404\) 6.94771e9 1.20338e10i 0.0129755 0.0224743i
\(405\) −8.68152e11 −1.60342
\(406\) 0 0
\(407\) −8.19313e10 −0.148004
\(408\) 1.03362e11 1.79028e11i 0.184668 0.319854i
\(409\) −3.78291e11 6.55219e11i −0.668453 1.15779i −0.978337 0.207020i \(-0.933624\pi\)
0.309884 0.950774i \(-0.399710\pi\)
\(410\) 1.39856e9 + 2.42239e9i 0.00244430 + 0.00423366i
\(411\) 3.30149e11 5.71836e11i 0.570719 0.988514i
\(412\) −2.92370e11 −0.499914
\(413\) 0 0
\(414\) 2.46857e11 0.412995
\(415\) 1.22806e11 2.12706e11i 0.203237 0.352017i
\(416\) −1.35048e11 2.33910e11i −0.221090 0.382939i
\(417\) 4.23748e11 + 7.33954e11i 0.686271 + 1.18866i
\(418\) −1.96495e10 + 3.40340e10i −0.0314818 + 0.0545280i
\(419\) −6.70372e11 −1.06256 −0.531279 0.847197i \(-0.678288\pi\)
−0.531279 + 0.847197i \(0.678288\pi\)
\(420\) 0 0
\(421\) 4.12181e11 0.639468 0.319734 0.947507i \(-0.396407\pi\)
0.319734 + 0.947507i \(0.396407\pi\)
\(422\) −5.83742e10 + 1.01107e11i −0.0896015 + 0.155194i
\(423\) 1.39585e11 + 2.41768e11i 0.211986 + 0.367171i
\(424\) 7.05783e9 + 1.22245e10i 0.0106053 + 0.0183690i
\(425\) −1.72262e11 + 2.98366e11i −0.256117 + 0.443608i
\(426\) −3.03845e10 −0.0447001
\(427\) 0 0
\(428\) −1.03069e12 −1.48467
\(429\) −8.22585e11 + 1.42476e12i −1.17253 + 2.03088i
\(430\) 9.53385e9 + 1.65131e10i 0.0134481 + 0.0232928i
\(431\) −1.98046e11 3.43026e11i −0.276451 0.478828i 0.694049 0.719928i \(-0.255825\pi\)
−0.970500 + 0.241100i \(0.922492\pi\)
\(432\) −8.93903e11 + 1.54828e12i −1.23485 + 2.13882i
\(433\) −6.70903e10 −0.0917201 −0.0458600 0.998948i \(-0.514603\pi\)
−0.0458600 + 0.998948i \(0.514603\pi\)
\(434\) 0 0
\(435\) −6.02043e11 −0.806168
\(436\) −5.55508e11 + 9.62168e11i −0.736209 + 1.27515i
\(437\) 4.65870e11 + 8.06911e11i 0.611080 + 1.05842i
\(438\) 9.17317e10 + 1.58884e11i 0.119093 + 0.206275i
\(439\) 5.63506e11 9.76021e11i 0.724116 1.25421i −0.235221 0.971942i \(-0.575581\pi\)
0.959337 0.282264i \(-0.0910854\pi\)
\(440\) 9.57062e10 0.121732
\(441\) 0 0
\(442\) −1.19185e11 −0.148532
\(443\) 2.95671e11 5.12116e11i 0.364747 0.631760i −0.623989 0.781433i \(-0.714489\pi\)
0.988735 + 0.149674i \(0.0478223\pi\)
\(444\) 1.27451e11 + 2.20751e11i 0.155639 + 0.269575i
\(445\) 4.04559e11 + 7.00717e11i 0.489060 + 0.847077i
\(446\) 1.70254e10 2.94889e10i 0.0203747 0.0352900i
\(447\) −1.70724e12 −2.02260
\(448\) 0 0
\(449\) 8.30465e10 0.0964302 0.0482151 0.998837i \(-0.484647\pi\)
0.0482151 + 0.998837i \(0.484647\pi\)
\(450\) −5.42674e10 + 9.39940e10i −0.0623854 + 0.108055i
\(451\) −2.63116e10 4.55731e10i −0.0299470 0.0518697i
\(452\) −5.39289e11 9.34076e11i −0.607713 1.05259i
\(453\) 6.05376e11 1.04854e12i 0.675435 1.16989i
\(454\) 1.63534e11 0.180658
\(455\) 0 0
\(456\) 2.45805e11 0.266225
\(457\) 7.31950e11 1.26777e12i 0.784980 1.35963i −0.144031 0.989573i \(-0.546006\pi\)
0.929011 0.370052i \(-0.120660\pi\)
\(458\) −6.61342e10 1.14548e11i −0.0702314 0.121644i
\(459\) 1.20423e12 + 2.08579e12i 1.26635 + 2.19338i
\(460\) 5.64336e11 9.77459e11i 0.587662 1.01786i
\(461\) 1.37860e12 1.42162 0.710809 0.703385i \(-0.248329\pi\)
0.710809 + 0.703385i \(0.248329\pi\)
\(462\) 0 0
\(463\) 2.81332e11 0.284515 0.142258 0.989830i \(-0.454564\pi\)
0.142258 + 0.989830i \(0.454564\pi\)
\(464\) −3.04545e11 + 5.27488e11i −0.305015 + 0.528302i
\(465\) −7.41072e11 1.28357e12i −0.735059 1.27316i
\(466\) −5.94735e10 1.03011e11i −0.0584234 0.101192i
\(467\) −3.91879e11 + 6.78754e11i −0.381264 + 0.660368i −0.991243 0.132049i \(-0.957844\pi\)
0.609979 + 0.792417i \(0.291178\pi\)
\(468\) 3.60632e12 3.47502
\(469\) 0 0
\(470\) −1.32891e10 −0.0125619
\(471\) 6.31735e11 1.09420e12i 0.591481 1.02448i
\(472\) 8.68099e10 + 1.50359e11i 0.0805063 + 0.139441i
\(473\) −1.79363e11 3.10666e11i −0.164762 0.285377i
\(474\) 2.73261e10 4.73302e10i 0.0248642 0.0430661i
\(475\) −4.09655e11 −0.369230
\(476\) 0 0
\(477\) −2.83196e11 −0.250469
\(478\) 1.71345e10 2.96779e10i 0.0150123 0.0260020i
\(479\) 9.20728e11 + 1.59475e12i 0.799138 + 1.38415i 0.920178 + 0.391500i \(0.128044\pi\)
−0.121041 + 0.992648i \(0.538623\pi\)
\(480\) −2.23704e11 3.87467e11i −0.192348 0.333157i
\(481\) 1.47726e11 2.55869e11i 0.125836 0.217954i
\(482\) −9.31456e10 −0.0786051
\(483\) 0 0
\(484\) 2.99217e11 0.247846
\(485\) 2.89541e11 5.01499e11i 0.237614 0.411559i
\(486\) 1.05458e11 + 1.82658e11i 0.0857463 + 0.148517i
\(487\) −6.14264e11 1.06394e12i −0.494851 0.857107i 0.505131 0.863042i \(-0.331444\pi\)
−0.999982 + 0.00593530i \(0.998111\pi\)
\(488\) −5.92207e10 + 1.02573e11i −0.0472699 + 0.0818738i
\(489\) 3.15724e12 2.49699
\(490\) 0 0
\(491\) −4.92920e11 −0.382745 −0.191372 0.981517i \(-0.561294\pi\)
−0.191372 + 0.981517i \(0.561294\pi\)
\(492\) −8.18598e10 + 1.41785e11i −0.0629836 + 0.109091i
\(493\) 4.10272e11 + 7.10612e11i 0.312796 + 0.541778i
\(494\) −7.08580e10 1.22730e11i −0.0535325 0.0927211i
\(495\) −9.60055e11 + 1.66286e12i −0.718741 + 1.24490i
\(496\) −1.49950e12 −1.11244
\(497\) 0 0
\(498\) −1.49673e11 −0.109047
\(499\) 9.54629e11 1.65347e12i 0.689259 1.19383i −0.282819 0.959173i \(-0.591270\pi\)
0.972078 0.234658i \(-0.0753969\pi\)
\(500\) 7.29559e11 + 1.26363e12i 0.522030 + 0.904183i
\(501\) 1.66626e12 + 2.88605e12i 1.18161 + 2.04660i
\(502\) 3.00471e10 5.20431e10i 0.0211172 0.0365760i
\(503\) −3.80479e11 −0.265017 −0.132509 0.991182i \(-0.542303\pi\)
−0.132509 + 0.991182i \(0.542303\pi\)
\(504\) 0 0
\(505\) −2.66790e10 −0.0182540
\(506\) 1.10537e11 1.91456e11i 0.0749604 0.129835i
\(507\) −1.59769e12 2.76728e12i −1.07388 1.86002i
\(508\) 7.54513e11 + 1.30685e12i 0.502666 + 0.870644i
\(509\) 1.10937e12 1.92148e12i 0.732563 1.26884i −0.223222 0.974768i \(-0.571657\pi\)
0.955784 0.294068i \(-0.0950093\pi\)
\(510\) −1.97426e11 −0.129223
\(511\) 0 0
\(512\) −7.57026e11 −0.486851
\(513\) −1.43189e12 + 2.48010e12i −0.912810 + 1.58103i
\(514\) 3.20994e10 + 5.55978e10i 0.0202844 + 0.0351337i
\(515\) 2.80673e11 + 4.86141e11i 0.175820 + 0.304530i
\(516\) −5.58028e11 + 9.66533e11i −0.346523 + 0.600196i
\(517\) 2.50012e11 0.153906
\(518\) 0 0
\(519\) −2.01344e12 −1.21811
\(520\) −1.72563e11 + 2.98887e11i −0.103498 + 0.179264i
\(521\) −6.50050e11 1.12592e12i −0.386525 0.669480i 0.605455 0.795880i \(-0.292991\pi\)
−0.991979 + 0.126399i \(0.959658\pi\)
\(522\) 1.29247e11 + 2.23863e11i 0.0761912 + 0.131967i
\(523\) 9.59819e10 1.66246e11i 0.0560960 0.0971611i −0.836614 0.547793i \(-0.815468\pi\)
0.892710 + 0.450632i \(0.148801\pi\)
\(524\) −2.48909e12 −1.44228
\(525\) 0 0
\(526\) −8.05149e10 −0.0458607
\(527\) −1.01003e12 + 1.74942e12i −0.570410 + 0.987978i
\(528\) 1.37854e12 + 2.38771e12i 0.771912 + 1.33699i
\(529\) −1.72015e12 2.97938e12i −0.955026 1.65415i
\(530\) 6.74038e9 1.16747e10i 0.00371059 0.00642693i
\(531\) −3.48325e12 −1.90134
\(532\) 0 0
\(533\) 1.89764e11 0.101846
\(534\) 2.46534e11 4.27009e11i 0.131202 0.227249i
\(535\) 9.89452e11 + 1.71378e12i 0.522159 + 0.904405i
\(536\) 1.17214e11 + 2.03021e11i 0.0613393 + 0.106243i
\(537\) 1.35368e12 2.34465e12i 0.702477 1.21673i
\(538\) 2.59755e11 0.133673
\(539\) 0 0
\(540\) 3.46906e12 1.75566
\(541\) −4.38801e11 + 7.60026e11i −0.220232 + 0.381453i −0.954878 0.296997i \(-0.904015\pi\)
0.734646 + 0.678450i \(0.237348\pi\)
\(542\) 1.32376e10 + 2.29282e10i 0.00658889 + 0.0114123i
\(543\) −9.14053e11 1.58319e12i −0.451203 0.781506i
\(544\) −3.04893e11 + 5.28091e11i −0.149263 + 0.258532i
\(545\) 2.13314e12 1.03570
\(546\) 0 0
\(547\) −1.07234e12 −0.512140 −0.256070 0.966658i \(-0.582428\pi\)
−0.256070 + 0.966658i \(0.582428\pi\)
\(548\) −6.48122e11 + 1.12258e12i −0.307004 + 0.531747i
\(549\) −1.18812e12 2.05788e12i −0.558192 0.966817i
\(550\) 4.85995e10 + 8.41769e10i 0.0226464 + 0.0392248i
\(551\) −4.87832e11 + 8.44950e11i −0.225470 + 0.390525i
\(552\) −1.38276e12 −0.633901
\(553\) 0 0
\(554\) 1.41884e11 0.0639942
\(555\) 2.44704e11 4.23840e11i 0.109477 0.189620i
\(556\) −8.31868e11 1.44084e12i −0.369163 0.639408i
\(557\) −1.77420e12 3.07300e12i −0.781006 1.35274i −0.931356 0.364109i \(-0.881374\pi\)
0.150351 0.988633i \(-0.451960\pi\)
\(558\) −3.18189e11 + 5.51119e11i −0.138941 + 0.240653i
\(559\) 1.29360e12 0.560334
\(560\) 0 0
\(561\) 3.71424e12 1.58320
\(562\) −2.25661e11 + 3.90857e11i −0.0954209 + 0.165274i
\(563\) −1.87089e12 3.24047e12i −0.784801 1.35931i −0.929118 0.369783i \(-0.879432\pi\)
0.144317 0.989531i \(-0.453901\pi\)
\(564\) −3.88915e11 6.73621e11i −0.161845 0.280324i
\(565\) −1.03543e12 + 1.79342e12i −0.427467 + 0.740394i
\(566\) 1.58472e11 0.0649049
\(567\) 0 0
\(568\) 1.19918e11 0.0483410
\(569\) 1.72898e12 2.99468e12i 0.691487 1.19769i −0.279864 0.960040i \(-0.590289\pi\)
0.971351 0.237651i \(-0.0763774\pi\)
\(570\) −1.17375e11 2.03299e11i −0.0465733 0.0806673i
\(571\) 1.67025e12 + 2.89296e12i 0.657537 + 1.13889i 0.981251 + 0.192732i \(0.0617349\pi\)
−0.323715 + 0.946155i \(0.604932\pi\)
\(572\) 1.61483e12 2.79697e12i 0.630732 1.09246i
\(573\) −5.09623e12 −1.97494
\(574\) 0 0
\(575\) 2.30449e12 0.879163
\(576\) 2.95727e12 5.12214e12i 1.11941 1.93888i
\(577\) −1.02686e12 1.77858e12i −0.385675 0.668009i 0.606187 0.795322i \(-0.292698\pi\)
−0.991863 + 0.127313i \(0.959365\pi\)
\(578\) −1.65190e9 2.86118e9i −0.000615615 0.00106628i
\(579\) −4.34514e12 + 7.52601e12i −1.60676 + 2.78299i
\(580\) 1.18188e12 0.433658
\(581\) 0 0
\(582\) −3.52886e11 −0.127491
\(583\) −1.26809e11 + 2.19639e11i −0.0454612 + 0.0787411i
\(584\) −3.62035e11 6.27063e11i −0.128793 0.223076i
\(585\) −3.46205e12 5.99644e12i −1.22217 2.11686i
\(586\) −1.15309e11 + 1.99722e11i −0.0403948 + 0.0699659i
\(587\) 3.97715e12 1.38261 0.691306 0.722563i \(-0.257036\pi\)
0.691306 + 0.722563i \(0.257036\pi\)
\(588\) 0 0
\(589\) −2.40195e12 −0.822327
\(590\) 8.29054e10 1.43596e11i 0.0281675 0.0487876i
\(591\) 4.48635e12 + 7.77059e12i 1.51269 + 2.62005i
\(592\) −2.47569e11 4.28802e11i −0.0828416 0.143486i
\(593\) 1.90284e11 3.29582e11i 0.0631912 0.109450i −0.832699 0.553726i \(-0.813206\pi\)
0.895890 + 0.444276i \(0.146539\pi\)
\(594\) 6.79490e11 0.223946
\(595\) 0 0
\(596\) 3.35151e12 1.08801
\(597\) −2.31181e12 + 4.00418e12i −0.744849 + 1.29012i
\(598\) 3.98608e11 + 6.90409e11i 0.127465 + 0.220776i
\(599\) 2.49476e12 + 4.32105e12i 0.791786 + 1.37141i 0.924860 + 0.380308i \(0.124182\pi\)
−0.133074 + 0.991106i \(0.542485\pi\)
\(600\) 3.03977e11 5.26503e11i 0.0957546 0.165852i
\(601\) −4.94216e12 −1.54519 −0.772595 0.634900i \(-0.781041\pi\)
−0.772595 + 0.634900i \(0.781041\pi\)
\(602\) 0 0
\(603\) −4.70323e12 −1.44867
\(604\) −1.18842e12 + 2.05841e12i −0.363333 + 0.629312i
\(605\) −2.87246e11 4.97525e11i −0.0871677 0.150979i
\(606\) 8.12895e9 + 1.40798e10i 0.00244854 + 0.00424100i
\(607\) −1.03273e12 + 1.78875e12i −0.308773 + 0.534810i −0.978094 0.208163i \(-0.933252\pi\)
0.669321 + 0.742973i \(0.266585\pi\)
\(608\) −7.25065e11 −0.215184
\(609\) 0 0
\(610\) 1.13114e11 0.0330775
\(611\) −4.50784e11 + 7.80781e11i −0.130853 + 0.226644i
\(612\) −4.07093e12 7.05105e12i −1.17304 2.03176i
\(613\) −6.65987e11 1.15352e12i −0.190499 0.329955i 0.754916 0.655821i \(-0.227677\pi\)
−0.945416 + 0.325866i \(0.894344\pi\)
\(614\) 1.75100e11 3.03282e11i 0.0497197 0.0861170i
\(615\) 3.14340e11 0.0886056
\(616\) 0 0
\(617\) 2.58004e12 0.716709 0.358355 0.933586i \(-0.383338\pi\)
0.358355 + 0.933586i \(0.383338\pi\)
\(618\) 1.71039e11 2.96249e11i 0.0471680 0.0816974i
\(619\) −6.70531e11 1.16139e12i −0.183574 0.317959i 0.759521 0.650483i \(-0.225433\pi\)
−0.943095 + 0.332523i \(0.892100\pi\)
\(620\) 1.45481e12 + 2.51981e12i 0.395407 + 0.684864i
\(621\) 8.05500e12 1.39517e13i 2.17347 3.76456i
\(622\) −2.47230e11 −0.0662285
\(623\) 0 0
\(624\) −9.94231e12 −2.62517
\(625\) 4.17756e11 7.23574e11i 0.109512 0.189681i
\(626\) 8.57980e9 + 1.48606e10i 0.00223302 + 0.00386770i
\(627\) 2.20820e12 + 3.82472e12i 0.570604 + 0.988315i
\(628\) −1.24017e12 + 2.14804e12i −0.318173 + 0.551091i
\(629\) −6.67030e11 −0.169910
\(630\) 0 0
\(631\) 2.51284e12 0.631004 0.315502 0.948925i \(-0.397827\pi\)
0.315502 + 0.948925i \(0.397827\pi\)
\(632\) −1.07847e11 + 1.86797e11i −0.0268894 + 0.0465738i
\(633\) 6.56006e12 + 1.13624e13i 1.62402 + 2.81288i
\(634\) −1.87040e11 3.23964e11i −0.0459763 0.0796332i
\(635\) 1.44866e12 2.50915e12i 0.353576 0.612412i
\(636\) 7.89047e11 0.191225
\(637\) 0 0
\(638\) 2.31497e11 0.0553161
\(639\) −1.20293e12 + 2.08353e12i −0.285420 + 0.494363i
\(640\) 5.84502e11 + 1.01239e12i 0.137713 + 0.238527i
\(641\) 1.75990e12 + 3.04823e12i 0.411743 + 0.713160i 0.995080 0.0990702i \(-0.0315868\pi\)
−0.583338 + 0.812230i \(0.698254\pi\)
\(642\) 6.02961e11 1.04436e12i 0.140082 0.242629i
\(643\) 4.14156e12 0.955464 0.477732 0.878506i \(-0.341459\pi\)
0.477732 + 0.878506i \(0.341459\pi\)
\(644\) 0 0
\(645\) 2.14282e12 0.487490
\(646\) −1.59974e11 + 2.77082e11i −0.0361411 + 0.0625983i
\(647\) −1.27316e12 2.20517e12i −0.285636 0.494735i 0.687127 0.726537i \(-0.258871\pi\)
−0.972763 + 0.231801i \(0.925538\pi\)
\(648\) −1.04398e12 1.80822e12i −0.232597 0.402870i
\(649\) −1.55972e12 + 2.70152e12i −0.345101 + 0.597733i
\(650\) −3.50509e11 −0.0770174
\(651\) 0 0
\(652\) −6.19802e12 −1.34319
\(653\) −3.87564e12 + 6.71281e12i −0.834131 + 1.44476i 0.0606043 + 0.998162i \(0.480697\pi\)
−0.894736 + 0.446596i \(0.852636\pi\)
\(654\) −6.49955e11 1.12576e12i −0.138926 0.240627i
\(655\) 2.38951e12 + 4.13876e12i 0.507252 + 0.878585i
\(656\) 1.59010e11 2.75413e11i 0.0335241 0.0580654i
\(657\) 1.45267e13 3.04174
\(658\) 0 0
\(659\) 4.73942e12 0.978906 0.489453 0.872030i \(-0.337196\pi\)
0.489453 + 0.872030i \(0.337196\pi\)
\(660\) 2.67493e12 4.63311e12i 0.548737 0.950440i
\(661\) 1.52360e12 + 2.63894e12i 0.310430 + 0.537680i 0.978455 0.206458i \(-0.0661938\pi\)
−0.668026 + 0.744138i \(0.732860\pi\)
\(662\) 3.42051e11 + 5.92449e11i 0.0692197 + 0.119892i
\(663\) −6.69695e12 + 1.15995e13i −1.34606 + 2.33145i
\(664\) 5.90711e11 0.117928
\(665\) 0 0
\(666\) −2.10134e11 −0.0413868
\(667\) 2.74427e12 4.75322e12i 0.536860 0.929869i
\(668\) −3.27106e12 5.66565e12i −0.635616 1.10092i
\(669\) −1.91330e12 3.31394e12i −0.369289 0.639627i
\(670\) 1.11942e11 1.93890e11i 0.0214614 0.0371722i
\(671\) −2.12805e12 −0.405257
\(672\) 0 0
\(673\) 4.36982e12 0.821100 0.410550 0.911838i \(-0.365337\pi\)
0.410550 + 0.911838i \(0.365337\pi\)
\(674\) 4.48171e11 7.76255e11i 0.0836516 0.144889i
\(675\) 3.54151e12 + 6.13408e12i 0.656631 + 1.13732i
\(676\) 3.13645e12 + 5.43249e12i 0.577668 + 1.00055i
\(677\) 1.93293e12 3.34794e12i 0.353645 0.612531i −0.633240 0.773955i \(-0.718275\pi\)
0.986885 + 0.161424i \(0.0516088\pi\)
\(678\) 1.26196e12 0.229356
\(679\) 0 0
\(680\) 7.79177e11 0.139748
\(681\) 9.18891e12 1.59157e13i 1.63720 2.83572i
\(682\) 2.84956e11 + 4.93558e11i 0.0504369 + 0.0873592i
\(683\) −2.43432e12 4.21636e12i −0.428040 0.741387i 0.568659 0.822573i \(-0.307462\pi\)
−0.996699 + 0.0811865i \(0.974129\pi\)
\(684\) 4.84052e12 8.38403e12i 0.845551 1.46454i
\(685\) 2.48877e12 0.431895
\(686\) 0 0
\(687\) −1.48642e13 −2.54588
\(688\) 1.08395e12 1.87746e12i 0.184443 0.319464i
\(689\) −4.57284e11 7.92040e11i −0.0773036 0.133894i
\(690\) 6.60284e11 + 1.14365e12i 0.110894 + 0.192075i
\(691\) −4.67097e12 + 8.09035e12i −0.779391 + 1.34995i 0.152902 + 0.988241i \(0.451138\pi\)
−0.932293 + 0.361704i \(0.882195\pi\)
\(692\) 3.95262e12 0.655251
\(693\) 0 0
\(694\) 5.62673e11 0.0920743
\(695\) −1.59718e12 + 2.76639e12i −0.259670 + 0.449761i
\(696\) −7.23974e11 1.25396e12i −0.116945 0.202554i
\(697\) −2.14212e11 3.71026e11i −0.0343792 0.0595466i
\(698\) 1.19565e11 2.07092e11i 0.0190657 0.0330228i
\(699\) −1.33672e13 −2.11784
\(700\) 0 0
\(701\) 5.21727e12 0.816042 0.408021 0.912973i \(-0.366219\pi\)
0.408021 + 0.912973i \(0.366219\pi\)
\(702\) −1.22515e12 + 2.12202e12i −0.190403 + 0.329787i
\(703\) −3.96565e11 6.86871e11i −0.0612372 0.106066i
\(704\) −2.64840e12 4.58716e12i −0.406356 0.703829i
\(705\) −7.46712e11 + 1.29334e12i −0.113842 + 0.197180i
\(706\) −3.05050e11 −0.0462115
\(707\) 0 0
\(708\) 9.70511e12 1.45161
\(709\) −6.04877e12 + 1.04768e13i −0.898998 + 1.55711i −0.0702213 + 0.997531i \(0.522371\pi\)
−0.828777 + 0.559579i \(0.810963\pi\)
\(710\) −5.72620e10 9.91807e10i −0.00845676 0.0146475i
\(711\) −2.16368e12 3.74761e12i −0.317527 0.549973i
\(712\) −9.72989e11 + 1.68527e12i −0.141889 + 0.245758i
\(713\) 1.35120e13 1.95802
\(714\) 0 0
\(715\) −6.20091e12 −0.887316
\(716\) −2.65744e12 + 4.60281e12i −0.377880 + 0.654508i
\(717\) −1.92557e12 3.33518e12i −0.272096 0.471284i
\(718\) −5.65167e11 9.78898e11i −0.0793628 0.137460i
\(719\) 4.20588e12 7.28480e12i 0.586917 1.01657i −0.407716 0.913109i \(-0.633675\pi\)
0.994633 0.103462i \(-0.0329920\pi\)
\(720\) −1.16039e13 −1.60919
\(721\) 0 0
\(722\) 3.60744e11 0.0494062
\(723\) −5.23382e12 + 9.06524e12i −0.712355 + 1.23383i
\(724\) 1.79439e12 + 3.10798e12i 0.242713 + 0.420392i
\(725\) 1.20656e12 + 2.08983e12i 0.162192 + 0.280925i
\(726\) −1.75045e11 + 3.03186e11i −0.0233848 + 0.0405037i
\(727\) −1.42529e13 −1.89234 −0.946171 0.323668i \(-0.895084\pi\)
−0.946171 + 0.323668i \(0.895084\pi\)
\(728\) 0 0
\(729\) 6.13882e12 0.805028
\(730\) −3.45751e11 + 5.98859e11i −0.0450621 + 0.0780498i
\(731\) −1.46026e12 2.52924e12i −0.189148 0.327613i
\(732\) 3.31036e12 + 5.73371e12i 0.426163 + 0.738135i
\(733\) 6.28751e12 1.08903e13i 0.804472 1.39339i −0.112175 0.993688i \(-0.535782\pi\)
0.916647 0.399698i \(-0.130885\pi\)
\(734\) −1.30103e11 −0.0165445
\(735\) 0 0
\(736\) 4.07881e12 0.512370
\(737\) −2.10600e12 + 3.64770e12i −0.262939 + 0.455424i
\(738\) −6.74829e10 1.16884e11i −0.00837414 0.0145044i
\(739\) −2.25106e12 3.89895e12i −0.277643 0.480892i 0.693155 0.720788i \(-0.256220\pi\)
−0.970799 + 0.239896i \(0.922887\pi\)
\(740\) −4.80383e11 + 8.32047e11i −0.0588904 + 0.102001i
\(741\) −1.59260e13 −1.94055
\(742\) 0 0
\(743\) −2.21147e12 −0.266214 −0.133107 0.991102i \(-0.542495\pi\)
−0.133107 + 0.991102i \(0.542495\pi\)
\(744\) 1.78232e12 3.08707e12i 0.213259 0.369376i
\(745\) −3.21743e12 5.57276e12i −0.382654 0.662776i
\(746\) 3.46187e11 + 5.99613e11i 0.0409247 + 0.0708837i
\(747\) −5.92558e12 + 1.02634e13i −0.696286 + 1.20600i
\(748\) −7.29149e12 −0.851646
\(749\) 0 0
\(750\) −1.70720e12 −0.197019
\(751\) 5.74532e12 9.95118e12i 0.659074 1.14155i −0.321781 0.946814i \(-0.604282\pi\)
0.980856 0.194736i \(-0.0623851\pi\)
\(752\) 7.55454e11 + 1.30849e12i 0.0861446 + 0.149207i
\(753\) −3.37667e12 5.84857e12i −0.382747 0.662937i
\(754\) −4.17399e11 + 7.22957e11i −0.0470306 + 0.0814594i
\(755\) 4.56352e12 0.511139
\(756\) 0 0
\(757\) −1.01163e13 −1.11967 −0.559834 0.828604i \(-0.689135\pi\)
−0.559834 + 0.828604i \(0.689135\pi\)
\(758\) 8.50452e10 1.47303e11i 0.00935703 0.0162069i
\(759\) −1.24221e13 2.15157e13i −1.35865 2.35325i
\(760\) 4.63239e11 + 8.02353e11i 0.0503667 + 0.0872378i
\(761\) −8.30801e11 + 1.43899e12i −0.0897978 + 0.155534i −0.907426 0.420213i \(-0.861955\pi\)
0.817628 + 0.575747i \(0.195289\pi\)
\(762\) −1.76559e12 −0.189711
\(763\) 0 0
\(764\) 1.00045e13 1.06237
\(765\) −7.81613e12 + 1.35379e13i −0.825117 + 1.42914i
\(766\) 8.66954e11 + 1.50161e12i 0.0909843 + 0.157589i
\(767\) −5.62451e12 9.74193e12i −0.586820 1.01640i
\(768\) −7.96920e12 + 1.38031e13i −0.826589 + 1.43169i
\(769\) 6.69555e12 0.690427 0.345213 0.938524i \(-0.387807\pi\)
0.345213 + 0.938524i \(0.387807\pi\)
\(770\) 0 0
\(771\) 7.21463e12 0.735308
\(772\) 8.53002e12 1.47744e13i 0.864315 1.49704i
\(773\) 6.45950e12 + 1.11882e13i 0.650716 + 1.12707i 0.982950 + 0.183875i \(0.0588643\pi\)
−0.332234 + 0.943197i \(0.607802\pi\)
\(774\) −4.60023e11 7.96783e11i −0.0460728 0.0798005i
\(775\) −2.97039e12 + 5.14487e12i −0.295771 + 0.512291i
\(776\) 1.39272e12 0.137876
\(777\) 0 0
\(778\) 1.51949e11 0.0148693
\(779\) 2.54708e11 4.41167e11i 0.0247813 0.0429224i
\(780\) 9.64603e12 + 1.67074e13i 0.933089 + 1.61616i
\(781\) 1.07729e12 + 1.86592e12i 0.103610 + 0.179458i
\(782\) 8.99922e11 1.55871e12i 0.0860547 0.149051i
\(783\) 1.68695e13 1.60388
\(784\) 0 0
\(785\) 4.76222e12 0.447606
\(786\) 1.45614e12 2.52211e12i 0.136082 0.235702i
\(787\) 6.07603e12 + 1.05240e13i 0.564590 + 0.977899i 0.997088 + 0.0762639i \(0.0242991\pi\)
−0.432497 + 0.901635i \(0.642368\pi\)
\(788\) −8.80723e12 1.52546e13i −0.813713 1.40939i
\(789\) −4.52411e12 + 7.83599e12i −0.415610 + 0.719858i
\(790\) 2.05993e11 0.0188161
\(791\) 0 0
\(792\) −4.61797e12 −0.417050
\(793\) 3.83697e12 6.64583e12i 0.344556 0.596788i
\(794\) 3.20664e11 + 5.55406e11i 0.0286324 + 0.0495927i
\(795\) −7.57480e11 1.31199e12i −0.0672542 0.116488i
\(796\) 4.53836e12 7.86067e12i 0.400673 0.693986i
\(797\) −1.01984e13 −0.895306 −0.447653 0.894207i \(-0.647740\pi\)
−0.447653 + 0.894207i \(0.647740\pi\)
\(798\) 0 0
\(799\) 2.03544e12 0.176684
\(800\) −8.96658e11 + 1.55306e12i −0.0773966 + 0.134055i
\(801\) −1.95206e13 3.38107e13i −1.67551 2.90207i
\(802\) −6.10162e11 1.05683e12i −0.0520788 0.0902031i
\(803\) 6.50472e12 1.12665e13i 0.552089 0.956246i
\(804\) 1.31042e13 1.10601
\(805\) 0 0
\(806\) −2.05515e12 −0.171529
\(807\) 1.45956e13 2.52803e13i 1.21141 2.09822i
\(808\) −3.20823e10 5.55682e10i −0.00264798 0.00458643i
\(809\) 3.69491e12 + 6.39976e12i 0.303274 + 0.525286i 0.976876 0.213809i \(-0.0685870\pi\)
−0.673602 + 0.739095i \(0.735254\pi\)
\(810\) −9.97023e11 + 1.72689e12i −0.0813809 + 0.140956i
\(811\) −5.15025e12 −0.418056 −0.209028 0.977910i \(-0.567030\pi\)
−0.209028 + 0.977910i \(0.567030\pi\)
\(812\) 0 0
\(813\) 2.97527e12 0.238846
\(814\) −9.40933e10 + 1.62974e11i −0.00751188 + 0.0130110i
\(815\) 5.95006e12 + 1.03058e13i 0.472403 + 0.818226i
\(816\) 1.12232e13 + 1.94391e13i 0.886157 + 1.53487i
\(817\) 1.73631e12 3.00738e12i 0.136342 0.236151i
\(818\) −1.73778e12 −0.135708
\(819\) 0 0
\(820\) −6.17085e11 −0.0476632
\(821\) −3.38894e12 + 5.86981e12i −0.260327 + 0.450900i −0.966329 0.257310i \(-0.917164\pi\)
0.706002 + 0.708210i \(0.250497\pi\)
\(822\) −7.58315e11 1.31344e12i −0.0579331 0.100343i
\(823\) 4.23808e12 + 7.34057e12i 0.322011 + 0.557739i 0.980903 0.194499i \(-0.0623080\pi\)
−0.658892 + 0.752237i \(0.728975\pi\)
\(824\) −6.75036e11 + 1.16920e12i −0.0510099 + 0.0883517i
\(825\) 1.09232e13 0.820930
\(826\) 0 0
\(827\) −9.70886e12 −0.721761 −0.360880 0.932612i \(-0.617524\pi\)
−0.360880 + 0.932612i \(0.617524\pi\)
\(828\) −2.72301e13 + 4.71639e13i −2.01332 + 3.48717i
\(829\) −3.38675e11 5.86601e11i −0.0249050 0.0431368i 0.853304 0.521413i \(-0.174595\pi\)
−0.878209 + 0.478277i \(0.841262\pi\)
\(830\) −2.82071e11 4.88561e11i −0.0206304 0.0357329i
\(831\) 7.97243e12 1.38087e13i 0.579944 1.00449i
\(832\) 1.91007e13 1.38196
\(833\) 0 0
\(834\) 1.94660e12 0.139325
\(835\) −6.28040e12 + 1.08780e13i −0.447093 + 0.774389i
\(836\) −4.33496e12 7.50837e12i −0.306942 0.531640i
\(837\) 2.07651e13 + 3.59662e13i 1.46241 + 2.53297i
\(838\) −7.69883e11 + 1.33348e12i −0.0539295 + 0.0934087i
\(839\) −5.39522e12 −0.375907 −0.187953 0.982178i \(-0.560185\pi\)
−0.187953 + 0.982178i \(0.560185\pi\)
\(840\) 0 0
\(841\) −8.75986e12 −0.603831
\(842\) 4.73366e11 8.19894e11i 0.0324558 0.0562151i
\(843\) 2.53597e13 + 4.39242e13i 1.72950 + 2.99558i
\(844\) −1.28782e13 2.23056e13i −0.873601 1.51312i
\(845\) 6.02195e12 1.04303e13i 0.406333 0.703789i
\(846\) 6.41221e11 0.0430369
\(847\) 0 0
\(848\) −1.53270e12 −0.101783
\(849\) 8.90447e12 1.54230e13i 0.588198 1.01879i
\(850\) 3.95666e11 + 6.85313e11i 0.0259982 + 0.0450302i
\(851\) 2.23085e12 + 3.86395e12i 0.145810 + 0.252551i
\(852\) 3.35162e12 5.80518e12i 0.217910 0.377431i
\(853\) −1.31884e13 −0.852946 −0.426473 0.904500i \(-0.640244\pi\)
−0.426473 + 0.904500i \(0.640244\pi\)
\(854\) 0 0
\(855\) −1.85875e13 −1.18952
\(856\) −2.37969e12 + 4.12174e12i −0.151491 + 0.262391i
\(857\) −3.94669e12 6.83587e12i −0.249930 0.432892i 0.713576 0.700578i \(-0.247074\pi\)
−0.963506 + 0.267686i \(0.913741\pi\)
\(858\) 1.88938e12 + 3.27251e12i 0.119022 + 0.206152i
\(859\) 5.33619e12 9.24256e12i 0.334397 0.579193i −0.648972 0.760812i \(-0.724801\pi\)
0.983369 + 0.181620i \(0.0581340\pi\)
\(860\) −4.20660e12 −0.262233
\(861\) 0 0
\(862\) −9.09778e11 −0.0561245
\(863\) 8.19087e12 1.41870e13i 0.502668 0.870647i −0.497327 0.867563i \(-0.665685\pi\)
0.999995 0.00308390i \(-0.000981639\pi\)
\(864\) 6.26827e12 + 1.08570e13i 0.382680 + 0.662821i
\(865\) −3.79449e12 6.57225e12i −0.230452 0.399155i
\(866\) −7.70493e10 + 1.33453e11i −0.00465520 + 0.00806304i
\(867\) −3.71280e11 −0.0223159
\(868\) 0 0
\(869\) −3.87540e12 −0.230530
\(870\) −6.91411e11 + 1.19756e12i −0.0409166 + 0.0708697i
\(871\) −7.59444e12 1.31540e13i −0.447110 0.774417i
\(872\) 2.56516e12 + 4.44299e12i 0.150242 + 0.260226i
\(873\) −1.39708e13 + 2.41981e13i −0.814061 + 1.40999i
\(874\) 2.14010e12 0.124060
\(875\) 0 0
\(876\) −4.04746e13 −2.32227
\(877\) −6.19139e12 + 1.07238e13i −0.353419 + 0.612140i −0.986846 0.161662i \(-0.948314\pi\)
0.633427 + 0.773803i \(0.281648\pi\)
\(878\) −1.29431e12 2.24181e12i −0.0735042 0.127313i
\(879\) 1.29584e13 + 2.24446e13i 0.732152 + 1.26812i
\(880\) −5.19595e12 + 8.99965e12i −0.292074 + 0.505887i
\(881\) 1.81283e13 1.01383 0.506917 0.861995i \(-0.330785\pi\)
0.506917 + 0.861995i \(0.330785\pi\)
\(882\) 0 0
\(883\) 2.19803e12 0.121678 0.0608389 0.998148i \(-0.480622\pi\)
0.0608389 + 0.998148i \(0.480622\pi\)
\(884\) 1.31469e13 2.27711e13i 0.724082 1.25415i
\(885\) −9.31685e12 1.61373e13i −0.510534 0.884270i
\(886\) −6.79121e11 1.17627e12i −0.0370250 0.0641292i
\(887\) 1.15986e13 2.00894e13i 0.629144 1.08971i −0.358580 0.933499i \(-0.616739\pi\)
0.987724 0.156210i \(-0.0499277\pi\)
\(888\) 1.17705e12 0.0635241
\(889\) 0 0
\(890\) 1.85845e12 0.0992879
\(891\) 1.87573e13 3.24886e13i 0.997058 1.72695i
\(892\) 3.75604e12 + 6.50565e12i 0.198650 + 0.344072i
\(893\) 1.21011e12 + 2.09598e12i 0.0636788 + 0.110295i
\(894\) −1.96067e12 + 3.39597e12i −0.102656 + 0.177806i
\(895\) 1.02045e13 0.531603
\(896\) 0 0
\(897\) 8.95906e13 4.62058
\(898\) 9.53741e10 1.65193e11i 0.00489426 0.00847711i
\(899\) 7.07450e12 + 1.22534e13i 0.361225 + 0.625659i
\(900\) −1.19721e13 2.07364e13i −0.608248 1.05352i
\(901\) −1.03239e12 + 1.78816e12i −0.0521896 + 0.0903950i
\(902\) −1.20869e11 −0.00607977
\(903\) 0 0
\(904\) −4.98053e12 −0.248038
\(905\) 3.44521e12 5.96728e12i 0.170725 0.295704i
\(906\) −1.39048e12 2.40838e12i −0.0685626 0.118754i
\(907\) −1.14165e13 1.97739e13i −0.560144 0.970198i −0.997483 0.0709016i \(-0.977412\pi\)
0.437339 0.899297i \(-0.355921\pi\)
\(908\) −1.80389e13 + 3.12443e13i −0.880692 + 1.52540i
\(909\) 1.28730e12 0.0625380
\(910\) 0 0
\(911\) −1.50436e13 −0.723635 −0.361818 0.932249i \(-0.617844\pi\)
−0.361818 + 0.932249i \(0.617844\pi\)
\(912\) −1.33449e13 + 2.31140e13i −0.638761 + 1.10637i
\(913\) 5.30669e12 + 9.19145e12i 0.252758 + 0.437790i
\(914\) −1.68120e12 2.91193e12i −0.0796825 0.138014i
\(915\) 6.35585e12 1.10087e13i 0.299764 0.519206i
\(916\) 2.91802e13 1.36949
\(917\) 0 0
\(918\) 5.53196e12 0.257091
\(919\) −3.26371e12 + 5.65291e12i −0.150936 + 0.261428i −0.931572 0.363558i \(-0.881562\pi\)
0.780636 + 0.624986i \(0.214895\pi\)
\(920\) −2.60592e12 4.51359e12i −0.119927 0.207719i
\(921\) −1.96776e13 3.40826e13i −0.901165 1.56086i
\(922\) 1.58324e12 2.74225e12i 0.0721534 0.124973i
\(923\) −7.76960e12 −0.352363
\(924\) 0 0
\(925\) −1.96166e12 −0.0881022
\(926\) 3.23094e11 5.59615e11i 0.0144404 0.0250115i
\(927\) −1.35429e13 2.34570e13i −0.602356 1.04331i
\(928\) 2.13555e12 + 3.69888e12i 0.0945243 + 0.163721i
\(929\) −1.47379e13 + 2.55268e13i −0.649179 + 1.12441i 0.334141 + 0.942523i \(0.391554\pi\)
−0.983319 + 0.181887i \(0.941779\pi\)
\(930\) −3.40431e12 −0.149230
\(931\) 0 0
\(932\) 2.62413e13 1.13924
\(933\) −1.38918e13 + 2.40613e13i −0.600193 + 1.03956i
\(934\) 9.00100e11 + 1.55902e12i 0.0387017 + 0.0670333i
\(935\) 6.99979e12 + 1.21240e13i 0.299525 + 0.518792i
\(936\) 8.32642e12 1.44218e13i 0.354582 0.614154i
\(937\) −2.74410e13 −1.16298 −0.581489 0.813554i \(-0.697530\pi\)
−0.581489 + 0.813554i \(0.697530\pi\)
\(938\) 0 0
\(939\) 1.92838e12 0.0809465
\(940\) 1.46588e12 2.53899e12i 0.0612385 0.106068i
\(941\) −2.07530e13 3.59453e13i −0.862837 1.49448i −0.869179 0.494497i \(-0.835352\pi\)
0.00634284 0.999980i \(-0.497981\pi\)
\(942\) −1.45102e12 2.51324e12i −0.0600406 0.103993i
\(943\) −1.43284e12 + 2.48176e12i −0.0590060 + 0.102201i
\(944\) −1.88519e13 −0.772645
\(945\) 0 0
\(946\) −8.23952e11 −0.0334497
\(947\) 1.75346e12 3.03708e12i 0.0708469 0.122710i −0.828426 0.560099i \(-0.810763\pi\)
0.899273 + 0.437388i \(0.144096\pi\)
\(948\) 6.02851e12 + 1.04417e13i 0.242422 + 0.419888i
\(949\) 2.34566e13 + 4.06281e13i 0.938789 + 1.62603i
\(950\) −4.70465e11 + 8.14869e11i −0.0187401 + 0.0324587i
\(951\) −4.20390e13 −1.66663
\(952\) 0 0
\(953\) −4.44833e13 −1.74695 −0.873473 0.486873i \(-0.838138\pi\)
−0.873473 + 0.486873i \(0.838138\pi\)
\(954\) −3.25234e11 + 5.63322e11i −0.0127124 + 0.0220185i
\(955\) −9.60426e12 1.66351e13i −0.373636 0.647157i
\(956\) 3.78011e12 + 6.54735e12i 0.146367 + 0.253516i
\(957\) 1.30077e13 2.25300e13i 0.501300 0.868277i
\(958\) 4.22961e12 0.162239
\(959\) 0 0
\(960\) 3.16399e13 1.20230
\(961\) −4.19661e12 + 7.26874e12i −0.158724 + 0.274918i
\(962\) −3.39309e11 5.87701e11i −0.0127734 0.0221242i
\(963\) −4.77426e13 8.26925e13i −1.78891 3.09848i
\(964\) 1.02746e13 1.77961e13i 0.383194 0.663711i
\(965\) −3.27551e13 −1.21592
\(966\) 0 0
\(967\) 3.17722e13 1.16850 0.584250 0.811574i \(-0.301389\pi\)
0.584250 + 0.811574i \(0.301389\pi\)
\(968\) 6.90844e11 1.19658e12i 0.0252895 0.0438028i
\(969\) 1.79777e13 + 3.11383e13i 0.655055 + 1.13459i
\(970\) −6.65041e11 1.15189e12i −0.0241199 0.0417769i
\(971\) −6.88757e12 + 1.19296e13i −0.248645 + 0.430666i −0.963150 0.268964i \(-0.913319\pi\)
0.714505 + 0.699630i \(0.246652\pi\)
\(972\) −4.65309e13 −1.67203
\(973\) 0 0
\(974\) −2.82178e12 −0.100464
\(975\) −1.96950e13 + 3.41127e13i −0.697967 + 1.20891i
\(976\) −6.43026e12 1.11375e13i −0.226832 0.392885i
\(977\) 8.84757e12 + 1.53244e13i 0.310669 + 0.538095i 0.978507 0.206212i \(-0.0661135\pi\)
−0.667838 + 0.744307i \(0.732780\pi\)
\(978\) 3.62590e12 6.28025e12i 0.126733 0.219509i
\(979\) −3.49636e13 −1.21645
\(980\) 0 0
\(981\) −1.02927e14 −3.54829
\(982\) −5.66089e11 + 9.80496e11i −0.0194260 + 0.0336468i
\(983\) 2.17289e13 + 3.76356e13i 0.742246 + 1.28561i 0.951471 + 0.307740i \(0.0995726\pi\)
−0.209225 + 0.977868i \(0.567094\pi\)
\(984\) 3.78002e11 + 6.54719e11i 0.0128534 + 0.0222627i
\(985\) −1.69098e13 + 2.92886e13i −0.572367 + 0.991369i
\(986\) 1.88469e12 0.0635031
\(987\) 0 0
\(988\) 3.12645e13 1.04387
\(989\) −9.76753e12 + 1.69179e13i −0.324639 + 0.562292i
\(990\) 2.20513e12 + 3.81940e12i 0.0729586 + 0.126368i
\(991\) −1.44026e12 2.49460e12i −0.0474362 0.0821619i 0.841332 0.540518i \(-0.181772\pi\)
−0.888769 + 0.458356i \(0.848438\pi\)
\(992\) −5.25741e12 + 9.10611e12i −0.172373 + 0.298559i
\(993\) 7.68789e13 2.50920
\(994\) 0 0
\(995\) −1.74272e13 −0.563668
\(996\) 1.65100e13 2.85961e13i 0.531593 0.920747i
\(997\) 4.99423e12 + 8.65025e12i 0.160081 + 0.277269i 0.934898 0.354918i \(-0.115491\pi\)
−0.774816 + 0.632186i \(0.782158\pi\)
\(998\) −2.19267e12 3.79782e12i −0.0699659 0.121184i
\(999\) −6.85670e12 + 1.18761e13i −0.217806 + 0.377251i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 49.10.c.h.30.3 16
7.2 even 3 49.10.a.g.1.6 yes 8
7.3 odd 6 inner 49.10.c.h.18.4 16
7.4 even 3 inner 49.10.c.h.18.3 16
7.5 odd 6 49.10.a.g.1.5 8
7.6 odd 2 inner 49.10.c.h.30.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
49.10.a.g.1.5 8 7.5 odd 6
49.10.a.g.1.6 yes 8 7.2 even 3
49.10.c.h.18.3 16 7.4 even 3 inner
49.10.c.h.18.4 16 7.3 odd 6 inner
49.10.c.h.30.3 16 1.1 even 1 trivial
49.10.c.h.30.4 16 7.6 odd 2 inner