Properties

Label 49.10.c.h
Level $49$
Weight $10$
Character orbit 49.c
Analytic conductor $25.237$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [49,10,Mod(18,49)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(49, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("49.18");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 49.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2367559720\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 5242 x^{14} + 24024 x^{13} + 10505991 x^{12} - 53910056 x^{11} + \cdots + 89\!\cdots\!16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6}\cdot 7^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{6} + \beta_{2} - 8 \beta_1) q^{2} + ( - \beta_{8} - \beta_{4}) q^{3} + ( - 15 \beta_{6} - \beta_{5} + \cdots - 210) q^{4} + ( - \beta_{15} - \beta_{13} + \cdots - 2 \beta_{9}) q^{5} + ( - 2 \beta_{15} - 13 \beta_{12} + \cdots - 6 \beta_{4}) q^{6}+ \cdots + ( - 461849 \beta_{10} + \cdots - 390741649) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 66 q^{2} - 1706 q^{4} - 117084 q^{8} - 27940 q^{9} + 82092 q^{11} - 164672 q^{15} - 1569570 q^{16} + 307774 q^{18} - 2600152 q^{22} + 2388480 q^{23} + 6191476 q^{25} - 36887784 q^{29} + 16703832 q^{30}+ \cdots - 6259461064 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 4 x^{15} - 5242 x^{14} + 24024 x^{13} + 10505991 x^{12} - 53910056 x^{11} + \cdots + 89\!\cdots\!16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 34\!\cdots\!68 \nu^{15} + \cdots + 36\!\cdots\!48 ) / 47\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 27\!\cdots\!47 \nu^{15} + \cdots - 16\!\cdots\!56 ) / 19\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 73\!\cdots\!39 \nu^{15} + \cdots + 11\!\cdots\!84 ) / 19\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 15\!\cdots\!07 \nu^{15} + \cdots - 22\!\cdots\!84 ) / 38\!\cdots\!64 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 20\!\cdots\!50 \nu^{15} + \cdots - 45\!\cdots\!80 ) / 96\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 49\!\cdots\!11 \nu^{15} + \cdots - 16\!\cdots\!92 ) / 19\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 10\!\cdots\!79 \nu^{15} + \cdots - 49\!\cdots\!08 ) / 27\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 27\!\cdots\!47 \nu^{15} + \cdots - 16\!\cdots\!56 ) / 39\!\cdots\!68 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 47\!\cdots\!72 \nu^{15} + \cdots - 10\!\cdots\!92 ) / 38\!\cdots\!64 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 53\!\cdots\!83 \nu^{15} + \cdots + 82\!\cdots\!68 ) / 12\!\cdots\!88 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 11\!\cdots\!99 \nu^{15} + \cdots - 24\!\cdots\!20 ) / 27\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 28\!\cdots\!11 \nu^{15} + \cdots + 28\!\cdots\!64 ) / 39\!\cdots\!68 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 31\!\cdots\!67 \nu^{15} + \cdots - 11\!\cdots\!04 ) / 38\!\cdots\!64 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 46\!\cdots\!26 \nu^{15} + \cdots - 19\!\cdots\!80 ) / 64\!\cdots\!44 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 30\!\cdots\!65 \nu^{15} + \cdots + 49\!\cdots\!48 ) / 38\!\cdots\!64 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{8} + 49\beta_{2} ) / 49 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 6\beta_{8} + 14\beta_{7} - 49\beta_{3} - 49\beta_{2} + 98\beta _1 + 32242 ) / 49 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 147 \beta_{13} + 2 \beta_{12} + 196 \beta_{10} - 1915 \beta_{8} - 63 \beta_{7} + 294 \beta_{6} + \cdots - 42826 ) / 49 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 196 \beta_{13} - 24 \beta_{12} + 56 \beta_{11} + 196 \beta_{10} + 15204 \beta_{8} + 33516 \beta_{7} + \cdots + 39710678 ) / 49 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 980 \beta_{15} - 3920 \beta_{14} + 322175 \beta_{13} + 12776 \beta_{12} - 420 \beta_{11} + \cdots - 83367914 ) / 49 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 280 \beta_{15} - 840 \beta_{14} + 23394 \beta_{13} - 21744 \beta_{12} + 47936 \beta_{11} + \cdots + 7209233766 ) / 7 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 4506334 \beta_{15} - 10797640 \beta_{14} + 573863353 \beta_{13} + 55158334 \beta_{12} + \cdots - 139070664082 ) / 49 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 3045840 \beta_{15} - 6058752 \beta_{14} - 146231288 \beta_{13} - 601452656 \beta_{12} + \cdots + 64218557344746 ) / 49 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 13740344016 \beta_{15} - 23480646336 \beta_{14} + 937885751019 \beta_{13} + 168417661792 \beta_{12} + \cdots - 218597296881978 ) / 49 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 4414120704 \beta_{15} + 6671618520 \beta_{14} - 911261132334 \beta_{13} - 1792850694624 \beta_{12} + \cdots + 81\!\cdots\!06 ) / 49 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 34238833476694 \beta_{15} - 45420919744200 \beta_{14} + \cdots - 33\!\cdots\!30 ) / 49 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 5719482568184 \beta_{15} + 6852625430112 \beta_{14} - 346584403163292 \beta_{13} + \cdots + 14\!\cdots\!10 ) / 7 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 75\!\cdots\!48 \beta_{15} + \cdots - 48\!\cdots\!54 ) / 49 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 14\!\cdots\!88 \beta_{15} + \cdots + 13\!\cdots\!02 ) / 49 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 15\!\cdots\!54 \beta_{15} + \cdots - 70\!\cdots\!94 ) / 49 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/49\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
18.1
−35.2710 1.22474i
−36.6852 + 1.22474i
−6.41022 + 1.22474i
−4.99601 1.22474i
8.06197 1.22474i
6.64776 + 1.22474i
34.6193 + 1.22474i
36.0335 1.22474i
−35.2710 + 1.22474i
−36.6852 1.22474i
−6.41022 1.22474i
−4.99601 + 1.22474i
8.06197 + 1.22474i
6.64776 1.22474i
34.6193 1.22474i
36.0335 + 1.22474i
−13.9891 24.2298i −13.0785 + 22.6526i −135.388 + 234.499i 184.056 + 318.794i 731.823 0 −6748.99 9499.41 + 16453.5i 5149.53 8919.25i
18.2 −13.9891 24.2298i 13.0785 22.6526i −135.388 + 234.499i −184.056 318.794i −731.823 0 −6748.99 9499.41 + 16453.5i −5149.53 + 8919.25i
18.3 1.14844 + 1.98916i −129.061 + 223.541i 253.362 438.836i 486.452 + 842.560i −592.877 0 2339.89 −23472.1 40654.8i −1117.32 + 1935.26i
18.4 1.14844 + 1.98916i 129.061 223.541i 253.362 438.836i −486.452 842.560i 592.877 0 2339.89 −23472.1 40654.8i 1117.32 1935.26i
18.5 7.67743 + 13.2977i −62.0333 + 107.445i 138.114 239.221i −123.139 213.283i −1905.03 0 12103.1 2145.23 + 3715.65i 1890.78 3274.93i
18.6 7.67743 + 13.2977i 62.0333 107.445i 138.114 239.221i 123.139 + 213.283i 1905.03 0 12103.1 2145.23 + 3715.65i −1890.78 + 3274.93i
18.7 21.6632 + 37.5218i −49.9953 + 86.5945i −682.588 + 1182.28i −945.259 1637.24i −4332.24 0 −36965.0 4842.43 + 8387.34i 40954.7 70935.6i
18.8 21.6632 + 37.5218i 49.9953 86.5945i −682.588 + 1182.28i 945.259 + 1637.24i 4332.24 0 −36965.0 4842.43 + 8387.34i −40954.7 + 70935.6i
30.1 −13.9891 + 24.2298i −13.0785 22.6526i −135.388 234.499i 184.056 318.794i 731.823 0 −6748.99 9499.41 16453.5i 5149.53 + 8919.25i
30.2 −13.9891 + 24.2298i 13.0785 + 22.6526i −135.388 234.499i −184.056 + 318.794i −731.823 0 −6748.99 9499.41 16453.5i −5149.53 8919.25i
30.3 1.14844 1.98916i −129.061 223.541i 253.362 + 438.836i 486.452 842.560i −592.877 0 2339.89 −23472.1 + 40654.8i −1117.32 1935.26i
30.4 1.14844 1.98916i 129.061 + 223.541i 253.362 + 438.836i −486.452 + 842.560i 592.877 0 2339.89 −23472.1 + 40654.8i 1117.32 + 1935.26i
30.5 7.67743 13.2977i −62.0333 107.445i 138.114 + 239.221i −123.139 + 213.283i −1905.03 0 12103.1 2145.23 3715.65i 1890.78 + 3274.93i
30.6 7.67743 13.2977i 62.0333 + 107.445i 138.114 + 239.221i 123.139 213.283i 1905.03 0 12103.1 2145.23 3715.65i −1890.78 3274.93i
30.7 21.6632 37.5218i −49.9953 86.5945i −682.588 1182.28i −945.259 + 1637.24i −4332.24 0 −36965.0 4842.43 8387.34i 40954.7 + 70935.6i
30.8 21.6632 37.5218i 49.9953 + 86.5945i −682.588 1182.28i 945.259 1637.24i 4332.24 0 −36965.0 4842.43 8387.34i −40954.7 70935.6i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 18.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 49.10.c.h 16
7.b odd 2 1 inner 49.10.c.h 16
7.c even 3 1 49.10.a.g 8
7.c even 3 1 inner 49.10.c.h 16
7.d odd 6 1 49.10.a.g 8
7.d odd 6 1 inner 49.10.c.h 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
49.10.a.g 8 7.c even 3 1
49.10.a.g 8 7.d odd 6 1
49.10.c.h 16 1.a even 1 1 trivial
49.10.c.h 16 7.b odd 2 1 inner
49.10.c.h 16 7.c even 3 1 inner
49.10.c.h 16 7.d odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{10}^{\mathrm{new}}(49, [\chi])\):

\( T_{2}^{8} - 33 T_{2}^{7} + 1995 T_{2}^{6} - 11814 T_{2}^{5} + 1551836 T_{2}^{4} - 21717168 T_{2}^{3} + \cdots + 1827733504 \) Copy content Toggle raw display
\( T_{3}^{16} + 92702 T_{3}^{14} + 6685098888 T_{3}^{12} + 153894640052792 T_{3}^{10} + \cdots + 49\!\cdots\!16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{8} - 33 T^{7} + \cdots + 1827733504)^{2} \) Copy content Toggle raw display
$3$ \( T^{16} + \cdots + 49\!\cdots\!16 \) Copy content Toggle raw display
$5$ \( T^{16} + \cdots + 77\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{16} \) Copy content Toggle raw display
$11$ \( (T^{8} + \cdots + 16\!\cdots\!00)^{2} \) Copy content Toggle raw display
$13$ \( (T^{8} + \cdots + 26\!\cdots\!56)^{2} \) Copy content Toggle raw display
$17$ \( T^{16} + \cdots + 12\!\cdots\!36 \) Copy content Toggle raw display
$19$ \( T^{16} + \cdots + 20\!\cdots\!56 \) Copy content Toggle raw display
$23$ \( (T^{8} + \cdots + 56\!\cdots\!56)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + \cdots - 12\!\cdots\!60)^{4} \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots + 25\!\cdots\!36 \) Copy content Toggle raw display
$37$ \( (T^{8} + \cdots + 85\!\cdots\!96)^{2} \) Copy content Toggle raw display
$41$ \( (T^{8} + \cdots + 60\!\cdots\!64)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + \cdots + 18\!\cdots\!00)^{4} \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( (T^{8} + \cdots + 16\!\cdots\!64)^{2} \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 62\!\cdots\!16 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 47\!\cdots\!36 \) Copy content Toggle raw display
$67$ \( (T^{8} + \cdots + 13\!\cdots\!44)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + \cdots - 11\!\cdots\!68)^{4} \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 48\!\cdots\!36 \) Copy content Toggle raw display
$79$ \( (T^{8} + \cdots + 27\!\cdots\!64)^{2} \) Copy content Toggle raw display
$83$ \( (T^{8} + \cdots + 59\!\cdots\!00)^{2} \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 47\!\cdots\!96 \) Copy content Toggle raw display
$97$ \( (T^{8} + \cdots + 57\!\cdots\!96)^{2} \) Copy content Toggle raw display
show more
show less