Properties

Label 49.10.c.h.18.2
Level $49$
Weight $10$
Character 49.18
Analytic conductor $25.237$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49,10,Mod(18,49)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49.18"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 49.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,66,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2367559720\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 5242 x^{14} + 24024 x^{13} + 10505991 x^{12} - 53910056 x^{11} + \cdots + 89\!\cdots\!16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6}\cdot 7^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 18.2
Root \(-36.6852 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 49.18
Dual form 49.10.c.h.30.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-13.9891 - 24.2298i) q^{2} +(13.0785 - 22.6526i) q^{3} +(-135.388 + 234.499i) q^{4} +(-184.056 - 318.794i) q^{5} -731.823 q^{6} -6748.99 q^{8} +(9499.41 + 16453.5i) q^{9} +(-5149.53 + 8919.25i) q^{10} +(12010.0 - 20801.9i) q^{11} +(3541.34 + 6133.79i) q^{12} -31305.0 q^{13} -9628.67 q^{15} +(163731. + 283590. i) q^{16} +(-277543. + 480718. i) q^{17} +(265776. - 460337. i) q^{18} +(418550. + 724950. i) q^{19} +99675.8 q^{20} -672033. q^{22} +(535152. + 926911. i) q^{23} +(-88266.5 + 152882. i) q^{24} +(908810. - 1.57410e6i) q^{25} +(437927. + 758512. i) q^{26} +1.01180e6 q^{27} -2.75169e6 q^{29} +(134696. + 233301. i) q^{30} +(2.90989e6 - 5.04008e6i) q^{31} +(2.85314e6 - 4.94179e6i) q^{32} +(-314144. - 544114. i) q^{33} +1.55303e7 q^{34} -5.14443e6 q^{36} +(-6.03518e6 - 1.04532e7i) q^{37} +(1.17103e7 - 2.02828e7i) q^{38} +(-409422. + 709139. i) q^{39} +(1.24219e6 + 2.15154e6i) q^{40} +2.79029e7 q^{41} +2.48859e6 q^{43} +(3.25201e6 + 5.63265e6i) q^{44} +(3.49684e6 - 6.05670e6i) q^{45} +(1.49726e7 - 2.59332e7i) q^{46} +(1.31905e7 + 2.28467e7i) q^{47} +8.56540e6 q^{48} -5.08536e7 q^{50} +(7.25968e6 + 1.25741e7i) q^{51} +(4.23832e6 - 7.34099e6i) q^{52} +(2.06333e7 - 3.57380e7i) q^{53} +(-1.41541e7 - 2.45157e7i) q^{54} -8.84201e6 q^{55} +2.18960e7 q^{57} +(3.84935e7 + 6.66728e7i) q^{58} +(-8.28849e7 + 1.43561e8i) q^{59} +(1.30361e6 - 2.25792e6i) q^{60} +(6.01056e7 + 1.04106e8i) q^{61} -1.62827e8 q^{62} +8.00911e6 q^{64} +(5.76186e6 + 9.97983e6i) q^{65} +(-8.78917e6 + 1.52233e7i) q^{66} +(-5.59120e7 + 9.68424e7i) q^{67} +(-7.51520e7 - 1.30167e8i) q^{68} +2.79959e7 q^{69} +2.60320e8 q^{71} +(-6.41114e7 - 1.11044e8i) q^{72} +(8.49711e6 - 1.47174e7i) q^{73} +(-1.68853e8 + 2.92462e8i) q^{74} +(-2.37717e7 - 4.11738e7i) q^{75} -2.26667e8 q^{76} +2.29097e7 q^{78} +(-1.72344e8 - 2.98508e8i) q^{79} +(6.02712e7 - 1.04393e8i) q^{80} +(-1.73744e8 + 3.00933e8i) q^{81} +(-3.90336e8 - 6.76082e8i) q^{82} -2.05123e8 q^{83} +2.04333e8 q^{85} +(-3.48131e7 - 6.02980e7i) q^{86} +(-3.59879e7 + 6.23328e7i) q^{87} +(-8.10551e7 + 1.40392e8i) q^{88} +(2.19170e8 + 3.79613e8i) q^{89} -1.95670e8 q^{90} -2.89813e8 q^{92} +(-7.61139e7 - 1.31833e8i) q^{93} +(3.69046e8 - 6.39207e8i) q^{94} +(1.54073e8 - 2.66862e8i) q^{95} +(-7.46296e7 - 1.29262e8i) q^{96} +5.25507e8 q^{97} +4.56350e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 66 q^{2} - 1706 q^{4} - 117084 q^{8} - 27940 q^{9} + 82092 q^{11} - 164672 q^{15} - 1569570 q^{16} + 307774 q^{18} - 2600152 q^{22} + 2388480 q^{23} + 6191476 q^{25} - 36887784 q^{29} + 16703832 q^{30}+ \cdots - 6259461064 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/49\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −13.9891 24.2298i −0.618235 1.07082i −0.989808 0.142411i \(-0.954515\pi\)
0.371572 0.928404i \(-0.378819\pi\)
\(3\) 13.0785 22.6526i 0.0932206 0.161463i −0.815644 0.578554i \(-0.803617\pi\)
0.908865 + 0.417091i \(0.136950\pi\)
\(4\) −135.388 + 234.499i −0.264430 + 0.458006i
\(5\) −184.056 318.794i −0.131699 0.228110i 0.792632 0.609700i \(-0.208710\pi\)
−0.924332 + 0.381590i \(0.875377\pi\)
\(6\) −731.823 −0.230529
\(7\) 0 0
\(8\) −6748.99 −0.582551
\(9\) 9499.41 + 16453.5i 0.482620 + 0.835922i
\(10\) −5149.53 + 8919.25i −0.162843 + 0.282052i
\(11\) 12010.0 20801.9i 0.247329 0.428386i −0.715455 0.698659i \(-0.753781\pi\)
0.962784 + 0.270273i \(0.0871139\pi\)
\(12\) 3541.34 + 6133.79i 0.0493006 + 0.0853912i
\(13\) −31305.0 −0.303996 −0.151998 0.988381i \(-0.548571\pi\)
−0.151998 + 0.988381i \(0.548571\pi\)
\(14\) 0 0
\(15\) −9628.67 −0.0491084
\(16\) 163731. + 283590.i 0.624584 + 1.08181i
\(17\) −277543. + 480718.i −0.805953 + 1.39595i 0.109692 + 0.993966i \(0.465013\pi\)
−0.915646 + 0.401987i \(0.868320\pi\)
\(18\) 265776. 460337.i 0.596745 1.03359i
\(19\) 418550. + 724950.i 0.736812 + 1.27620i 0.953924 + 0.300049i \(0.0970029\pi\)
−0.217112 + 0.976147i \(0.569664\pi\)
\(20\) 99675.8 0.139301
\(21\) 0 0
\(22\) −672033. −0.611630
\(23\) 535152. + 926911.i 0.398751 + 0.690657i 0.993572 0.113201i \(-0.0361104\pi\)
−0.594821 + 0.803858i \(0.702777\pi\)
\(24\) −88266.5 + 152882.i −0.0543057 + 0.0940603i
\(25\) 908810. 1.57410e6i 0.465310 0.805941i
\(26\) 437927. + 758512.i 0.187941 + 0.325524i
\(27\) 1.01180e6 0.366402
\(28\) 0 0
\(29\) −2.75169e6 −0.722450 −0.361225 0.932479i \(-0.617641\pi\)
−0.361225 + 0.932479i \(0.617641\pi\)
\(30\) 134696. + 233301.i 0.0303606 + 0.0525860i
\(31\) 2.90989e6 5.04008e6i 0.565912 0.980189i −0.431052 0.902327i \(-0.641857\pi\)
0.996964 0.0778618i \(-0.0248093\pi\)
\(32\) 2.85314e6 4.94179e6i 0.481004 0.833123i
\(33\) −314144. 544114.i −0.0461123 0.0798688i
\(34\) 1.55303e7 1.99308
\(35\) 0 0
\(36\) −5.14443e6 −0.510477
\(37\) −6.03518e6 1.04532e7i −0.529398 0.916945i −0.999412 0.0342857i \(-0.989084\pi\)
0.470014 0.882659i \(-0.344249\pi\)
\(38\) 1.17103e7 2.02828e7i 0.911046 1.57798i
\(39\) −409422. + 709139.i −0.0283387 + 0.0490841i
\(40\) 1.24219e6 + 2.15154e6i 0.0767216 + 0.132886i
\(41\) 2.79029e7 1.54214 0.771068 0.636753i \(-0.219723\pi\)
0.771068 + 0.636753i \(0.219723\pi\)
\(42\) 0 0
\(43\) 2.48859e6 0.111006 0.0555029 0.998459i \(-0.482324\pi\)
0.0555029 + 0.998459i \(0.482324\pi\)
\(44\) 3.25201e6 + 5.63265e6i 0.130802 + 0.226556i
\(45\) 3.49684e6 6.05670e6i 0.127122 0.220181i
\(46\) 1.49726e7 2.59332e7i 0.493044 0.853978i
\(47\) 1.31905e7 + 2.28467e7i 0.394296 + 0.682940i 0.993011 0.118022i \(-0.0376553\pi\)
−0.598715 + 0.800962i \(0.704322\pi\)
\(48\) 8.56540e6 0.232896
\(49\) 0 0
\(50\) −5.08536e7 −1.15069
\(51\) 7.25968e6 + 1.25741e7i 0.150263 + 0.260263i
\(52\) 4.23832e6 7.34099e6i 0.0803857 0.139232i
\(53\) 2.06333e7 3.57380e7i 0.359193 0.622140i −0.628633 0.777702i \(-0.716385\pi\)
0.987826 + 0.155561i \(0.0497187\pi\)
\(54\) −1.41541e7 2.45157e7i −0.226522 0.392348i
\(55\) −8.84201e6 −0.130292
\(56\) 0 0
\(57\) 2.18960e7 0.274744
\(58\) 3.84935e7 + 6.66728e7i 0.446644 + 0.773611i
\(59\) −8.28849e7 + 1.43561e8i −0.890515 + 1.54242i −0.0512569 + 0.998686i \(0.516323\pi\)
−0.839259 + 0.543733i \(0.817011\pi\)
\(60\) 1.30361e6 2.25792e6i 0.0129857 0.0224920i
\(61\) 6.01056e7 + 1.04106e8i 0.555816 + 0.962701i 0.997840 + 0.0656975i \(0.0209272\pi\)
−0.442024 + 0.897003i \(0.645739\pi\)
\(62\) −1.62827e8 −1.39947
\(63\) 0 0
\(64\) 8.00911e6 0.0596725
\(65\) 5.76186e6 + 9.97983e6i 0.0400361 + 0.0693446i
\(66\) −8.78917e6 + 1.52233e7i −0.0570165 + 0.0987554i
\(67\) −5.59120e7 + 9.68424e7i −0.338976 + 0.587123i −0.984240 0.176836i \(-0.943414\pi\)
0.645265 + 0.763959i \(0.276747\pi\)
\(68\) −7.51520e7 1.30167e8i −0.426237 0.738263i
\(69\) 2.79959e7 0.148687
\(70\) 0 0
\(71\) 2.60320e8 1.21575 0.607876 0.794032i \(-0.292022\pi\)
0.607876 + 0.794032i \(0.292022\pi\)
\(72\) −6.41114e7 1.11044e8i −0.281151 0.486967i
\(73\) 8.49711e6 1.47174e7i 0.0350202 0.0606567i −0.847984 0.530022i \(-0.822184\pi\)
0.883004 + 0.469365i \(0.155517\pi\)
\(74\) −1.68853e8 + 2.92462e8i −0.654586 + 1.13378i
\(75\) −2.37717e7 4.11738e7i −0.0867530 0.150261i
\(76\) −2.26667e8 −0.779340
\(77\) 0 0
\(78\) 2.29097e7 0.0700799
\(79\) −1.72344e8 2.98508e8i −0.497822 0.862253i 0.502175 0.864766i \(-0.332533\pi\)
−0.999997 + 0.00251341i \(0.999200\pi\)
\(80\) 6.02712e7 1.04393e8i 0.164515 0.284948i
\(81\) −1.73744e8 + 3.00933e8i −0.448464 + 0.776762i
\(82\) −3.90336e8 6.76082e8i −0.953403 1.65134i
\(83\) −2.05123e8 −0.474420 −0.237210 0.971458i \(-0.576233\pi\)
−0.237210 + 0.971458i \(0.576233\pi\)
\(84\) 0 0
\(85\) 2.04333e8 0.424575
\(86\) −3.48131e7 6.02980e7i −0.0686277 0.118867i
\(87\) −3.59879e7 + 6.23328e7i −0.0673472 + 0.116649i
\(88\) −8.10551e7 + 1.40392e8i −0.144082 + 0.249557i
\(89\) 2.19170e8 + 3.79613e8i 0.370276 + 0.641337i 0.989608 0.143792i \(-0.0459297\pi\)
−0.619332 + 0.785129i \(0.712596\pi\)
\(90\) −1.95670e8 −0.314364
\(91\) 0 0
\(92\) −2.89813e8 −0.421767
\(93\) −7.61139e7 1.31833e8i −0.105509 0.182748i
\(94\) 3.69046e8 6.39207e8i 0.487535 0.844435i
\(95\) 1.54073e8 2.66862e8i 0.194075 0.336149i
\(96\) −7.46296e7 1.29262e8i −0.0896789 0.155328i
\(97\) 5.25507e8 0.602706 0.301353 0.953513i \(-0.402562\pi\)
0.301353 + 0.953513i \(0.402562\pi\)
\(98\) 0 0
\(99\) 4.56350e8 0.477463
\(100\) 2.46084e8 + 4.26230e8i 0.246084 + 0.426230i
\(101\) −8.23048e8 + 1.42556e9i −0.787008 + 1.36314i 0.140785 + 0.990040i \(0.455037\pi\)
−0.927792 + 0.373097i \(0.878296\pi\)
\(102\) 2.03112e8 3.51801e8i 0.185796 0.321807i
\(103\) 8.93793e8 + 1.54809e9i 0.782473 + 1.35528i 0.930497 + 0.366300i \(0.119375\pi\)
−0.148024 + 0.988984i \(0.547291\pi\)
\(104\) 2.11277e8 0.177093
\(105\) 0 0
\(106\) −1.15456e9 −0.888263
\(107\) 9.51875e8 + 1.64870e9i 0.702026 + 1.21594i 0.967754 + 0.251896i \(0.0810541\pi\)
−0.265729 + 0.964048i \(0.585613\pi\)
\(108\) −1.36986e8 + 2.37266e8i −0.0968876 + 0.167814i
\(109\) 1.20867e9 2.09347e9i 0.820139 1.42052i −0.0854393 0.996343i \(-0.527229\pi\)
0.905578 0.424179i \(-0.139437\pi\)
\(110\) 1.23691e8 + 2.14240e8i 0.0805513 + 0.139519i
\(111\) −3.15724e8 −0.197403
\(112\) 0 0
\(113\) −9.42971e8 −0.544058 −0.272029 0.962289i \(-0.587695\pi\)
−0.272029 + 0.962289i \(0.587695\pi\)
\(114\) −3.06305e8 5.30536e8i −0.169856 0.294200i
\(115\) 1.96996e8 3.41206e8i 0.105031 0.181918i
\(116\) 3.72546e8 6.45268e8i 0.191038 0.330887i
\(117\) −2.97379e8 5.15075e8i −0.146715 0.254117i
\(118\) 4.63793e9 2.20219
\(119\) 0 0
\(120\) 6.49838e7 0.0286081
\(121\) 8.90495e8 + 1.54238e9i 0.377657 + 0.654121i
\(122\) 1.68164e9 2.91269e9i 0.687250 1.19035i
\(123\) 3.64928e8 6.32074e8i 0.143759 0.248997i
\(124\) 7.87930e8 + 1.36473e9i 0.299288 + 0.518383i
\(125\) −1.38805e9 −0.508524
\(126\) 0 0
\(127\) −2.93087e9 −0.999724 −0.499862 0.866105i \(-0.666616\pi\)
−0.499862 + 0.866105i \(0.666616\pi\)
\(128\) −1.57285e9 2.72425e9i −0.517896 0.897021i
\(129\) 3.25470e7 5.63731e7i 0.0103480 0.0179233i
\(130\) 1.61206e8 2.79217e8i 0.0495035 0.0857426i
\(131\) −9.26425e8 1.60462e9i −0.274846 0.476047i 0.695250 0.718768i \(-0.255294\pi\)
−0.970096 + 0.242720i \(0.921960\pi\)
\(132\) 1.70126e8 0.0487739
\(133\) 0 0
\(134\) 3.12863e9 0.838267
\(135\) −1.86227e8 3.22555e8i −0.0482549 0.0835799i
\(136\) 1.87313e9 3.24436e9i 0.469509 0.813213i
\(137\) −1.47751e9 + 2.55913e9i −0.358334 + 0.620653i −0.987683 0.156470i \(-0.949989\pi\)
0.629348 + 0.777123i \(0.283322\pi\)
\(138\) −3.91637e8 6.78335e8i −0.0919237 0.159217i
\(139\) 3.45455e9 0.784919 0.392459 0.919769i \(-0.371624\pi\)
0.392459 + 0.919769i \(0.371624\pi\)
\(140\) 0 0
\(141\) 6.90048e8 0.147026
\(142\) −3.64164e9 6.30750e9i −0.751621 1.30185i
\(143\) −3.75972e8 + 6.51202e8i −0.0751870 + 0.130228i
\(144\) −3.11069e9 + 5.38788e9i −0.602873 + 1.04421i
\(145\) 5.06463e8 + 8.77220e8i 0.0951463 + 0.164798i
\(146\) −4.75467e8 −0.0866028
\(147\) 0 0
\(148\) 3.26837e9 0.559955
\(149\) 1.63628e9 + 2.83412e9i 0.271969 + 0.471064i 0.969366 0.245621i \(-0.0789918\pi\)
−0.697397 + 0.716685i \(0.745658\pi\)
\(150\) −6.65088e8 + 1.15197e9i −0.107268 + 0.185793i
\(151\) 3.25370e9 5.63557e9i 0.509309 0.882148i −0.490633 0.871366i \(-0.663235\pi\)
0.999942 0.0107822i \(-0.00343214\pi\)
\(152\) −2.82479e9 4.89268e9i −0.429230 0.743449i
\(153\) −1.05460e10 −1.55588
\(154\) 0 0
\(155\) −2.14233e9 −0.298121
\(156\) −1.10862e8 1.92018e8i −0.0149872 0.0259586i
\(157\) −3.88733e9 + 6.73305e9i −0.510626 + 0.884430i 0.489298 + 0.872117i \(0.337253\pi\)
−0.999924 + 0.0123138i \(0.996080\pi\)
\(158\) −4.82186e9 + 8.35171e9i −0.615542 + 1.06615i
\(159\) −5.39705e8 9.34797e8i −0.0669683 0.115993i
\(160\) −2.10055e9 −0.253392
\(161\) 0 0
\(162\) 9.72207e9 1.10902
\(163\) 8.06708e9 + 1.39726e10i 0.895101 + 1.55036i 0.833679 + 0.552249i \(0.186230\pi\)
0.0614218 + 0.998112i \(0.480437\pi\)
\(164\) −3.77773e9 + 6.54322e9i −0.407787 + 0.706308i
\(165\) −1.15640e8 + 2.00294e8i −0.0121459 + 0.0210374i
\(166\) 2.86948e9 + 4.97008e9i 0.293303 + 0.508016i
\(167\) −1.98293e10 −1.97280 −0.986399 0.164370i \(-0.947441\pi\)
−0.986399 + 0.164370i \(0.947441\pi\)
\(168\) 0 0
\(169\) −9.62450e9 −0.907586
\(170\) −2.85843e9 4.95095e9i −0.262487 0.454641i
\(171\) −7.95196e9 + 1.37732e10i −0.711200 + 1.23183i
\(172\) −3.36926e8 + 5.83573e8i −0.0293533 + 0.0508413i
\(173\) −2.78786e9 4.82872e9i −0.236627 0.409849i 0.723117 0.690725i \(-0.242708\pi\)
−0.959744 + 0.280876i \(0.909375\pi\)
\(174\) 2.01375e9 0.166546
\(175\) 0 0
\(176\) 7.86561e9 0.617910
\(177\) 2.16802e9 + 3.75512e9i 0.166029 + 0.287570i
\(178\) 6.13197e9 1.06209e10i 0.457836 0.792995i
\(179\) −8.78341e8 + 1.52133e9i −0.0639476 + 0.110761i −0.896227 0.443596i \(-0.853702\pi\)
0.832279 + 0.554357i \(0.187036\pi\)
\(180\) 9.46861e8 + 1.64001e9i 0.0672295 + 0.116445i
\(181\) 1.11902e10 0.774968 0.387484 0.921876i \(-0.373344\pi\)
0.387484 + 0.921876i \(0.373344\pi\)
\(182\) 0 0
\(183\) 3.14436e9 0.207254
\(184\) −3.61174e9 6.25571e9i −0.232293 0.402343i
\(185\) −2.22162e9 + 3.84796e9i −0.139443 + 0.241522i
\(186\) −2.12953e9 + 3.68845e9i −0.130459 + 0.225962i
\(187\) 6.66656e9 + 1.15468e10i 0.398671 + 0.690518i
\(188\) −7.14337e9 −0.417054
\(189\) 0 0
\(190\) −8.62136e9 −0.479937
\(191\) −2.49142e9 4.31527e9i −0.135456 0.234616i 0.790316 0.612700i \(-0.209917\pi\)
−0.925771 + 0.378084i \(0.876583\pi\)
\(192\) 1.04747e8 1.81427e8i 0.00556271 0.00963489i
\(193\) 1.14199e10 1.97798e10i 0.592453 1.02616i −0.401448 0.915882i \(-0.631493\pi\)
0.993901 0.110276i \(-0.0351736\pi\)
\(194\) −7.35136e9 1.27329e10i −0.372614 0.645387i
\(195\) 3.01425e8 0.0149288
\(196\) 0 0
\(197\) 5.67202e9 0.268312 0.134156 0.990960i \(-0.457168\pi\)
0.134156 + 0.990960i \(0.457168\pi\)
\(198\) −6.38392e9 1.10573e10i −0.295185 0.511275i
\(199\) 1.16733e10 2.02188e10i 0.527662 0.913938i −0.471818 0.881696i \(-0.656402\pi\)
0.999480 0.0322416i \(-0.0102646\pi\)
\(200\) −6.13355e9 + 1.06236e10i −0.271067 + 0.469502i
\(201\) 1.46249e9 + 2.53310e9i 0.0631990 + 0.109464i
\(202\) 4.60547e10 1.94622
\(203\) 0 0
\(204\) −3.93150e9 −0.158936
\(205\) −5.13569e9 8.89528e9i −0.203098 0.351777i
\(206\) 2.50067e10 4.33128e10i 0.967505 1.67577i
\(207\) −1.01673e10 + 1.76102e10i −0.384891 + 0.666650i
\(208\) −5.12559e9 8.87778e9i −0.189871 0.328866i
\(209\) 2.01071e10 0.728939
\(210\) 0 0
\(211\) −5.44845e9 −0.189235 −0.0946175 0.995514i \(-0.530163\pi\)
−0.0946175 + 0.995514i \(0.530163\pi\)
\(212\) 5.58702e9 + 9.67699e9i 0.189963 + 0.329025i
\(213\) 3.40459e9 5.89693e9i 0.113333 0.196299i
\(214\) 2.66317e10 4.61274e10i 0.868034 1.50348i
\(215\) −4.58039e8 7.93347e8i −0.0146194 0.0253216i
\(216\) −6.82862e9 −0.213448
\(217\) 0 0
\(218\) −6.76325e10 −2.02816
\(219\) −2.22259e8 3.84963e8i −0.00652920 0.0113089i
\(220\) 1.19710e9 2.07344e9i 0.0344532 0.0596747i
\(221\) 8.68847e9 1.50489e10i 0.245007 0.424364i
\(222\) 4.41669e9 + 7.64993e9i 0.122042 + 0.211382i
\(223\) 3.89215e10 1.05394 0.526972 0.849882i \(-0.323327\pi\)
0.526972 + 0.849882i \(0.323327\pi\)
\(224\) 0 0
\(225\) 3.45326e10 0.898272
\(226\) 1.31913e10 + 2.28480e10i 0.336356 + 0.582585i
\(227\) −1.80782e10 + 3.13123e10i −0.451895 + 0.782706i −0.998504 0.0546826i \(-0.982585\pi\)
0.546608 + 0.837388i \(0.315919\pi\)
\(228\) −2.96446e9 + 5.13460e9i −0.0726506 + 0.125834i
\(229\) 3.46246e10 + 5.99716e10i 0.832004 + 1.44107i 0.896446 + 0.443152i \(0.146140\pi\)
−0.0644419 + 0.997921i \(0.520527\pi\)
\(230\) −1.10231e10 −0.259735
\(231\) 0 0
\(232\) 1.85711e10 0.420864
\(233\) 1.35062e10 + 2.33934e10i 0.300214 + 0.519985i 0.976184 0.216943i \(-0.0696087\pi\)
−0.675970 + 0.736929i \(0.736275\pi\)
\(234\) −8.32010e9 + 1.44108e10i −0.181408 + 0.314208i
\(235\) 4.85558e9 8.41011e9i 0.103857 0.179886i
\(236\) −2.24433e10 3.88729e10i −0.470958 0.815723i
\(237\) −9.01598e9 −0.185629
\(238\) 0 0
\(239\) −1.48226e9 −0.0293856 −0.0146928 0.999892i \(-0.504677\pi\)
−0.0146928 + 0.999892i \(0.504677\pi\)
\(240\) −1.57651e9 2.73060e9i −0.0306723 0.0531260i
\(241\) −1.15154e10 + 1.99452e10i −0.219888 + 0.380857i −0.954774 0.297334i \(-0.903903\pi\)
0.734885 + 0.678191i \(0.237236\pi\)
\(242\) 2.49144e10 4.31530e10i 0.466962 0.808801i
\(243\) 1.45022e10 + 2.51186e10i 0.266813 + 0.462133i
\(244\) −3.25503e10 −0.587897
\(245\) 0 0
\(246\) −2.04200e10 −0.355507
\(247\) −1.31027e10 2.26946e10i −0.223988 0.387959i
\(248\) −1.96388e10 + 3.40154e10i −0.329673 + 0.571010i
\(249\) −2.68270e9 + 4.64657e9i −0.0442257 + 0.0766011i
\(250\) 1.94176e10 + 3.36322e10i 0.314387 + 0.544535i
\(251\) −5.02026e10 −0.798352 −0.399176 0.916874i \(-0.630704\pi\)
−0.399176 + 0.916874i \(0.630704\pi\)
\(252\) 0 0
\(253\) 2.57086e10 0.394491
\(254\) 4.10002e10 + 7.10144e10i 0.618065 + 1.07052i
\(255\) 2.67237e9 4.62868e9i 0.0395791 0.0685530i
\(256\) −4.19551e10 + 7.26683e10i −0.610526 + 1.05746i
\(257\) −2.87778e10 4.98446e10i −0.411489 0.712721i 0.583563 0.812068i \(-0.301658\pi\)
−0.995053 + 0.0993469i \(0.968325\pi\)
\(258\) −1.82121e9 −0.0255901
\(259\) 0 0
\(260\) −3.12035e9 −0.0423470
\(261\) −2.61394e10 4.52747e10i −0.348669 0.603912i
\(262\) −2.59197e10 + 4.48942e10i −0.339839 + 0.588619i
\(263\) −1.41321e10 + 2.44776e10i −0.182141 + 0.315477i −0.942609 0.333898i \(-0.891636\pi\)
0.760469 + 0.649375i \(0.224969\pi\)
\(264\) 2.12016e9 + 3.67222e9i 0.0268627 + 0.0465276i
\(265\) −1.51907e10 −0.189222
\(266\) 0 0
\(267\) 1.14656e10 0.138069
\(268\) −1.51396e10 2.62226e10i −0.179271 0.310506i
\(269\) 2.44048e10 4.22704e10i 0.284178 0.492211i −0.688231 0.725491i \(-0.741613\pi\)
0.972410 + 0.233280i \(0.0749459\pi\)
\(270\) −5.21029e9 + 9.02449e9i −0.0596658 + 0.103344i
\(271\) −5.13728e10 8.89803e10i −0.578591 1.00215i −0.995641 0.0932653i \(-0.970270\pi\)
0.417051 0.908883i \(-0.363064\pi\)
\(272\) −1.81769e11 −2.01354
\(273\) 0 0
\(274\) 8.26761e10 0.886140
\(275\) −2.18295e10 3.78099e10i −0.230169 0.398665i
\(276\) −3.79032e9 + 6.56502e9i −0.0393174 + 0.0680997i
\(277\) −8.73648e10 + 1.51320e11i −0.891616 + 1.54432i −0.0536774 + 0.998558i \(0.517094\pi\)
−0.837938 + 0.545765i \(0.816239\pi\)
\(278\) −4.83259e10 8.37030e10i −0.485265 0.840503i
\(279\) 1.10569e11 1.09248
\(280\) 0 0
\(281\) −1.30452e10 −0.124816 −0.0624082 0.998051i \(-0.519878\pi\)
−0.0624082 + 0.998051i \(0.519878\pi\)
\(282\) −9.65314e9 1.67197e10i −0.0908966 0.157437i
\(283\) 4.97443e10 8.61597e10i 0.461004 0.798482i −0.538007 0.842940i \(-0.680823\pi\)
0.999011 + 0.0444579i \(0.0141561\pi\)
\(284\) −3.52443e10 + 6.10448e10i −0.321481 + 0.556822i
\(285\) −4.03008e9 6.98031e9i −0.0361836 0.0626719i
\(286\) 2.10380e10 0.185933
\(287\) 0 0
\(288\) 1.08413e11 0.928568
\(289\) −9.47661e10 1.64140e11i −0.799122 1.38412i
\(290\) 1.41699e10 2.45430e10i 0.117646 0.203768i
\(291\) 6.87284e9 1.19041e10i 0.0561846 0.0973146i
\(292\) 2.30082e9 + 3.98513e9i 0.0185208 + 0.0320789i
\(293\) 9.14442e9 0.0724856 0.0362428 0.999343i \(-0.488461\pi\)
0.0362428 + 0.999343i \(0.488461\pi\)
\(294\) 0 0
\(295\) 6.10217e10 0.469122
\(296\) 4.07314e10 + 7.05488e10i 0.308401 + 0.534167i
\(297\) 1.21517e10 2.10473e10i 0.0906217 0.156961i
\(298\) 4.57801e10 7.92934e10i 0.336282 0.582457i
\(299\) −1.67529e10 2.90169e10i −0.121219 0.209957i
\(300\) 1.28736e10 0.0917604
\(301\) 0 0
\(302\) −1.82065e11 −1.25949
\(303\) 2.15284e10 + 3.72883e10i 0.146731 + 0.254145i
\(304\) −1.37059e11 + 2.37393e11i −0.920401 + 1.59418i
\(305\) 2.21255e10 3.83226e10i 0.146401 0.253574i
\(306\) 1.47528e11 + 2.55527e11i 0.961898 + 1.66606i
\(307\) −1.24895e11 −0.802456 −0.401228 0.915978i \(-0.631417\pi\)
−0.401228 + 0.915978i \(0.631417\pi\)
\(308\) 0 0
\(309\) 4.67578e10 0.291770
\(310\) 2.99692e10 + 5.19081e10i 0.184309 + 0.319233i
\(311\) 9.17920e10 1.58988e11i 0.556395 0.963704i −0.441399 0.897311i \(-0.645518\pi\)
0.997794 0.0663929i \(-0.0211491\pi\)
\(312\) 2.76318e9 4.78597e9i 0.0165087 0.0285940i
\(313\) −5.16816e10 8.95152e10i −0.304359 0.527166i 0.672759 0.739861i \(-0.265109\pi\)
−0.977118 + 0.212696i \(0.931776\pi\)
\(314\) 2.17521e11 1.26275
\(315\) 0 0
\(316\) 9.33333e10 0.526556
\(317\) 7.58797e10 + 1.31427e11i 0.422045 + 0.731003i 0.996139 0.0877858i \(-0.0279791\pi\)
−0.574094 + 0.818789i \(0.694646\pi\)
\(318\) −1.50999e10 + 2.61539e10i −0.0828044 + 0.143421i
\(319\) −3.30477e10 + 5.72402e10i −0.178683 + 0.309488i
\(320\) −1.47412e9 2.55325e9i −0.00785884 0.0136119i
\(321\) 4.97963e10 0.261773
\(322\) 0 0
\(323\) −4.64663e11 −2.37534
\(324\) −4.70458e10 8.14857e10i −0.237175 0.410798i
\(325\) −2.84503e10 + 4.92773e10i −0.141453 + 0.245003i
\(326\) 2.25702e11 3.90927e11i 1.10677 1.91698i
\(327\) −3.16151e10 5.47589e10i −0.152908 0.264844i
\(328\) −1.88317e11 −0.898372
\(329\) 0 0
\(330\) 6.47079e9 0.0300362
\(331\) 8.95900e10 + 1.55174e11i 0.410236 + 0.710550i 0.994915 0.100715i \(-0.0321130\pi\)
−0.584679 + 0.811264i \(0.698780\pi\)
\(332\) 2.77712e10 4.81012e10i 0.125451 0.217287i
\(333\) 1.14661e11 1.98599e11i 0.510996 0.885072i
\(334\) 2.77393e11 + 4.80459e11i 1.21965 + 2.11250i
\(335\) 4.11637e10 0.178572
\(336\) 0 0
\(337\) 2.75888e10 0.116520 0.0582598 0.998301i \(-0.481445\pi\)
0.0582598 + 0.998301i \(0.481445\pi\)
\(338\) 1.34638e11 + 2.33199e11i 0.561102 + 0.971857i
\(339\) −1.23326e10 + 2.13607e10i −0.0507174 + 0.0878451i
\(340\) −2.76643e10 + 4.79160e10i −0.112270 + 0.194458i
\(341\) −6.98954e10 1.21062e11i −0.279933 0.484858i
\(342\) 4.44962e11 1.75876
\(343\) 0 0
\(344\) −1.67955e10 −0.0646665
\(345\) −5.15281e9 8.92492e9i −0.0195820 0.0339171i
\(346\) −7.79992e10 + 1.35099e11i −0.292582 + 0.506767i
\(347\) 8.59095e10 1.48800e11i 0.318096 0.550959i −0.661995 0.749509i \(-0.730290\pi\)
0.980091 + 0.198550i \(0.0636232\pi\)
\(348\) −9.74467e9 1.68783e10i −0.0356173 0.0616909i
\(349\) 1.67811e11 0.605487 0.302743 0.953072i \(-0.402097\pi\)
0.302743 + 0.953072i \(0.402097\pi\)
\(350\) 0 0
\(351\) −3.16743e10 −0.111385
\(352\) −6.85323e10 1.18701e11i −0.237932 0.412111i
\(353\) 2.08964e11 3.61936e11i 0.716283 1.24064i −0.246179 0.969224i \(-0.579175\pi\)
0.962462 0.271415i \(-0.0874915\pi\)
\(354\) 6.06571e10 1.05061e11i 0.205290 0.355572i
\(355\) −4.79134e10 8.29884e10i −0.160114 0.277325i
\(356\) −1.18692e11 −0.391649
\(357\) 0 0
\(358\) 4.91487e10 0.158139
\(359\) −1.28092e11 2.21862e11i −0.407003 0.704950i 0.587549 0.809188i \(-0.300093\pi\)
−0.994552 + 0.104238i \(0.966760\pi\)
\(360\) −2.36001e10 + 4.08766e10i −0.0740548 + 0.128267i
\(361\) −1.89025e11 + 3.27401e11i −0.585783 + 1.01461i
\(362\) −1.56540e11 2.71136e11i −0.479113 0.829847i
\(363\) 4.65853e10 0.140822
\(364\) 0 0
\(365\) −6.25576e9 −0.0184486
\(366\) −4.39867e10 7.61872e10i −0.128132 0.221930i
\(367\) 7.42135e10 1.28542e11i 0.213543 0.369868i −0.739278 0.673401i \(-0.764833\pi\)
0.952821 + 0.303533i \(0.0981662\pi\)
\(368\) −1.75242e11 + 3.03528e11i −0.498107 + 0.862746i
\(369\) 2.65061e11 + 4.59100e11i 0.744265 + 1.28911i
\(370\) 1.24313e11 0.344834
\(371\) 0 0
\(372\) 4.12197e10 0.111599
\(373\) −2.02449e11 3.50652e11i −0.541535 0.937966i −0.998816 0.0486440i \(-0.984510\pi\)
0.457281 0.889322i \(-0.348823\pi\)
\(374\) 1.86518e11 3.23059e11i 0.492945 0.853806i
\(375\) −1.81536e10 + 3.14430e10i −0.0474049 + 0.0821076i
\(376\) −8.90227e10 1.54192e11i −0.229697 0.397847i
\(377\) 8.61415e10 0.219622
\(378\) 0 0
\(379\) 6.69861e11 1.66766 0.833832 0.552019i \(-0.186142\pi\)
0.833832 + 0.552019i \(0.186142\pi\)
\(380\) 4.17193e10 + 7.22600e10i 0.102639 + 0.177776i
\(381\) −3.83314e10 + 6.63919e10i −0.0931949 + 0.161418i
\(382\) −6.97054e10 + 1.20733e11i −0.167487 + 0.290096i
\(383\) −3.73083e11 6.46199e11i −0.885954 1.53452i −0.844616 0.535373i \(-0.820171\pi\)
−0.0413384 0.999145i \(-0.513162\pi\)
\(384\) −8.22819e10 −0.193114
\(385\) 0 0
\(386\) −6.39014e11 −1.46510
\(387\) 2.36401e10 + 4.09459e10i 0.0535736 + 0.0927922i
\(388\) −7.11475e10 + 1.23231e11i −0.159374 + 0.276043i
\(389\) −2.07879e10 + 3.60057e10i −0.0460296 + 0.0797257i −0.888122 0.459607i \(-0.847990\pi\)
0.842093 + 0.539333i \(0.181324\pi\)
\(390\) −4.21666e9 7.30347e9i −0.00922949 0.0159860i
\(391\) −5.94111e11 −1.28550
\(392\) 0 0
\(393\) −4.84649e10 −0.102485
\(394\) −7.93463e10 1.37432e11i −0.165880 0.287312i
\(395\) −6.34417e10 + 1.09884e11i −0.131126 + 0.227116i
\(396\) −6.17844e10 + 1.07014e11i −0.126256 + 0.218681i
\(397\) 1.92110e11 + 3.32743e11i 0.388143 + 0.672283i 0.992200 0.124658i \(-0.0397834\pi\)
−0.604057 + 0.796941i \(0.706450\pi\)
\(398\) −6.53196e11 −1.30488
\(399\) 0 0
\(400\) 5.95201e11 1.16250
\(401\) 1.63410e11 + 2.83034e11i 0.315593 + 0.546624i 0.979563 0.201135i \(-0.0644631\pi\)
−0.663970 + 0.747759i \(0.731130\pi\)
\(402\) 4.09177e10 7.08715e10i 0.0781437 0.135349i
\(403\) −9.10941e10 + 1.57780e11i −0.172035 + 0.297974i
\(404\) −2.22862e11 3.86008e11i −0.416217 0.720909i
\(405\) 1.27914e11 0.236250
\(406\) 0 0
\(407\) −2.89929e11 −0.523742
\(408\) −4.89955e10 8.48627e10i −0.0875358 0.151616i
\(409\) −4.89087e11 + 8.47124e11i −0.864234 + 1.49690i 0.00357099 + 0.999994i \(0.498863\pi\)
−0.867805 + 0.496904i \(0.834470\pi\)
\(410\) −1.43687e11 + 2.48873e11i −0.251125 + 0.434962i
\(411\) 3.86472e10 + 6.69390e10i 0.0668083 + 0.115715i
\(412\) −4.84036e11 −0.827638
\(413\) 0 0
\(414\) 5.68922e11 0.951812
\(415\) 3.77540e10 + 6.53919e10i 0.0624808 + 0.108220i
\(416\) −8.93175e10 + 1.54703e11i −0.146223 + 0.253266i
\(417\) 4.51803e10 7.82545e10i 0.0731706 0.126735i
\(418\) −2.81280e11 4.87191e11i −0.450656 0.780559i
\(419\) −3.51461e11 −0.557075 −0.278537 0.960425i \(-0.589850\pi\)
−0.278537 + 0.960425i \(0.589850\pi\)
\(420\) 0 0
\(421\) 2.97438e11 0.461453 0.230726 0.973019i \(-0.425890\pi\)
0.230726 + 0.973019i \(0.425890\pi\)
\(422\) 7.62187e10 + 1.32015e11i 0.116992 + 0.202636i
\(423\) −2.50604e11 + 4.34060e11i −0.380590 + 0.659201i
\(424\) −1.39254e11 + 2.41195e11i −0.209248 + 0.362428i
\(425\) 5.04467e11 + 8.73763e11i 0.750037 + 1.29910i
\(426\) −1.90508e11 −0.280266
\(427\) 0 0
\(428\) −5.15490e11 −0.742547
\(429\) 9.83428e9 + 1.70335e10i 0.0140180 + 0.0242798i
\(430\) −1.28151e10 + 2.21964e10i −0.0180765 + 0.0313094i
\(431\) 2.70847e11 4.69121e11i 0.378074 0.654843i −0.612708 0.790309i \(-0.709920\pi\)
0.990782 + 0.135466i \(0.0432531\pi\)
\(432\) 1.65663e11 + 2.86936e11i 0.228848 + 0.396377i
\(433\) 1.98641e11 0.271565 0.135782 0.990739i \(-0.456645\pi\)
0.135782 + 0.990739i \(0.456645\pi\)
\(434\) 0 0
\(435\) 2.64951e10 0.0354784
\(436\) 3.27278e11 + 5.66863e11i 0.433739 + 0.751258i
\(437\) −4.47976e11 + 7.75918e11i −0.587609 + 1.01777i
\(438\) −6.21838e9 + 1.07706e10i −0.00807317 + 0.0139831i
\(439\) 4.05086e11 + 7.01630e11i 0.520544 + 0.901608i 0.999715 + 0.0238867i \(0.00760409\pi\)
−0.479171 + 0.877722i \(0.659063\pi\)
\(440\) 5.96746e10 0.0759019
\(441\) 0 0
\(442\) −4.86174e11 −0.605887
\(443\) 5.92033e11 + 1.02543e12i 0.730346 + 1.26500i 0.956735 + 0.290960i \(0.0939746\pi\)
−0.226389 + 0.974037i \(0.572692\pi\)
\(444\) 4.27453e10 7.40370e10i 0.0521993 0.0904119i
\(445\) 8.06789e10 1.39740e11i 0.0975304 0.168928i
\(446\) −5.44476e11 9.43060e11i −0.651586 1.12858i
\(447\) 8.56003e10 0.101412
\(448\) 0 0
\(449\) 1.11962e12 1.30006 0.650031 0.759908i \(-0.274756\pi\)
0.650031 + 0.759908i \(0.274756\pi\)
\(450\) −4.83079e11 8.36717e11i −0.555344 0.961884i
\(451\) 3.35113e11 5.80433e11i 0.381415 0.660629i
\(452\) 1.27667e11 2.21126e11i 0.143865 0.249182i
\(453\) −8.51069e10 1.47409e11i −0.0949561 0.164469i
\(454\) 1.01159e12 1.11751
\(455\) 0 0
\(456\) −1.47776e11 −0.160052
\(457\) −3.80731e11 6.59446e11i −0.408315 0.707223i 0.586386 0.810032i \(-0.300550\pi\)
−0.994701 + 0.102809i \(0.967217\pi\)
\(458\) 9.68733e11 1.67789e12i 1.02875 1.78185i
\(459\) −2.80818e11 + 4.86390e11i −0.295303 + 0.511479i
\(460\) 5.33417e10 + 9.23906e10i 0.0555465 + 0.0962094i
\(461\) −2.12296e11 −0.218921 −0.109460 0.993991i \(-0.534912\pi\)
−0.109460 + 0.993991i \(0.534912\pi\)
\(462\) 0 0
\(463\) −1.52072e12 −1.53793 −0.768964 0.639292i \(-0.779228\pi\)
−0.768964 + 0.639292i \(0.779228\pi\)
\(464\) −4.50536e11 7.80351e11i −0.451231 0.781554i
\(465\) −2.80184e10 + 4.85293e10i −0.0277911 + 0.0481355i
\(466\) 3.77877e11 6.54503e11i 0.371206 0.642947i
\(467\) −2.39955e11 4.15614e11i −0.233455 0.404356i 0.725368 0.688362i \(-0.241670\pi\)
−0.958823 + 0.284006i \(0.908337\pi\)
\(468\) 1.61046e11 0.155183
\(469\) 0 0
\(470\) −2.71700e11 −0.256832
\(471\) 1.01681e11 + 1.76116e11i 0.0952017 + 0.164894i
\(472\) 5.59389e11 9.68891e11i 0.518771 0.898537i
\(473\) 2.98879e10 5.17674e10i 0.0274549 0.0475533i
\(474\) 1.26125e11 + 2.18455e11i 0.114762 + 0.198774i
\(475\) 1.52153e12 1.37138
\(476\) 0 0
\(477\) 7.84017e11 0.693415
\(478\) 2.07355e10 + 3.59149e10i 0.0181672 + 0.0314666i
\(479\) −3.22408e11 + 5.58427e11i −0.279831 + 0.484682i −0.971343 0.237684i \(-0.923612\pi\)
0.691511 + 0.722365i \(0.256945\pi\)
\(480\) −2.74720e10 + 4.75829e10i −0.0236213 + 0.0409134i
\(481\) 1.88931e11 + 3.27238e11i 0.160935 + 0.278748i
\(482\) 6.44358e11 0.543770
\(483\) 0 0
\(484\) −4.82250e11 −0.399455
\(485\) −9.67226e10 1.67528e11i −0.0793761 0.137483i
\(486\) 4.05746e11 7.02772e11i 0.329906 0.571414i
\(487\) 9.75399e11 1.68944e12i 0.785782 1.36101i −0.142748 0.989759i \(-0.545594\pi\)
0.928531 0.371256i \(-0.121073\pi\)
\(488\) −4.05652e11 7.02610e11i −0.323791 0.560822i
\(489\) 4.22021e11 0.333767
\(490\) 0 0
\(491\) −1.45708e12 −1.13140 −0.565700 0.824611i \(-0.691394\pi\)
−0.565700 + 0.824611i \(0.691394\pi\)
\(492\) 9.88139e10 + 1.71151e11i 0.0760283 + 0.131685i
\(493\) 7.63711e11 1.32279e12i 0.582261 1.00851i
\(494\) −3.66589e11 + 6.34951e11i −0.276955 + 0.479699i
\(495\) −8.39938e10 1.45482e11i −0.0628817 0.108914i
\(496\) 1.90576e12 1.41384
\(497\) 0 0
\(498\) 1.50114e11 0.109368
\(499\) −1.78952e11 3.09953e11i −0.129206 0.223792i 0.794163 0.607705i \(-0.207910\pi\)
−0.923369 + 0.383913i \(0.874576\pi\)
\(500\) 1.87926e11 3.25497e11i 0.134469 0.232907i
\(501\) −2.59337e11 + 4.49184e11i −0.183905 + 0.318533i
\(502\) 7.02288e11 + 1.21640e12i 0.493569 + 0.854887i
\(503\) −1.62028e12 −1.12858 −0.564292 0.825575i \(-0.690851\pi\)
−0.564292 + 0.825575i \(0.690851\pi\)
\(504\) 0 0
\(505\) 6.05946e11 0.414594
\(506\) −3.59640e11 6.22915e11i −0.243888 0.422427i
\(507\) −1.25874e11 + 2.18020e11i −0.0846057 + 0.146541i
\(508\) 3.96805e11 6.87287e11i 0.264357 0.457880i
\(509\) 1.16034e12 + 2.00977e12i 0.766223 + 1.32714i 0.939598 + 0.342281i \(0.111199\pi\)
−0.173375 + 0.984856i \(0.555467\pi\)
\(510\) −1.49536e11 −0.0978768
\(511\) 0 0
\(512\) 7.37052e11 0.474005
\(513\) 4.23489e11 + 7.33504e11i 0.269969 + 0.467600i
\(514\) −8.05150e11 + 1.39456e12i −0.508795 + 0.881258i
\(515\) 3.29015e11 5.69871e11i 0.206103 0.356980i
\(516\) 8.81296e9 + 1.52645e10i 0.00547266 + 0.00947892i
\(517\) 6.33671e11 0.390083
\(518\) 0 0
\(519\) −1.45844e11 −0.0882339
\(520\) −3.88867e10 6.73537e10i −0.0233231 0.0403968i
\(521\) −1.08605e12 + 1.88110e12i −0.645775 + 1.11851i 0.338347 + 0.941021i \(0.390132\pi\)
−0.984122 + 0.177493i \(0.943201\pi\)
\(522\) −7.31331e11 + 1.26670e12i −0.431119 + 0.746720i
\(523\) −1.45855e12 2.52628e12i −0.852439 1.47647i −0.879000 0.476821i \(-0.841789\pi\)
0.0265609 0.999647i \(-0.491544\pi\)
\(524\) 5.01708e11 0.290710
\(525\) 0 0
\(526\) 7.90782e11 0.450424
\(527\) 1.61524e12 + 2.79768e12i 0.912198 + 1.57997i
\(528\) 1.02870e11 1.78176e11i 0.0576019 0.0997695i
\(529\) 3.27801e11 5.67767e11i 0.181995 0.315224i
\(530\) 2.12504e11 + 3.68068e11i 0.116984 + 0.202622i
\(531\) −3.14943e12 −1.71912
\(532\) 0 0
\(533\) −8.73501e11 −0.468803
\(534\) −1.60394e11 2.77810e11i −0.0853594 0.147847i
\(535\) 3.50396e11 6.06904e11i 0.184913 0.320278i
\(536\) 3.77349e11 6.53588e11i 0.197470 0.342029i
\(537\) 2.29747e10 + 3.97934e10i 0.0119225 + 0.0206503i
\(538\) −1.36560e12 −0.702756
\(539\) 0 0
\(540\) 1.00852e11 0.0510402
\(541\) 6.76763e11 + 1.17219e12i 0.339663 + 0.588314i 0.984369 0.176117i \(-0.0563535\pi\)
−0.644706 + 0.764431i \(0.723020\pi\)
\(542\) −1.43732e12 + 2.48950e12i −0.715411 + 1.23913i
\(543\) 1.46351e11 2.53487e11i 0.0722430 0.125128i
\(544\) 1.58374e12 + 2.74312e12i 0.775333 + 1.34292i
\(545\) −8.89848e11 −0.432048
\(546\) 0 0
\(547\) −2.85747e12 −1.36470 −0.682352 0.731023i \(-0.739043\pi\)
−0.682352 + 0.731023i \(0.739043\pi\)
\(548\) −4.00075e11 6.92951e11i −0.189509 0.328239i
\(549\) −1.14193e12 + 1.97789e12i −0.536495 + 0.929237i
\(550\) −6.10750e11 + 1.05785e12i −0.284598 + 0.492938i
\(551\) −1.15172e12 1.99484e12i −0.532310 0.921988i
\(552\) −1.88944e11 −0.0866179
\(553\) 0 0
\(554\) 4.88861e12 2.20491
\(555\) 5.81108e10 + 1.00651e11i 0.0259979 + 0.0450297i
\(556\) −4.67705e11 + 8.10089e11i −0.207556 + 0.359498i
\(557\) −5.64143e11 + 9.77123e11i −0.248336 + 0.430131i −0.963064 0.269271i \(-0.913217\pi\)
0.714728 + 0.699403i \(0.246551\pi\)
\(558\) −1.54676e12 2.67906e12i −0.675411 1.16985i
\(559\) −7.79053e10 −0.0337453
\(560\) 0 0
\(561\) 3.48754e11 0.148657
\(562\) 1.82490e11 + 3.16082e11i 0.0771659 + 0.133655i
\(563\) 1.33529e12 2.31279e12i 0.560127 0.970169i −0.437357 0.899288i \(-0.644085\pi\)
0.997485 0.0708814i \(-0.0225812\pi\)
\(564\) −9.34244e10 + 1.61816e11i −0.0388780 + 0.0673387i
\(565\) 1.73559e11 + 3.00613e11i 0.0716521 + 0.124105i
\(566\) −2.78351e12 −1.14004
\(567\) 0 0
\(568\) −1.75690e12 −0.708237
\(569\) −2.19771e12 3.80654e12i −0.878952 1.52239i −0.852493 0.522739i \(-0.824910\pi\)
−0.0264587 0.999650i \(-0.508423\pi\)
\(570\) −1.12754e11 + 1.95296e11i −0.0447400 + 0.0774920i
\(571\) −1.11664e12 + 1.93408e12i −0.439594 + 0.761399i −0.997658 0.0683988i \(-0.978211\pi\)
0.558064 + 0.829798i \(0.311544\pi\)
\(572\) −1.01804e11 1.76330e11i −0.0397634 0.0688722i
\(573\) −1.30336e11 −0.0505091
\(574\) 0 0
\(575\) 1.94541e12 0.742173
\(576\) 7.60818e10 + 1.31778e11i 0.0287991 + 0.0498816i
\(577\) 1.20531e12 2.08766e12i 0.452697 0.784094i −0.545855 0.837879i \(-0.683795\pi\)
0.998553 + 0.0537849i \(0.0171285\pi\)
\(578\) −2.65138e12 + 4.59233e12i −0.988091 + 1.71142i
\(579\) −2.98709e11 5.17380e11i −0.110458 0.191318i
\(580\) −2.74277e11 −0.100638
\(581\) 0 0
\(582\) −3.84578e11 −0.138941
\(583\) −4.95611e11 8.58424e11i −0.177678 0.307746i
\(584\) −5.73469e10 + 9.93277e10i −0.0204010 + 0.0353356i
\(585\) −1.09468e11 + 1.89605e11i −0.0386445 + 0.0669342i
\(586\) −1.27922e11 2.21567e11i −0.0448132 0.0776187i
\(587\) −6.14106e11 −0.213487 −0.106744 0.994287i \(-0.534042\pi\)
−0.106744 + 0.994287i \(0.534042\pi\)
\(588\) 0 0
\(589\) 4.87174e12 1.66788
\(590\) −8.53637e11 1.47854e12i −0.290028 0.502343i
\(591\) 7.41814e10 1.28486e11i 0.0250122 0.0433224i
\(592\) 1.97629e12 3.42304e12i 0.661307 1.14542i
\(593\) 3.76059e11 + 6.51353e11i 0.124885 + 0.216307i 0.921688 0.387932i \(-0.126811\pi\)
−0.796803 + 0.604239i \(0.793477\pi\)
\(594\) −6.79962e11 −0.224102
\(595\) 0 0
\(596\) −8.86132e11 −0.287667
\(597\) −3.05339e11 5.28863e11i −0.0983779 0.170396i
\(598\) −4.68716e11 + 8.11839e11i −0.149884 + 0.259606i
\(599\) −1.45096e12 + 2.51314e12i −0.460507 + 0.797621i −0.998986 0.0450173i \(-0.985666\pi\)
0.538479 + 0.842639i \(0.318999\pi\)
\(600\) 1.60435e11 + 2.77882e11i 0.0505380 + 0.0875345i
\(601\) 3.12492e12 0.977021 0.488510 0.872558i \(-0.337540\pi\)
0.488510 + 0.872558i \(0.337540\pi\)
\(602\) 0 0
\(603\) −2.12452e12 −0.654385
\(604\) 8.81024e11 + 1.52598e12i 0.269353 + 0.466533i
\(605\) 3.27801e11 5.67769e11i 0.0994744 0.172295i
\(606\) 6.02326e11 1.04326e12i 0.181428 0.314243i
\(607\) −2.43067e12 4.21004e12i −0.726735 1.25874i −0.958256 0.285913i \(-0.907703\pi\)
0.231520 0.972830i \(-0.425630\pi\)
\(608\) 4.77674e12 1.41764
\(609\) 0 0
\(610\) −1.23806e12 −0.362042
\(611\) −4.12929e11 7.15214e11i −0.119864 0.207611i
\(612\) 1.42780e12 2.47302e12i 0.411420 0.712601i
\(613\) −1.93588e11 + 3.35305e11i −0.0553742 + 0.0959109i −0.892384 0.451277i \(-0.850969\pi\)
0.837010 + 0.547188i \(0.184302\pi\)
\(614\) 1.74716e12 + 3.02617e12i 0.496107 + 0.859282i
\(615\) −2.68668e11 −0.0757318
\(616\) 0 0
\(617\) 1.25661e12 0.349073 0.174537 0.984651i \(-0.444157\pi\)
0.174537 + 0.984651i \(0.444157\pi\)
\(618\) −6.54099e11 1.13293e12i −0.180383 0.312432i
\(619\) 1.94092e12 3.36177e12i 0.531374 0.920366i −0.467956 0.883752i \(-0.655009\pi\)
0.999329 0.0366142i \(-0.0116573\pi\)
\(620\) 2.90046e11 5.02374e11i 0.0788323 0.136541i
\(621\) 5.41466e11 + 9.37847e11i 0.146103 + 0.253058i
\(622\) −5.13634e12 −1.37593
\(623\) 0 0
\(624\) −2.68140e11 −0.0707995
\(625\) −1.51954e12 2.63192e12i −0.398338 0.689942i
\(626\) −1.44595e12 + 2.50447e12i −0.376331 + 0.651825i
\(627\) 2.62970e11 4.55478e11i 0.0679521 0.117697i
\(628\) −1.05260e12 1.82315e12i −0.270050 0.467740i
\(629\) 6.70009e12 1.70668
\(630\) 0 0
\(631\) −5.76195e12 −1.44690 −0.723448 0.690379i \(-0.757444\pi\)
−0.723448 + 0.690379i \(0.757444\pi\)
\(632\) 1.16315e12 + 2.01463e12i 0.290006 + 0.502306i
\(633\) −7.12574e10 + 1.23421e11i −0.0176406 + 0.0305544i
\(634\) 2.12297e12 3.67710e12i 0.521846 0.903864i
\(635\) 5.39444e11 + 9.34344e11i 0.131663 + 0.228047i
\(636\) 2.92279e11 0.0708338
\(637\) 0 0
\(638\) 1.84922e12 0.441872
\(639\) 2.47289e12 + 4.28316e12i 0.586746 + 1.01627i
\(640\) −5.78983e11 + 1.00283e12i −0.136413 + 0.236275i
\(641\) 2.30350e12 3.98978e12i 0.538923 0.933442i −0.460039 0.887899i \(-0.652165\pi\)
0.998962 0.0455436i \(-0.0145020\pi\)
\(642\) −6.96604e11 1.20655e12i −0.161837 0.280310i
\(643\) −1.65916e12 −0.382770 −0.191385 0.981515i \(-0.561298\pi\)
−0.191385 + 0.981515i \(0.561298\pi\)
\(644\) 0 0
\(645\) −2.39618e10 −0.00545132
\(646\) 6.50020e12 + 1.12587e13i 1.46852 + 2.54355i
\(647\) −6.64116e11 + 1.15028e12i −0.148996 + 0.258069i −0.930857 0.365385i \(-0.880938\pi\)
0.781861 + 0.623453i \(0.214271\pi\)
\(648\) 1.17260e12 2.03100e12i 0.261253 0.452503i
\(649\) 1.99089e12 + 3.44832e12i 0.440500 + 0.762969i
\(650\) 1.59197e12 0.349804
\(651\) 0 0
\(652\) −4.36875e12 −0.946766
\(653\) −2.10400e12 3.64423e12i −0.452830 0.784325i 0.545730 0.837961i \(-0.316252\pi\)
−0.998561 + 0.0536359i \(0.982919\pi\)
\(654\) −8.84531e11 + 1.53205e12i −0.189066 + 0.327472i
\(655\) −3.41028e11 + 5.90677e11i −0.0723942 + 0.125390i
\(656\) 4.56857e12 + 7.91300e12i 0.963193 + 1.66830i
\(657\) 3.22870e11 0.0676057
\(658\) 0 0
\(659\) 1.53134e11 0.0316291 0.0158146 0.999875i \(-0.494966\pi\)
0.0158146 + 0.999875i \(0.494966\pi\)
\(660\) −3.13126e10 5.42350e10i −0.00642349 0.0111258i
\(661\) −1.52944e12 + 2.64906e12i −0.311620 + 0.539742i −0.978713 0.205233i \(-0.934205\pi\)
0.667093 + 0.744974i \(0.267538\pi\)
\(662\) 2.50656e12 4.34149e12i 0.507245 0.878574i
\(663\) −2.27264e11 3.93633e11i −0.0456793 0.0791189i
\(664\) 1.38437e12 0.276374
\(665\) 0 0
\(666\) −6.41602e12 −1.26366
\(667\) −1.47257e12 2.55057e12i −0.288078 0.498966i
\(668\) 2.68465e12 4.64995e12i 0.521667 0.903554i
\(669\) 5.09034e11 8.81673e11i 0.0982493 0.170173i
\(670\) −5.75841e11 9.97387e11i −0.110399 0.191217i
\(671\) 2.88746e12 0.549877
\(672\) 0 0
\(673\) 6.90574e12 1.29761 0.648803 0.760957i \(-0.275270\pi\)
0.648803 + 0.760957i \(0.275270\pi\)
\(674\) −3.85942e11 6.68472e11i −0.0720365 0.124771i
\(675\) 9.19533e11 1.59268e12i 0.170490 0.295298i
\(676\) 1.30304e12 2.25694e12i 0.239993 0.415680i
\(677\) 4.61556e12 + 7.99438e12i 0.844452 + 1.46263i 0.886096 + 0.463501i \(0.153407\pi\)
−0.0416442 + 0.999133i \(0.513260\pi\)
\(678\) 6.90088e11 0.125421
\(679\) 0 0
\(680\) −1.37904e12 −0.247336
\(681\) 4.72870e11 + 8.19035e11i 0.0842519 + 0.145929i
\(682\) −1.95554e12 + 3.38710e12i −0.346129 + 0.599513i
\(683\) 1.53456e12 2.65793e12i 0.269830 0.467359i −0.698988 0.715133i \(-0.746366\pi\)
0.968818 + 0.247775i \(0.0796992\pi\)
\(684\) −2.15320e12 3.72946e12i −0.376125 0.651468i
\(685\) 1.08778e12 0.188770
\(686\) 0 0
\(687\) 1.81135e12 0.310240
\(688\) 4.07459e11 + 7.05740e11i 0.0693324 + 0.120087i
\(689\) −6.45925e11 + 1.11878e12i −0.109193 + 0.189128i
\(690\) −1.44166e11 + 2.49703e11i −0.0242126 + 0.0419375i
\(691\) −2.40201e12 4.16041e12i −0.400796 0.694200i 0.593026 0.805183i \(-0.297933\pi\)
−0.993822 + 0.110984i \(0.964600\pi\)
\(692\) 1.50977e12 0.250285
\(693\) 0 0
\(694\) −4.80718e12 −0.786633
\(695\) −6.35829e11 1.10129e12i −0.103373 0.179048i
\(696\) 2.42882e11 4.20684e11i 0.0392332 0.0679539i
\(697\) −7.74426e12 + 1.34135e13i −1.24289 + 2.15275i
\(698\) −2.34751e12 4.06601e12i −0.374333 0.648365i
\(699\) 7.06561e11 0.111944
\(700\) 0 0
\(701\) 5.62845e12 0.880354 0.440177 0.897911i \(-0.354916\pi\)
0.440177 + 0.897911i \(0.354916\pi\)
\(702\) 4.43094e11 + 7.67462e11i 0.0688619 + 0.119272i
\(703\) 5.05205e12 8.75042e12i 0.780134 1.35123i
\(704\) 9.61891e10 1.66604e11i 0.0147587 0.0255629i
\(705\) −1.27007e11 2.19983e11i −0.0193632 0.0335381i
\(706\) −1.16928e13 −1.77133
\(707\) 0 0
\(708\) −1.17410e12 −0.175612
\(709\) −6.19129e12 1.07236e13i −0.920180 1.59380i −0.799135 0.601152i \(-0.794709\pi\)
−0.121046 0.992647i \(-0.538625\pi\)
\(710\) −1.34053e12 + 2.32186e12i −0.197976 + 0.342905i
\(711\) 3.27433e12 5.67130e12i 0.480517 0.832280i
\(712\) −1.47918e12 2.56201e12i −0.215705 0.373612i
\(713\) 6.22894e12 0.902633
\(714\) 0 0
\(715\) 2.76799e11 0.0396084
\(716\) −2.37834e11 4.11940e11i −0.0338193 0.0585768i
\(717\) −1.93858e10 + 3.35771e10i −0.00273935 + 0.00474469i
\(718\) −3.58378e12 + 6.20729e12i −0.503247 + 0.871650i
\(719\) −2.54128e11 4.40162e11i −0.0354627 0.0614232i 0.847749 0.530397i \(-0.177957\pi\)
−0.883212 + 0.468974i \(0.844624\pi\)
\(720\) 2.29016e12 0.317592
\(721\) 0 0
\(722\) 1.05771e13 1.44861
\(723\) 3.01208e11 + 5.21707e11i 0.0409962 + 0.0710075i
\(724\) −1.51502e12 + 2.62409e12i −0.204925 + 0.354940i
\(725\) −2.50076e12 + 4.33144e12i −0.336164 + 0.582253i
\(726\) −6.51685e11 1.12875e12i −0.0870609 0.150794i
\(727\) −6.46095e12 −0.857811 −0.428905 0.903349i \(-0.641101\pi\)
−0.428905 + 0.903349i \(0.641101\pi\)
\(728\) 0 0
\(729\) −6.08094e12 −0.797438
\(730\) 8.75123e10 + 1.51576e11i 0.0114055 + 0.0197550i
\(731\) −6.90691e11 + 1.19631e12i −0.0894655 + 0.154959i
\(732\) −4.25709e11 + 7.37350e11i −0.0548041 + 0.0949235i
\(733\) −4.43052e12 7.67388e12i −0.566874 0.981854i −0.996873 0.0790248i \(-0.974819\pi\)
0.429999 0.902829i \(-0.358514\pi\)
\(734\) −4.15271e12 −0.528080
\(735\) 0 0
\(736\) 6.10746e12 0.767204
\(737\) 1.34300e12 + 2.32615e12i 0.167677 + 0.290425i
\(738\) 7.41592e12 1.28448e13i 0.920262 1.59394i
\(739\) −2.37645e12 + 4.11613e12i −0.293108 + 0.507679i −0.974543 0.224200i \(-0.928023\pi\)
0.681435 + 0.731879i \(0.261356\pi\)
\(740\) −6.01562e11 1.04194e12i −0.0737458 0.127732i
\(741\) −6.85454e11 −0.0835211
\(742\) 0 0
\(743\) −5.50742e12 −0.662977 −0.331488 0.943459i \(-0.607551\pi\)
−0.331488 + 0.943459i \(0.607551\pi\)
\(744\) 5.13692e11 + 8.89741e11i 0.0614646 + 0.106460i
\(745\) 6.02333e11 1.04327e12i 0.0716364 0.124078i
\(746\) −5.66415e12 + 9.81060e12i −0.669592 + 1.15977i
\(747\) −1.94855e12 3.37498e12i −0.228964 0.396578i
\(748\) −3.61029e12 −0.421682
\(749\) 0 0
\(750\) 1.01581e12 0.117229
\(751\) −2.76192e11 4.78379e11i −0.0316834 0.0548773i 0.849749 0.527188i \(-0.176753\pi\)
−0.881432 + 0.472310i \(0.843420\pi\)
\(752\) −4.31939e12 + 7.48141e12i −0.492541 + 0.853106i
\(753\) −6.56574e11 + 1.13722e12i −0.0744228 + 0.128904i
\(754\) −1.20504e12 2.08719e12i −0.135778 0.235175i
\(755\) −2.39545e12 −0.268303
\(756\) 0 0
\(757\) 1.08256e13 1.19818 0.599090 0.800682i \(-0.295529\pi\)
0.599090 + 0.800682i \(0.295529\pi\)
\(758\) −9.37073e12 1.62306e13i −1.03101 1.78576i
\(759\) 3.36230e11 5.82367e11i 0.0367746 0.0636956i
\(760\) −1.03984e12 + 1.80105e12i −0.113059 + 0.195824i
\(761\) 5.74707e12 + 9.95421e12i 0.621177 + 1.07591i 0.989267 + 0.146120i \(0.0466785\pi\)
−0.368090 + 0.929790i \(0.619988\pi\)
\(762\) 2.14488e12 0.230465
\(763\) 0 0
\(764\) 1.34924e12 0.143274
\(765\) 1.94105e12 + 3.36199e12i 0.204908 + 0.354911i
\(766\) −1.04382e13 + 1.80795e13i −1.09546 + 1.89739i
\(767\) 2.59471e12 4.49417e12i 0.270713 0.468889i
\(768\) 1.09742e12 + 1.90078e12i 0.113827 + 0.197155i
\(769\) −1.23333e13 −1.27178 −0.635889 0.771781i \(-0.719366\pi\)
−0.635889 + 0.771781i \(0.719366\pi\)
\(770\) 0 0
\(771\) −1.50548e12 −0.153437
\(772\) 3.09223e12 + 5.35591e12i 0.313325 + 0.542694i
\(773\) −4.58322e12 + 7.93837e12i −0.461703 + 0.799694i −0.999046 0.0436703i \(-0.986095\pi\)
0.537343 + 0.843364i \(0.319428\pi\)
\(774\) 6.61407e11 1.14559e12i 0.0662422 0.114735i
\(775\) −5.28907e12 9.16095e12i −0.526650 0.912184i
\(776\) −3.54664e12 −0.351107
\(777\) 0 0
\(778\) 1.16321e12 0.113829
\(779\) 1.16788e13 + 2.02282e13i 1.13626 + 1.96807i
\(780\) −4.08094e10 + 7.06840e10i −0.00394761 + 0.00683747i
\(781\) 3.12644e12 5.41514e12i 0.300691 0.520811i
\(782\) 8.31106e12 + 1.43952e13i 0.794741 + 1.37653i
\(783\) −2.78415e12 −0.264707
\(784\) 0 0
\(785\) 2.86194e12 0.268997
\(786\) 6.77980e11 + 1.17429e12i 0.0633600 + 0.109743i
\(787\) −5.22251e12 + 9.04565e12i −0.485281 + 0.840531i −0.999857 0.0169139i \(-0.994616\pi\)
0.514576 + 0.857445i \(0.327949\pi\)
\(788\) −7.67925e11 + 1.33008e12i −0.0709497 + 0.122888i
\(789\) 3.69654e11 + 6.40260e11i 0.0339585 + 0.0588179i
\(790\) 3.54996e12 0.324266
\(791\) 0 0
\(792\) −3.07990e12 −0.278147
\(793\) −1.88160e12 3.25903e12i −0.168966 0.292657i
\(794\) 5.37487e12 9.30954e12i 0.479927 0.831259i
\(795\) −1.98672e11 + 3.44109e11i −0.0176394 + 0.0305523i
\(796\) 3.16086e12 + 5.47477e12i 0.279059 + 0.483345i
\(797\) −3.08633e11 −0.0270944 −0.0135472 0.999908i \(-0.504312\pi\)
−0.0135472 + 0.999908i \(0.504312\pi\)
\(798\) 0 0
\(799\) −1.46437e13 −1.27114
\(800\) −5.18593e12 8.98229e12i −0.447632 0.775322i
\(801\) −4.16397e12 + 7.21220e12i −0.357405 + 0.619044i
\(802\) 4.57190e12 7.91876e12i 0.390222 0.675884i
\(803\) −2.04100e11 3.53512e11i −0.0173230 0.0300043i
\(804\) −7.92014e11 −0.0668468
\(805\) 0 0
\(806\) 5.09728e12 0.425433
\(807\) −6.38357e11 1.10567e12i −0.0529825 0.0917684i
\(808\) 5.55474e12 9.62109e12i 0.458472 0.794097i
\(809\) 1.13783e13 1.97078e13i 0.933920 1.61760i 0.157372 0.987539i \(-0.449698\pi\)
0.776548 0.630058i \(-0.216969\pi\)
\(810\) −1.78940e12 3.09933e12i −0.146058 0.252980i
\(811\) −4.95274e12 −0.402024 −0.201012 0.979589i \(-0.564423\pi\)
−0.201012 + 0.979589i \(0.564423\pi\)
\(812\) 0 0
\(813\) −2.68751e12 −0.215746
\(814\) 4.05584e12 + 7.02492e12i 0.323796 + 0.560831i
\(815\) 2.96958e12 5.14347e12i 0.235769 0.408363i
\(816\) −2.37727e12 + 4.11755e12i −0.187703 + 0.325112i
\(817\) 1.04160e12 + 1.80411e12i 0.0817904 + 0.141665i
\(818\) 2.73675e13 2.13720
\(819\) 0 0
\(820\) 2.78125e12 0.214821
\(821\) 7.73549e12 + 1.33983e13i 0.594215 + 1.02921i 0.993657 + 0.112452i \(0.0358704\pi\)
−0.399442 + 0.916758i \(0.630796\pi\)
\(822\) 1.08128e12 1.87283e12i 0.0826065 0.143079i
\(823\) −7.05371e12 + 1.22174e13i −0.535942 + 0.928280i 0.463175 + 0.886267i \(0.346710\pi\)
−0.999117 + 0.0420125i \(0.986623\pi\)
\(824\) −6.03220e12 1.04481e13i −0.455830 0.789521i
\(825\) −1.14199e12 −0.0858261
\(826\) 0 0
\(827\) −1.45951e13 −1.08500 −0.542502 0.840054i \(-0.682523\pi\)
−0.542502 + 0.840054i \(0.682523\pi\)
\(828\) −2.75305e12 4.76843e12i −0.203553 0.352564i
\(829\) 4.87961e12 8.45174e12i 0.358831 0.621514i −0.628935 0.777458i \(-0.716509\pi\)
0.987766 + 0.155944i \(0.0498421\pi\)
\(830\) 1.05629e12 1.82954e12i 0.0772557 0.133811i
\(831\) 2.28520e12 + 3.95808e12i 0.166234 + 0.287925i
\(832\) −2.50725e11 −0.0181402
\(833\) 0 0
\(834\) −2.52812e12 −0.180947
\(835\) 3.64969e12 + 6.32144e12i 0.259816 + 0.450015i
\(836\) −2.72226e12 + 4.71510e12i −0.192753 + 0.333859i
\(837\) 2.94423e12 5.09955e12i 0.207351 0.359143i
\(838\) 4.91661e12 + 8.51581e12i 0.344403 + 0.596524i
\(839\) 4.87991e10 0.00340004 0.00170002 0.999999i \(-0.499459\pi\)
0.00170002 + 0.999999i \(0.499459\pi\)
\(840\) 0 0
\(841\) −6.93537e12 −0.478066
\(842\) −4.16088e12 7.20686e12i −0.285286 0.494130i
\(843\) −1.70611e11 + 2.95507e11i −0.0116354 + 0.0201532i
\(844\) 7.37655e11 1.27766e12i 0.0500394 0.0866709i
\(845\) 1.77144e12 + 3.06823e12i 0.119529 + 0.207030i
\(846\) 1.40229e13 0.941176
\(847\) 0 0
\(848\) 1.35132e13 0.897384
\(849\) −1.30116e12 2.25368e12i −0.0859501 0.148870i
\(850\) 1.41141e13 2.44463e13i 0.927399 1.60630i
\(851\) 6.45948e12 1.11881e13i 0.422196 0.731266i
\(852\) 9.21883e11 + 1.59675e12i 0.0599374 + 0.103815i
\(853\) 2.28806e13 1.47978 0.739888 0.672730i \(-0.234879\pi\)
0.739888 + 0.672730i \(0.234879\pi\)
\(854\) 0 0
\(855\) 5.85441e12 0.374659
\(856\) −6.42419e12 1.11270e13i −0.408966 0.708349i
\(857\) 5.60945e11 9.71584e11i 0.0355227 0.0615272i −0.847717 0.530448i \(-0.822024\pi\)
0.883240 + 0.468921i \(0.155357\pi\)
\(858\) 2.75145e11 4.76565e11i 0.0173328 0.0300213i
\(859\) −6.42437e12 1.11273e13i −0.402588 0.697304i 0.591449 0.806342i \(-0.298556\pi\)
−0.994037 + 0.109039i \(0.965223\pi\)
\(860\) 2.48052e11 0.0154632
\(861\) 0 0
\(862\) −1.51556e13 −0.934955
\(863\) −1.33409e13 2.31071e13i −0.818720 1.41807i −0.906625 0.421937i \(-0.861350\pi\)
0.0879049 0.996129i \(-0.471983\pi\)
\(864\) 2.88681e12 5.00010e12i 0.176241 0.305258i
\(865\) −1.02624e12 + 1.77751e12i −0.0623272 + 0.107954i
\(866\) −2.77880e12 4.81303e12i −0.167891 0.290795i
\(867\) −4.95759e12 −0.297978
\(868\) 0 0
\(869\) −8.27938e12 −0.492503
\(870\) −3.70642e11 6.41970e11i −0.0219340 0.0379908i
\(871\) 1.75032e12 3.03165e12i 0.103047 0.178483i
\(872\) −8.15728e12 + 1.41288e13i −0.477773 + 0.827527i
\(873\) 4.99201e12 + 8.64641e12i 0.290878 + 0.503816i
\(874\) 2.50671e13 1.45312
\(875\) 0 0
\(876\) 1.20365e11 0.00690607
\(877\) 8.25422e12 + 1.42967e13i 0.471170 + 0.816091i 0.999456 0.0329757i \(-0.0104984\pi\)
−0.528286 + 0.849067i \(0.677165\pi\)
\(878\) 1.13336e13 1.96303e13i 0.643637 1.11481i
\(879\) 1.19595e11 2.07145e11i 0.00675715 0.0117037i
\(880\) −1.44771e12 2.50751e12i −0.0813784 0.140952i
\(881\) 5.82217e12 0.325606 0.162803 0.986659i \(-0.447946\pi\)
0.162803 + 0.986659i \(0.447946\pi\)
\(882\) 0 0
\(883\) 2.17502e13 1.20404 0.602020 0.798481i \(-0.294363\pi\)
0.602020 + 0.798481i \(0.294363\pi\)
\(884\) 2.35263e12 + 4.07488e12i 0.129574 + 0.224429i
\(885\) 7.98072e11 1.38230e12i 0.0437318 0.0757457i
\(886\) 1.65640e13 2.86896e13i 0.903052 1.56413i
\(887\) −1.53406e12 2.65707e12i −0.0832119 0.144127i 0.821416 0.570330i \(-0.193184\pi\)
−0.904628 + 0.426202i \(0.859851\pi\)
\(888\) 2.13082e12 0.114997
\(889\) 0 0
\(890\) −4.51449e12 −0.241187
\(891\) 4.17332e12 + 7.22840e12i 0.221836 + 0.384231i
\(892\) −5.26951e12 + 9.12706e12i −0.278695 + 0.482713i
\(893\) −1.10418e13 + 1.91250e13i −0.581043 + 1.00640i
\(894\) −1.19747e12 2.07408e12i −0.0626968 0.108594i
\(895\) 6.46654e11 0.0336875
\(896\) 0 0
\(897\) −8.76411e11 −0.0452004
\(898\) −1.56625e13 2.71283e13i −0.803744 1.39213i
\(899\) −8.00711e12 + 1.38687e13i −0.408844 + 0.708138i
\(900\) −4.67531e12 + 8.09787e12i −0.237530 + 0.411414i
\(901\) 1.14533e13 + 1.98376e13i 0.578985 + 1.00283i
\(902\) −1.87517e13 −0.943216
\(903\) 0 0
\(904\) 6.36410e12 0.316941
\(905\) −2.05962e12 3.56736e12i −0.102063 0.176778i
\(906\) −2.38113e12 + 4.12424e12i −0.117410 + 0.203361i
\(907\) 1.44304e13 2.49942e13i 0.708021 1.22633i −0.257569 0.966260i \(-0.582922\pi\)
0.965590 0.260068i \(-0.0837451\pi\)
\(908\) −4.89514e12 8.47863e12i −0.238989 0.413942i
\(909\) −3.12739e13 −1.51930
\(910\) 0 0
\(911\) −8.43639e12 −0.405811 −0.202905 0.979198i \(-0.565038\pi\)
−0.202905 + 0.979198i \(0.565038\pi\)
\(912\) 3.58505e12 + 6.20949e12i 0.171601 + 0.297221i
\(913\) −2.46352e12 + 4.26694e12i −0.117338 + 0.203235i
\(914\) −1.06521e13 + 1.84501e13i −0.504870 + 0.874460i
\(915\) −5.78737e11 1.00240e12i −0.0272952 0.0472767i
\(916\) −1.87511e13 −0.880028
\(917\) 0 0
\(918\) 1.57135e13 0.730266
\(919\) 1.18539e13 + 2.05315e13i 0.548202 + 0.949514i 0.998398 + 0.0565842i \(0.0180209\pi\)
−0.450196 + 0.892930i \(0.648646\pi\)
\(920\) −1.32952e12 + 2.30280e12i −0.0611857 + 0.105977i
\(921\) −1.63343e12 + 2.82919e12i −0.0748054 + 0.129567i
\(922\) 2.96982e12 + 5.14388e12i 0.135345 + 0.234424i
\(923\) −8.14931e12 −0.369584
\(924\) 0 0
\(925\) −2.19393e13 −0.985338
\(926\) 2.12735e13 + 3.68468e13i 0.950802 + 1.64684i
\(927\) −1.69810e13 + 2.94120e13i −0.755274 + 1.30817i
\(928\) −7.85095e12 + 1.35983e13i −0.347501 + 0.601890i
\(929\) −1.03773e13 1.79739e13i −0.457101 0.791722i 0.541706 0.840568i \(-0.317779\pi\)
−0.998806 + 0.0488467i \(0.984445\pi\)
\(930\) 1.56781e12 0.0687256
\(931\) 0 0
\(932\) −7.31430e12 −0.317542
\(933\) −2.40100e12 4.15865e12i −0.103735 0.179674i
\(934\) −6.71349e12 + 1.16281e13i −0.288660 + 0.499974i
\(935\) 2.45404e12 4.25052e12i 0.105010 0.181882i
\(936\) 2.00701e12 + 3.47623e12i 0.0854687 + 0.148036i
\(937\) 5.69987e12 0.241567 0.120783 0.992679i \(-0.461459\pi\)
0.120783 + 0.992679i \(0.461459\pi\)
\(938\) 0 0
\(939\) −2.70367e12 −0.113490
\(940\) 1.31478e12 + 2.27726e12i 0.0549258 + 0.0951343i
\(941\) −8.58820e12 + 1.48752e13i −0.357066 + 0.618457i −0.987469 0.157811i \(-0.949556\pi\)
0.630403 + 0.776268i \(0.282890\pi\)
\(942\) 2.84484e12 4.92741e12i 0.117714 0.203887i
\(943\) 1.49323e13 + 2.58635e13i 0.614929 + 1.06509i
\(944\) −5.42833e13 −2.22481
\(945\) 0 0
\(946\) −1.67242e12 −0.0678944
\(947\) 6.22922e11 + 1.07893e12i 0.0251686 + 0.0435933i 0.878335 0.478045i \(-0.158654\pi\)
−0.853167 + 0.521638i \(0.825321\pi\)
\(948\) 1.22066e12 2.11424e12i 0.0490859 0.0850192i
\(949\) −2.66002e11 + 4.60728e11i −0.0106460 + 0.0184394i
\(950\) −2.12848e13 3.68663e13i −0.847839 1.46850i
\(951\) 3.96956e12 0.157373
\(952\) 0 0
\(953\) 4.96035e13 1.94802 0.974012 0.226496i \(-0.0727272\pi\)
0.974012 + 0.226496i \(0.0727272\pi\)
\(954\) −1.09677e13 1.89966e13i −0.428693 0.742519i
\(955\) −9.17121e11 + 1.58850e12i −0.0356789 + 0.0617977i
\(956\) 2.00681e11 3.47590e11i 0.00777044 0.0134588i
\(957\) 8.64427e11 + 1.49723e12i 0.0333138 + 0.0577012i
\(958\) 1.80408e13 0.692006
\(959\) 0 0
\(960\) −7.71171e10 −0.00293042
\(961\) −3.71513e12 6.43479e12i −0.140514 0.243377i
\(962\) 5.28594e12 9.15552e12i 0.198992 0.344663i
\(963\) −1.80845e13 + 3.13233e13i −0.677623 + 1.17368i
\(964\) −3.11809e12 5.40070e12i −0.116290 0.201420i
\(965\) −8.40757e12 −0.312103
\(966\) 0 0
\(967\) 3.34993e13 1.23202 0.616008 0.787740i \(-0.288749\pi\)
0.616008 + 0.787740i \(0.288749\pi\)
\(968\) −6.00994e12 1.04095e13i −0.220004 0.381059i
\(969\) −6.07708e12 + 1.05258e13i −0.221431 + 0.383530i
\(970\) −2.70612e12 + 4.68713e12i −0.0981463 + 0.169994i
\(971\) 1.63791e13 + 2.83695e13i 0.591295 + 1.02415i 0.994058 + 0.108849i \(0.0347164\pi\)
−0.402763 + 0.915304i \(0.631950\pi\)
\(972\) −7.85372e12 −0.282213
\(973\) 0 0
\(974\) −5.45797e13 −1.94319
\(975\) 7.44172e11 + 1.28894e12i 0.0263726 + 0.0456787i
\(976\) −1.96823e13 + 3.40907e13i −0.694306 + 1.20257i
\(977\) 2.18842e12 3.79045e12i 0.0768430 0.133096i −0.825043 0.565070i \(-0.808849\pi\)
0.901886 + 0.431974i \(0.142183\pi\)
\(978\) −5.90368e12 1.02255e13i −0.206347 0.357403i
\(979\) 1.05289e13 0.366320
\(980\) 0 0
\(981\) 4.59265e13 1.58326
\(982\) 2.03832e13 + 3.53047e13i 0.699471 + 1.21152i
\(983\) 1.23057e13 2.13140e13i 0.420353 0.728073i −0.575621 0.817717i \(-0.695239\pi\)
0.995974 + 0.0896436i \(0.0285728\pi\)
\(984\) −2.46290e12 + 4.26586e12i −0.0837468 + 0.145054i
\(985\) −1.04397e12 1.80820e12i −0.0353365 0.0612047i
\(986\) −4.27344e13 −1.43990
\(987\) 0 0
\(988\) 7.09580e12 0.236917
\(989\) 1.33178e12 + 2.30670e12i 0.0442637 + 0.0766670i
\(990\) −2.34999e12 + 4.07030e12i −0.0777513 + 0.134669i
\(991\) −4.78192e12 + 8.28253e12i −0.157496 + 0.272792i −0.933965 0.357364i \(-0.883676\pi\)
0.776469 + 0.630156i \(0.217009\pi\)
\(992\) −1.66047e13 2.87601e13i −0.544412 0.942949i
\(993\) 4.68681e12 0.152970
\(994\) 0 0
\(995\) −8.59417e12 −0.277971
\(996\) −7.26411e11 1.25818e12i −0.0233892 0.0405113i
\(997\) 7.55274e12 1.30817e13i 0.242090 0.419312i −0.719220 0.694783i \(-0.755501\pi\)
0.961309 + 0.275471i \(0.0888339\pi\)
\(998\) −5.00673e12 + 8.67191e12i −0.159760 + 0.276712i
\(999\) −6.10639e12 1.05766e13i −0.193972 0.335970i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 49.10.c.h.18.2 16
7.2 even 3 inner 49.10.c.h.30.2 16
7.3 odd 6 49.10.a.g.1.8 yes 8
7.4 even 3 49.10.a.g.1.7 8
7.5 odd 6 inner 49.10.c.h.30.1 16
7.6 odd 2 inner 49.10.c.h.18.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
49.10.a.g.1.7 8 7.4 even 3
49.10.a.g.1.8 yes 8 7.3 odd 6
49.10.c.h.18.1 16 7.6 odd 2 inner
49.10.c.h.18.2 16 1.1 even 1 trivial
49.10.c.h.30.1 16 7.5 odd 6 inner
49.10.c.h.30.2 16 7.2 even 3 inner