Properties

Label 484.2.g.f.403.3
Level $484$
Weight $2$
Character 484.403
Analytic conductor $3.865$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [484,2,Mod(215,484)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("484.215"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(484, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 484.g (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-5,0,-1,4,10,0,-5,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.86475945783\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 13 x^{14} - 25 x^{13} + 35 x^{12} - 30 x^{11} - 2 x^{10} + 60 x^{9} - 116 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 403.3
Root \(1.40874 + 0.124276i\) of defining polynomial
Character \(\chi\) \(=\) 484.403
Dual form 484.2.g.f.239.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.317132 + 1.37820i) q^{2} +(2.58584 + 0.840191i) q^{3} +(-1.79885 - 0.874140i) q^{4} +(1.88723 - 1.37116i) q^{5} +(-1.97800 + 3.29735i) q^{6} +(-0.399009 - 1.22802i) q^{7} +(1.77521 - 2.20196i) q^{8} +(3.55361 + 2.58185i) q^{9} +(1.29122 + 3.03582i) q^{10} +(-3.91711 - 3.77177i) q^{12} +(-0.172519 + 0.237451i) q^{13} +(1.81900 - 0.160468i) q^{14} +(6.03212 - 1.95995i) q^{15} +(2.47176 + 3.14490i) q^{16} +(1.74459 + 2.40122i) q^{17} +(-4.68526 + 4.07879i) q^{18} +(-0.529677 + 1.63018i) q^{19} +(-4.59344 + 0.816802i) q^{20} -3.51072i q^{21} +0.525735i q^{23} +(6.44048 - 4.20240i) q^{24} +(0.136498 - 0.420099i) q^{25} +(-0.272544 - 0.313068i) q^{26} +(2.22541 + 3.06301i) q^{27} +(-0.355706 + 2.55783i) q^{28} +(7.83802 - 2.54673i) q^{29} +(0.788227 + 8.93502i) q^{30} +(-2.61308 + 3.59660i) q^{31} +(-5.11817 + 2.40922i) q^{32} +(-3.86263 + 1.64289i) q^{34} +(-2.43684 - 1.77046i) q^{35} +(-4.13553 - 7.75072i) q^{36} +(-1.61424 - 4.96811i) q^{37} +(-2.07873 - 1.24698i) q^{38} +(-0.645610 + 0.469063i) q^{39} +(0.331012 - 6.58970i) q^{40} +(-5.32043 - 1.72871i) q^{41} +(4.83846 + 1.11336i) q^{42} -3.49429 q^{43} +10.2466 q^{45} +(-0.724567 - 0.166727i) q^{46} +(-7.28477 - 2.36696i) q^{47} +(3.74925 + 10.2090i) q^{48} +(4.31428 - 3.13451i) q^{49} +(0.535691 + 0.321349i) q^{50} +(2.49375 + 7.67498i) q^{51} +(0.517902 - 0.276335i) q^{52} +(-1.26920 - 0.922128i) q^{53} +(-4.92719 + 2.09567i) q^{54} +(-3.41238 - 1.30140i) q^{56} +(-2.73932 + 3.77036i) q^{57} +(1.02421 + 11.6100i) q^{58} +(-13.3851 + 4.34909i) q^{59} +(-12.5642 - 1.74725i) q^{60} +(-5.55273 - 7.64268i) q^{61} +(-4.12814 - 4.74194i) q^{62} +(1.75265 - 5.39410i) q^{63} +(-1.69724 - 7.81789i) q^{64} +0.684676i q^{65} +10.4249i q^{67} +(-1.03926 - 5.84447i) q^{68} +(-0.441718 + 1.35947i) q^{69} +(3.21285 - 2.79697i) q^{70} +(-2.11308 - 2.90841i) q^{71} +(11.9935 - 3.24157i) q^{72} +(-4.07207 + 1.32310i) q^{73} +(7.35896 - 0.649191i) q^{74} +(0.705927 - 0.971625i) q^{75} +(2.37782 - 2.46944i) q^{76} +(-0.441718 - 1.03853i) q^{78} +(7.96895 + 5.78978i) q^{79} +(8.97693 + 2.54600i) q^{80} +(-0.891031 - 2.74231i) q^{81} +(4.06978 - 6.78437i) q^{82} +(-3.04177 + 2.20997i) q^{83} +(-3.06886 + 6.31528i) q^{84} +(6.58490 + 2.13956i) q^{85} +(1.10815 - 4.81582i) q^{86} +22.4076 q^{87} +0.598152 q^{89} +(-3.24952 + 14.1218i) q^{90} +(0.360433 + 0.117112i) q^{91} +(0.459567 - 0.945722i) q^{92} +(-9.77886 + 7.10476i) q^{93} +(5.57237 - 9.28920i) q^{94} +(1.23560 + 3.80280i) q^{95} +(-15.2590 + 1.92962i) q^{96} +(6.73607 + 4.89404i) q^{97} +(2.95178 + 6.93999i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 5 q^{2} - q^{4} + 4 q^{5} + 10 q^{6} - 5 q^{8} + 10 q^{9} - 22 q^{12} - 2 q^{14} - 17 q^{16} - 10 q^{17} - 15 q^{18} - 24 q^{20} + 40 q^{24} - 4 q^{25} + 16 q^{26} - 30 q^{28} + 40 q^{29} + 30 q^{30}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/484\mathbb{Z}\right)^\times\).

\(n\) \(243\) \(365\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.317132 + 1.37820i −0.224246 + 0.974533i
\(3\) 2.58584 + 0.840191i 1.49294 + 0.485085i 0.937949 0.346774i \(-0.112723\pi\)
0.554988 + 0.831858i \(0.312723\pi\)
\(4\) −1.79885 0.874140i −0.899427 0.437070i
\(5\) 1.88723 1.37116i 0.843997 0.613199i −0.0794877 0.996836i \(-0.525328\pi\)
0.923484 + 0.383636i \(0.125328\pi\)
\(6\) −1.97800 + 3.29735i −0.807516 + 1.34614i
\(7\) −0.399009 1.22802i −0.150811 0.464149i 0.846901 0.531750i \(-0.178466\pi\)
−0.997712 + 0.0676009i \(0.978466\pi\)
\(8\) 1.77521 2.20196i 0.627632 0.778510i
\(9\) 3.55361 + 2.58185i 1.18454 + 0.860616i
\(10\) 1.29122 + 3.03582i 0.408320 + 0.960010i
\(11\) 0 0
\(12\) −3.91711 3.77177i −1.13077 1.08882i
\(13\) −0.172519 + 0.237451i −0.0478480 + 0.0658572i −0.832271 0.554370i \(-0.812959\pi\)
0.784423 + 0.620227i \(0.212959\pi\)
\(14\) 1.81900 0.160468i 0.486148 0.0428868i
\(15\) 6.03212 1.95995i 1.55749 0.506058i
\(16\) 2.47176 + 3.14490i 0.617939 + 0.786226i
\(17\) 1.74459 + 2.40122i 0.423126 + 0.582382i 0.966358 0.257200i \(-0.0827999\pi\)
−0.543233 + 0.839582i \(0.682800\pi\)
\(18\) −4.68526 + 4.07879i −1.10433 + 0.961379i
\(19\) −0.529677 + 1.63018i −0.121516 + 0.373989i −0.993250 0.115991i \(-0.962996\pi\)
0.871734 + 0.489979i \(0.162996\pi\)
\(20\) −4.59344 + 0.816802i −1.02712 + 0.182643i
\(21\) 3.51072i 0.766102i
\(22\) 0 0
\(23\) 0.525735i 0.109623i 0.998497 + 0.0548117i \(0.0174559\pi\)
−0.998497 + 0.0548117i \(0.982544\pi\)
\(24\) 6.44048 4.20240i 1.31466 0.857811i
\(25\) 0.136498 0.420099i 0.0272997 0.0840198i
\(26\) −0.272544 0.313068i −0.0534502 0.0613977i
\(27\) 2.22541 + 3.06301i 0.428280 + 0.589477i
\(28\) −0.355706 + 2.55783i −0.0672221 + 0.483384i
\(29\) 7.83802 2.54673i 1.45548 0.472915i 0.528796 0.848749i \(-0.322644\pi\)
0.926687 + 0.375834i \(0.122644\pi\)
\(30\) 0.788227 + 8.93502i 0.143910 + 1.63130i
\(31\) −2.61308 + 3.59660i −0.469324 + 0.645969i −0.976410 0.215927i \(-0.930723\pi\)
0.507086 + 0.861896i \(0.330723\pi\)
\(32\) −5.11817 + 2.40922i −0.904773 + 0.425894i
\(33\) 0 0
\(34\) −3.86263 + 1.64289i −0.662435 + 0.281753i
\(35\) −2.43684 1.77046i −0.411900 0.299263i
\(36\) −4.13553 7.75072i −0.689255 1.29179i
\(37\) −1.61424 4.96811i −0.265379 0.816752i −0.991606 0.129297i \(-0.958728\pi\)
0.726227 0.687455i \(-0.241272\pi\)
\(38\) −2.07873 1.24698i −0.337215 0.202287i
\(39\) −0.645610 + 0.469063i −0.103380 + 0.0751103i
\(40\) 0.331012 6.58970i 0.0523376 1.04192i
\(41\) −5.32043 1.72871i −0.830911 0.269979i −0.137482 0.990504i \(-0.543901\pi\)
−0.693429 + 0.720525i \(0.743901\pi\)
\(42\) 4.83846 + 1.11336i 0.746591 + 0.171795i
\(43\) −3.49429 −0.532874 −0.266437 0.963852i \(-0.585846\pi\)
−0.266437 + 0.963852i \(0.585846\pi\)
\(44\) 0 0
\(45\) 10.2466 1.52747
\(46\) −0.724567 0.166727i −0.106832 0.0245826i
\(47\) −7.28477 2.36696i −1.06259 0.345257i −0.274994 0.961446i \(-0.588676\pi\)
−0.787598 + 0.616189i \(0.788676\pi\)
\(48\) 3.74925 + 10.2090i 0.541158 + 1.47354i
\(49\) 4.31428 3.13451i 0.616326 0.447787i
\(50\) 0.535691 + 0.321349i 0.0757582 + 0.0454455i
\(51\) 2.49375 + 7.67498i 0.349195 + 1.07471i
\(52\) 0.517902 0.276335i 0.0718200 0.0383208i
\(53\) −1.26920 0.922128i −0.174338 0.126664i 0.497194 0.867639i \(-0.334364\pi\)
−0.671532 + 0.740975i \(0.734364\pi\)
\(54\) −4.92719 + 2.09567i −0.670505 + 0.285185i
\(55\) 0 0
\(56\) −3.41238 1.30140i −0.455999 0.173907i
\(57\) −2.73932 + 3.77036i −0.362832 + 0.499396i
\(58\) 1.02421 + 11.6100i 0.134485 + 1.52447i
\(59\) −13.3851 + 4.34909i −1.74260 + 0.566204i −0.995172 0.0981434i \(-0.968710\pi\)
−0.747424 + 0.664347i \(0.768710\pi\)
\(60\) −12.5642 1.74725i −1.62203 0.225569i
\(61\) −5.55273 7.64268i −0.710954 0.978545i −0.999776 0.0211619i \(-0.993263\pi\)
0.288822 0.957383i \(-0.406737\pi\)
\(62\) −4.12814 4.74194i −0.524274 0.602227i
\(63\) 1.75265 5.39410i 0.220813 0.679592i
\(64\) −1.69724 7.81789i −0.212156 0.977236i
\(65\) 0.684676i 0.0849236i
\(66\) 0 0
\(67\) 10.4249i 1.27361i 0.771026 + 0.636803i \(0.219744\pi\)
−0.771026 + 0.636803i \(0.780256\pi\)
\(68\) −1.03926 5.84447i −0.126029 0.708746i
\(69\) −0.441718 + 1.35947i −0.0531766 + 0.163661i
\(70\) 3.21285 2.79697i 0.384009 0.334302i
\(71\) −2.11308 2.90841i −0.250777 0.345164i 0.665007 0.746838i \(-0.268429\pi\)
−0.915783 + 0.401673i \(0.868429\pi\)
\(72\) 11.9935 3.24157i 1.41345 0.382023i
\(73\) −4.07207 + 1.32310i −0.476600 + 0.154857i −0.537459 0.843290i \(-0.680616\pi\)
0.0608594 + 0.998146i \(0.480616\pi\)
\(74\) 7.35896 0.649191i 0.855462 0.0754669i
\(75\) 0.705927 0.971625i 0.0815134 0.112194i
\(76\) 2.37782 2.46944i 0.272754 0.283265i
\(77\) 0 0
\(78\) −0.441718 1.03853i −0.0500147 0.117591i
\(79\) 7.96895 + 5.78978i 0.896577 + 0.651401i 0.937585 0.347757i \(-0.113057\pi\)
−0.0410074 + 0.999159i \(0.513057\pi\)
\(80\) 8.97693 + 2.54600i 1.00365 + 0.284652i
\(81\) −0.891031 2.74231i −0.0990034 0.304701i
\(82\) 4.06978 6.78437i 0.449432 0.749208i
\(83\) −3.04177 + 2.20997i −0.333877 + 0.242576i −0.742074 0.670318i \(-0.766158\pi\)
0.408197 + 0.912894i \(0.366158\pi\)
\(84\) −3.06886 + 6.31528i −0.334840 + 0.689053i
\(85\) 6.58490 + 2.13956i 0.714233 + 0.232068i
\(86\) 1.10815 4.81582i 0.119495 0.519303i
\(87\) 22.4076 2.40235
\(88\) 0 0
\(89\) 0.598152 0.0634039 0.0317020 0.999497i \(-0.489907\pi\)
0.0317020 + 0.999497i \(0.489907\pi\)
\(90\) −3.24952 + 14.1218i −0.342530 + 1.48857i
\(91\) 0.360433 + 0.117112i 0.0377836 + 0.0122766i
\(92\) 0.459567 0.945722i 0.0479131 0.0985983i
\(93\) −9.77886 + 7.10476i −1.01402 + 0.736729i
\(94\) 5.57237 9.28920i 0.574746 0.958108i
\(95\) 1.23560 + 3.80280i 0.126770 + 0.390159i
\(96\) −15.2590 + 1.92962i −1.55736 + 0.196941i
\(97\) 6.73607 + 4.89404i 0.683944 + 0.496914i 0.874664 0.484730i \(-0.161082\pi\)
−0.190720 + 0.981645i \(0.561082\pi\)
\(98\) 2.95178 + 6.93999i 0.298175 + 0.701045i
\(99\) 0 0
\(100\) −0.612766 + 0.636378i −0.0612766 + 0.0636378i
\(101\) −4.51580 + 6.21547i −0.449339 + 0.618462i −0.972255 0.233922i \(-0.924844\pi\)
0.522916 + 0.852384i \(0.324844\pi\)
\(102\) −11.3685 + 1.00290i −1.12565 + 0.0993020i
\(103\) 0.392207 0.127436i 0.0386454 0.0125566i −0.289631 0.957139i \(-0.593532\pi\)
0.328276 + 0.944582i \(0.393532\pi\)
\(104\) 0.216601 + 0.801405i 0.0212395 + 0.0785843i
\(105\) −4.81374 6.62555i −0.469773 0.646587i
\(106\) 1.67338 1.45677i 0.162533 0.141494i
\(107\) 1.59944 4.92256i 0.154623 0.475882i −0.843499 0.537131i \(-0.819508\pi\)
0.998123 + 0.0612485i \(0.0195082\pi\)
\(108\) −1.32568 7.45524i −0.127564 0.717381i
\(109\) 12.5948i 1.20636i −0.797604 0.603181i \(-0.793899\pi\)
0.797604 0.603181i \(-0.206101\pi\)
\(110\) 0 0
\(111\) 14.2030i 1.34809i
\(112\) 2.87576 4.29022i 0.271734 0.405388i
\(113\) −0.822214 + 2.53051i −0.0773474 + 0.238051i −0.982253 0.187562i \(-0.939941\pi\)
0.904905 + 0.425613i \(0.139941\pi\)
\(114\) −4.32757 4.97103i −0.405314 0.465579i
\(115\) 0.720865 + 0.992186i 0.0672210 + 0.0925218i
\(116\) −16.3256 2.27034i −1.51580 0.210795i
\(117\) −1.22613 + 0.398393i −0.113355 + 0.0368314i
\(118\) −1.74906 19.8266i −0.161014 1.82519i
\(119\) 2.25265 3.10051i 0.206500 0.284223i
\(120\) 6.39255 16.7618i 0.583558 1.53014i
\(121\) 0 0
\(122\) 12.2941 5.22902i 1.11305 0.473413i
\(123\) −12.3053 8.94035i −1.10954 0.806125i
\(124\) 7.84450 4.18556i 0.704457 0.375875i
\(125\) 3.28588 + 10.1129i 0.293898 + 0.904525i
\(126\) 6.87831 + 4.12613i 0.612768 + 0.367585i
\(127\) 16.1527 11.7356i 1.43332 1.04137i 0.443937 0.896058i \(-0.353581\pi\)
0.989386 0.145312i \(-0.0464187\pi\)
\(128\) 11.3128 + 0.140163i 0.999923 + 0.0123888i
\(129\) −9.03569 2.93587i −0.795548 0.258489i
\(130\) −0.943619 0.217133i −0.0827608 0.0190438i
\(131\) −20.5136 −1.79228 −0.896139 0.443773i \(-0.853640\pi\)
−0.896139 + 0.443773i \(0.853640\pi\)
\(132\) 0 0
\(133\) 2.21324 0.191913
\(134\) −14.3676 3.30607i −1.24117 0.285601i
\(135\) 8.39974 + 2.72924i 0.722934 + 0.234896i
\(136\) 8.38441 + 0.421163i 0.718958 + 0.0361145i
\(137\) 5.06882 3.68271i 0.433058 0.314635i −0.349812 0.936820i \(-0.613755\pi\)
0.782871 + 0.622185i \(0.213755\pi\)
\(138\) −1.73353 1.03991i −0.147568 0.0885226i
\(139\) −4.16564 12.8205i −0.353325 1.08742i −0.956974 0.290173i \(-0.906287\pi\)
0.603649 0.797250i \(-0.293713\pi\)
\(140\) 2.83588 + 5.31494i 0.239675 + 0.449195i
\(141\) −16.8486 12.2412i −1.41890 1.03089i
\(142\) 4.67848 1.98989i 0.392609 0.166988i
\(143\) 0 0
\(144\) 0.663995 + 17.5575i 0.0553329 + 1.46312i
\(145\) 11.3002 15.5534i 0.938431 1.29164i
\(146\) −0.532104 6.03171i −0.0440372 0.499188i
\(147\) 13.7896 4.48053i 1.13735 0.369548i
\(148\) −1.43905 + 10.3480i −0.118289 + 0.850599i
\(149\) 10.2569 + 14.1174i 0.840279 + 1.15654i 0.985922 + 0.167207i \(0.0534750\pi\)
−0.145643 + 0.989337i \(0.546525\pi\)
\(150\) 1.11522 + 1.28104i 0.0910572 + 0.104596i
\(151\) −3.03594 + 9.34365i −0.247061 + 0.760375i 0.748230 + 0.663440i \(0.230904\pi\)
−0.995291 + 0.0969356i \(0.969096\pi\)
\(152\) 2.64930 + 4.06024i 0.214886 + 0.329329i
\(153\) 13.0373i 1.05400i
\(154\) 0 0
\(155\) 10.3706i 0.832985i
\(156\) 1.57139 0.279423i 0.125812 0.0223717i
\(157\) 4.76013 14.6502i 0.379900 1.16921i −0.560213 0.828349i \(-0.689281\pi\)
0.940113 0.340864i \(-0.110719\pi\)
\(158\) −10.5067 + 9.14666i −0.835866 + 0.727669i
\(159\) −2.50719 3.45085i −0.198833 0.273670i
\(160\) −6.35577 + 11.5646i −0.502468 + 0.914259i
\(161\) 0.645616 0.209773i 0.0508816 0.0165324i
\(162\) 4.06202 0.358342i 0.319142 0.0281540i
\(163\) 6.32884 8.71090i 0.495713 0.682290i −0.485716 0.874117i \(-0.661441\pi\)
0.981429 + 0.191827i \(0.0614411\pi\)
\(164\) 8.05954 + 7.76050i 0.629344 + 0.605994i
\(165\) 0 0
\(166\) −2.08114 4.89301i −0.161528 0.379771i
\(167\) −5.19553 3.77477i −0.402042 0.292101i 0.368330 0.929695i \(-0.379930\pi\)
−0.770372 + 0.637594i \(0.779930\pi\)
\(168\) −7.73046 6.23227i −0.596418 0.480830i
\(169\) 3.99060 + 12.2818i 0.306969 + 0.944754i
\(170\) −5.03702 + 8.39677i −0.386322 + 0.644003i
\(171\) −6.09114 + 4.42547i −0.465801 + 0.338424i
\(172\) 6.28572 + 3.05450i 0.479282 + 0.232904i
\(173\) 3.44076 + 1.11797i 0.261596 + 0.0849977i 0.436879 0.899520i \(-0.356084\pi\)
−0.175283 + 0.984518i \(0.556084\pi\)
\(174\) −7.10617 + 30.8821i −0.538717 + 2.34117i
\(175\) −0.570356 −0.0431148
\(176\) 0 0
\(177\) −38.2659 −2.87624
\(178\) −0.189693 + 0.824371i −0.0142181 + 0.0617892i
\(179\) 4.76264 + 1.54748i 0.355976 + 0.115664i 0.481545 0.876421i \(-0.340076\pi\)
−0.125569 + 0.992085i \(0.540076\pi\)
\(180\) −18.4322 8.95697i −1.37385 0.667613i
\(181\) −7.92994 + 5.76144i −0.589428 + 0.428244i −0.842111 0.539305i \(-0.818687\pi\)
0.252683 + 0.967549i \(0.418687\pi\)
\(182\) −0.275708 + 0.459607i −0.0204368 + 0.0340684i
\(183\) −7.93718 24.4281i −0.586733 1.80578i
\(184\) 1.15765 + 0.933292i 0.0853429 + 0.0688032i
\(185\) −9.85849 7.16261i −0.724811 0.526606i
\(186\) −6.69057 15.7303i −0.490576 1.15340i
\(187\) 0 0
\(188\) 11.0352 + 10.6257i 0.804823 + 0.774961i
\(189\) 2.87350 3.95503i 0.209016 0.287686i
\(190\) −5.63286 + 0.496918i −0.408650 + 0.0360502i
\(191\) 11.1175 3.61231i 0.804437 0.261378i 0.122197 0.992506i \(-0.461006\pi\)
0.682240 + 0.731128i \(0.261006\pi\)
\(192\) 2.17971 21.6418i 0.157307 1.56186i
\(193\) −0.678643 0.934071i −0.0488498 0.0672359i 0.783893 0.620896i \(-0.213231\pi\)
−0.832743 + 0.553660i \(0.813231\pi\)
\(194\) −8.88117 + 7.73157i −0.637631 + 0.555095i
\(195\) −0.575259 + 1.77046i −0.0411951 + 0.126786i
\(196\) −10.5008 + 1.86724i −0.750055 + 0.133374i
\(197\) 15.6248i 1.11322i 0.830774 + 0.556610i \(0.187898\pi\)
−0.830774 + 0.556610i \(0.812102\pi\)
\(198\) 0 0
\(199\) 10.9684i 0.777526i −0.921338 0.388763i \(-0.872902\pi\)
0.921338 0.388763i \(-0.127098\pi\)
\(200\) −0.682727 1.04633i −0.0482761 0.0739866i
\(201\) −8.75892 + 26.9572i −0.617807 + 1.90141i
\(202\) −7.13404 8.19479i −0.501949 0.576583i
\(203\) −6.25488 8.60910i −0.439007 0.604241i
\(204\) 2.22311 15.9861i 0.155649 1.11925i
\(205\) −12.4112 + 4.03265i −0.866838 + 0.281653i
\(206\) 0.0512504 + 0.580953i 0.00357078 + 0.0404769i
\(207\) −1.35737 + 1.86826i −0.0943436 + 0.129853i
\(208\) −1.17319 + 0.0443680i −0.0813458 + 0.00307637i
\(209\) 0 0
\(210\) 10.6579 4.53311i 0.735465 0.312815i
\(211\) 15.6170 + 11.3464i 1.07512 + 0.781120i 0.976826 0.214037i \(-0.0686613\pi\)
0.0982944 + 0.995157i \(0.468661\pi\)
\(212\) 1.47704 + 2.76823i 0.101443 + 0.190123i
\(213\) −3.02048 9.29607i −0.206960 0.636956i
\(214\) 6.27703 + 3.76544i 0.429089 + 0.257400i
\(215\) −6.59454 + 4.79122i −0.449744 + 0.326758i
\(216\) 10.6952 + 0.537238i 0.727716 + 0.0365544i
\(217\) 5.45936 + 1.77385i 0.370605 + 0.120417i
\(218\) 17.3581 + 3.99421i 1.17564 + 0.270522i
\(219\) −11.6414 −0.786652
\(220\) 0 0
\(221\) −0.871148 −0.0585998
\(222\) 19.5746 + 4.50423i 1.31376 + 0.302304i
\(223\) −10.3085 3.34944i −0.690310 0.224295i −0.0572062 0.998362i \(-0.518219\pi\)
−0.633103 + 0.774067i \(0.718219\pi\)
\(224\) 5.00078 + 5.32393i 0.334128 + 0.355720i
\(225\) 1.56969 1.14045i 0.104646 0.0760299i
\(226\) −3.22680 1.93568i −0.214643 0.128759i
\(227\) 7.41543 + 22.8224i 0.492180 + 1.51477i 0.821306 + 0.570487i \(0.193246\pi\)
−0.329127 + 0.944286i \(0.606754\pi\)
\(228\) 8.22347 4.38777i 0.544612 0.290587i
\(229\) 19.8867 + 14.4485i 1.31415 + 0.954784i 0.999985 + 0.00541531i \(0.00172376\pi\)
0.314163 + 0.949369i \(0.398276\pi\)
\(230\) −1.59604 + 0.678840i −0.105240 + 0.0447614i
\(231\) 0 0
\(232\) 8.30636 21.7800i 0.545339 1.42992i
\(233\) −8.40808 + 11.5727i −0.550831 + 0.758154i −0.990125 0.140189i \(-0.955229\pi\)
0.439293 + 0.898344i \(0.355229\pi\)
\(234\) −0.160220 1.81619i −0.0104739 0.118728i
\(235\) −16.9935 + 5.52153i −1.10854 + 0.360185i
\(236\) 27.8796 + 3.87710i 1.81481 + 0.252378i
\(237\) 15.7419 + 21.6669i 1.02255 + 1.40742i
\(238\) 3.55873 + 4.08787i 0.230678 + 0.264977i
\(239\) −6.10738 + 18.7966i −0.395053 + 1.21585i 0.533867 + 0.845569i \(0.320738\pi\)
−0.928920 + 0.370280i \(0.879262\pi\)
\(240\) 21.0738 + 14.1259i 1.36031 + 0.911823i
\(241\) 6.53055i 0.420669i 0.977629 + 0.210335i \(0.0674554\pi\)
−0.977629 + 0.210335i \(0.932545\pi\)
\(242\) 0 0
\(243\) 19.1981i 1.23156i
\(244\) 3.30778 + 18.6019i 0.211759 + 1.19087i
\(245\) 3.84416 11.8311i 0.245594 0.755862i
\(246\) 16.2240 14.1239i 1.03440 0.900508i
\(247\) −0.295709 0.407009i −0.0188155 0.0258973i
\(248\) 3.28079 + 12.1386i 0.208330 + 0.770804i
\(249\) −9.72233 + 3.15898i −0.616128 + 0.200192i
\(250\) −14.9796 + 1.32147i −0.947394 + 0.0835770i
\(251\) 2.80407 3.85947i 0.176991 0.243608i −0.711300 0.702889i \(-0.751893\pi\)
0.888291 + 0.459281i \(0.151893\pi\)
\(252\) −7.86796 + 8.17114i −0.495635 + 0.514733i
\(253\) 0 0
\(254\) 11.0515 + 25.9834i 0.693432 + 1.63034i
\(255\) 15.2299 + 11.0652i 0.953732 + 0.692927i
\(256\) −3.78083 + 15.5469i −0.236302 + 0.971680i
\(257\) −0.938463 2.88829i −0.0585397 0.180167i 0.917511 0.397711i \(-0.130195\pi\)
−0.976050 + 0.217544i \(0.930195\pi\)
\(258\) 6.91171 11.5219i 0.430305 0.717322i
\(259\) −5.45686 + 3.96464i −0.339073 + 0.246351i
\(260\) 0.598503 1.23163i 0.0371176 0.0763826i
\(261\) 34.4285 + 11.1865i 2.13107 + 0.692427i
\(262\) 6.50550 28.2717i 0.401911 1.74663i
\(263\) −14.1671 −0.873580 −0.436790 0.899564i \(-0.643885\pi\)
−0.436790 + 0.899564i \(0.643885\pi\)
\(264\) 0 0
\(265\) −3.65966 −0.224811
\(266\) −0.701890 + 3.05029i −0.0430357 + 0.187025i
\(267\) 1.54673 + 0.502562i 0.0946581 + 0.0307563i
\(268\) 9.11284 18.7529i 0.556655 1.14552i
\(269\) −0.810435 + 0.588816i −0.0494131 + 0.0359007i −0.612218 0.790689i \(-0.709722\pi\)
0.562805 + 0.826590i \(0.309722\pi\)
\(270\) −6.42525 + 10.7110i −0.391029 + 0.651848i
\(271\) 5.49774 + 16.9203i 0.333964 + 1.02784i 0.967230 + 0.253902i \(0.0817140\pi\)
−0.633266 + 0.773934i \(0.718286\pi\)
\(272\) −3.23941 + 11.4218i −0.196418 + 0.692549i
\(273\) 0.833625 + 0.605664i 0.0504533 + 0.0366565i
\(274\) 3.46802 + 8.15373i 0.209511 + 0.492585i
\(275\) 0 0
\(276\) 1.98295 2.05936i 0.119360 0.123959i
\(277\) 11.3952 15.6842i 0.684672 0.942370i −0.315306 0.948990i \(-0.602107\pi\)
0.999978 + 0.00661973i \(0.00210714\pi\)
\(278\) 18.9903 1.67528i 1.13896 0.100477i
\(279\) −18.5718 + 6.03433i −1.11186 + 0.361266i
\(280\) −8.22439 + 2.22286i −0.491501 + 0.132841i
\(281\) −8.63830 11.8896i −0.515318 0.709274i 0.469487 0.882940i \(-0.344439\pi\)
−0.984805 + 0.173665i \(0.944439\pi\)
\(282\) 22.2140 19.3386i 1.32282 1.15159i
\(283\) 0.771579 2.37467i 0.0458656 0.141160i −0.925501 0.378745i \(-0.876356\pi\)
0.971367 + 0.237585i \(0.0763558\pi\)
\(284\) 1.25877 + 7.07893i 0.0746943 + 0.420057i
\(285\) 10.8716i 0.643977i
\(286\) 0 0
\(287\) 7.22339i 0.426383i
\(288\) −24.4082 4.65291i −1.43827 0.274175i
\(289\) 2.53101 7.78965i 0.148883 0.458215i
\(290\) 17.8520 + 20.5064i 1.04831 + 1.20418i
\(291\) 13.3065 + 18.3148i 0.780040 + 1.07363i
\(292\) 8.48164 + 1.17950i 0.496350 + 0.0690253i
\(293\) −7.15088 + 2.32346i −0.417759 + 0.135738i −0.510351 0.859966i \(-0.670485\pi\)
0.0925923 + 0.995704i \(0.470485\pi\)
\(294\) 1.80191 + 20.4258i 0.105090 + 1.19126i
\(295\) −19.2976 + 26.5609i −1.12355 + 1.54643i
\(296\) −13.8052 5.26497i −0.802410 0.306020i
\(297\) 0 0
\(298\) −22.7094 + 9.65896i −1.31552 + 0.559529i
\(299\) −0.124837 0.0906991i −0.00721949 0.00524527i
\(300\) −2.11920 + 1.13073i −0.122352 + 0.0652829i
\(301\) 1.39425 + 4.29107i 0.0803635 + 0.247333i
\(302\) −11.9146 7.14729i −0.685608 0.411280i
\(303\) −16.8993 + 12.2781i −0.970841 + 0.705358i
\(304\) −6.43599 + 2.36362i −0.369129 + 0.135563i
\(305\) −20.9586 6.80986i −1.20009 0.389932i
\(306\) −17.9679 4.13454i −1.02716 0.236356i
\(307\) 25.7991 1.47243 0.736216 0.676747i \(-0.236611\pi\)
0.736216 + 0.676747i \(0.236611\pi\)
\(308\) 0 0
\(309\) 1.12126 0.0637861
\(310\) −14.2927 3.28884i −0.811771 0.186794i
\(311\) −2.81928 0.916039i −0.159867 0.0519438i 0.227990 0.973663i \(-0.426785\pi\)
−0.387857 + 0.921720i \(0.626785\pi\)
\(312\) −0.113237 + 2.25429i −0.00641078 + 0.127624i
\(313\) −0.488641 + 0.355018i −0.0276196 + 0.0200668i −0.601509 0.798866i \(-0.705434\pi\)
0.573890 + 0.818933i \(0.305434\pi\)
\(314\) 18.6813 + 11.2064i 1.05424 + 0.632416i
\(315\) −4.08849 12.5831i −0.230360 0.708976i
\(316\) −9.27390 17.3810i −0.521698 0.977755i
\(317\) −18.5633 13.4870i −1.04262 0.757506i −0.0718223 0.997417i \(-0.522881\pi\)
−0.970795 + 0.239912i \(0.922881\pi\)
\(318\) 5.55106 2.36102i 0.311288 0.132400i
\(319\) 0 0
\(320\) −13.9226 12.4270i −0.778299 0.694690i
\(321\) 8.27179 11.3851i 0.461686 0.635456i
\(322\) 0.0843636 + 0.956311i 0.00470140 + 0.0532932i
\(323\) −4.83849 + 1.57212i −0.269221 + 0.0874752i
\(324\) −0.794330 + 5.71191i −0.0441294 + 0.317328i
\(325\) 0.0762046 + 0.104887i 0.00422707 + 0.00581806i
\(326\) 9.99826 + 11.4849i 0.553752 + 0.636089i
\(327\) 10.5820 32.5682i 0.585188 1.80102i
\(328\) −13.2514 + 8.64653i −0.731688 + 0.477425i
\(329\) 9.89031i 0.545270i
\(330\) 0 0
\(331\) 4.43442i 0.243738i −0.992546 0.121869i \(-0.961111\pi\)
0.992546 0.121869i \(-0.0388887\pi\)
\(332\) 7.40352 1.31649i 0.406321 0.0722517i
\(333\) 7.09054 21.8224i 0.388559 1.19586i
\(334\) 6.85005 5.96336i 0.374818 0.326301i
\(335\) 14.2942 + 19.6743i 0.780975 + 1.07492i
\(336\) 11.0409 8.67765i 0.602329 0.473404i
\(337\) −16.8925 + 5.48871i −0.920193 + 0.298989i −0.730546 0.682863i \(-0.760734\pi\)
−0.189647 + 0.981852i \(0.560734\pi\)
\(338\) −18.1923 + 1.60488i −0.989530 + 0.0872941i
\(339\) −4.25223 + 5.85269i −0.230949 + 0.317875i
\(340\) −9.97500 9.60490i −0.540971 0.520899i
\(341\) 0 0
\(342\) −4.16748 9.79825i −0.225351 0.529829i
\(343\) −12.8830 9.36007i −0.695618 0.505396i
\(344\) −6.20311 + 7.69428i −0.334449 + 0.414848i
\(345\) 1.03042 + 3.17130i 0.0554758 + 0.170737i
\(346\) −2.63196 + 4.38750i −0.141495 + 0.235873i
\(347\) −3.13936 + 2.28088i −0.168530 + 0.122444i −0.668853 0.743395i \(-0.733214\pi\)
0.500323 + 0.865839i \(0.333214\pi\)
\(348\) −40.3080 19.5874i −2.16074 1.04999i
\(349\) 18.7530 + 6.09320i 1.00382 + 0.326162i 0.764392 0.644752i \(-0.223039\pi\)
0.239431 + 0.970913i \(0.423039\pi\)
\(350\) 0.180878 0.786063i 0.00966833 0.0420168i
\(351\) −1.11124 −0.0593137
\(352\) 0 0
\(353\) −1.59623 −0.0849587 −0.0424794 0.999097i \(-0.513526\pi\)
−0.0424794 + 0.999097i \(0.513526\pi\)
\(354\) 12.1353 52.7380i 0.644986 2.80299i
\(355\) −7.97575 2.59148i −0.423309 0.137541i
\(356\) −1.07599 0.522868i −0.0570272 0.0277120i
\(357\) 8.43002 6.12477i 0.446164 0.324157i
\(358\) −3.64311 + 6.07310i −0.192544 + 0.320973i
\(359\) −4.76587 14.6679i −0.251533 0.774140i −0.994493 0.104803i \(-0.966579\pi\)
0.742960 0.669336i \(-0.233421\pi\)
\(360\) 18.1899 22.5626i 0.958692 1.18915i
\(361\) 12.9944 + 9.44098i 0.683916 + 0.496894i
\(362\) −5.42556 12.7562i −0.285161 0.670449i
\(363\) 0 0
\(364\) −0.545994 0.525735i −0.0286178 0.0275560i
\(365\) −5.87078 + 8.08044i −0.307291 + 0.422949i
\(366\) 36.1839 3.19206i 1.89136 0.166852i
\(367\) 10.0355 3.26074i 0.523850 0.170209i −0.0351418 0.999382i \(-0.511188\pi\)
0.558992 + 0.829173i \(0.311188\pi\)
\(368\) −1.65339 + 1.29949i −0.0861888 + 0.0677406i
\(369\) −14.4434 19.8797i −0.751896 1.03490i
\(370\) 12.9979 11.3155i 0.675731 0.588262i
\(371\) −0.625972 + 1.92654i −0.0324989 + 0.100021i
\(372\) 23.8013 4.23233i 1.23404 0.219436i
\(373\) 37.4953i 1.94143i −0.240225 0.970717i \(-0.577221\pi\)
0.240225 0.970717i \(-0.422779\pi\)
\(374\) 0 0
\(375\) 28.9111i 1.49296i
\(376\) −18.1440 + 11.8389i −0.935703 + 0.610544i
\(377\) −0.747480 + 2.30051i −0.0384972 + 0.118482i
\(378\) 4.53953 + 5.21451i 0.233488 + 0.268205i
\(379\) −12.5368 17.2555i −0.643974 0.886354i 0.354846 0.934925i \(-0.384533\pi\)
−0.998820 + 0.0485707i \(0.984533\pi\)
\(380\) 1.10151 7.92077i 0.0565061 0.406327i
\(381\) 51.6286 16.7751i 2.64501 0.859417i
\(382\) 1.45275 + 16.4677i 0.0743290 + 0.842563i
\(383\) 16.9465 23.3249i 0.865928 1.19185i −0.114195 0.993458i \(-0.536429\pi\)
0.980123 0.198389i \(-0.0635710\pi\)
\(384\) 29.1355 + 9.86739i 1.48681 + 0.503543i
\(385\) 0 0
\(386\) 1.50255 0.639079i 0.0764780 0.0325283i
\(387\) −12.4173 9.02173i −0.631209 0.458600i
\(388\) −7.83913 14.6919i −0.397972 0.745870i
\(389\) −10.7783 33.1721i −0.546480 1.68189i −0.717446 0.696615i \(-0.754689\pi\)
0.170966 0.985277i \(-0.445311\pi\)
\(390\) −2.25762 1.35429i −0.114319 0.0685772i
\(391\) −1.26241 + 0.917193i −0.0638427 + 0.0463845i
\(392\) 0.756705 15.0643i 0.0382194 0.760862i
\(393\) −53.0448 17.2353i −2.67576 0.869406i
\(394\) −21.5340 4.95512i −1.08487 0.249635i
\(395\) 22.9780 1.15615
\(396\) 0 0
\(397\) 16.9102 0.848698 0.424349 0.905499i \(-0.360503\pi\)
0.424349 + 0.905499i \(0.360503\pi\)
\(398\) 15.1166 + 3.47842i 0.757725 + 0.174357i
\(399\) 5.72310 + 1.85955i 0.286513 + 0.0930939i
\(400\) 1.65856 0.609108i 0.0829281 0.0304554i
\(401\) −12.8310 + 9.32226i −0.640749 + 0.465532i −0.860108 0.510113i \(-0.829604\pi\)
0.219358 + 0.975644i \(0.429604\pi\)
\(402\) −34.3746 20.6205i −1.71445 1.02846i
\(403\) −0.403213 1.24096i −0.0200855 0.0618167i
\(404\) 13.5565 7.23328i 0.674459 0.359869i
\(405\) −5.44172 3.95364i −0.270401 0.196458i
\(406\) 13.8487 5.89024i 0.687298 0.292328i
\(407\) 0 0
\(408\) 21.3269 + 8.13357i 1.05584 + 0.402672i
\(409\) −16.2664 + 22.3887i −0.804320 + 1.10705i 0.187855 + 0.982197i \(0.439846\pi\)
−0.992175 + 0.124855i \(0.960154\pi\)
\(410\) −1.62179 18.3840i −0.0800947 0.907921i
\(411\) 16.2013 5.26414i 0.799153 0.259661i
\(412\) −0.816921 0.113606i −0.0402468 0.00559695i
\(413\) 10.6816 + 14.7019i 0.525606 + 0.723435i
\(414\) −2.14436 2.46321i −0.105390 0.121060i
\(415\) −2.71031 + 8.34147i −0.133044 + 0.409467i
\(416\) 0.310907 1.63095i 0.0152435 0.0799640i
\(417\) 36.6518i 1.79485i
\(418\) 0 0
\(419\) 22.9710i 1.12221i −0.827746 0.561103i \(-0.810377\pi\)
0.827746 0.561103i \(-0.189623\pi\)
\(420\) 2.86756 + 16.1263i 0.139923 + 0.786882i
\(421\) −9.30438 + 28.6359i −0.453468 + 1.39563i 0.419457 + 0.907775i \(0.362220\pi\)
−0.872925 + 0.487855i \(0.837780\pi\)
\(422\) −20.5903 + 17.9250i −1.00232 + 0.872576i
\(423\) −19.7761 27.2194i −0.961545 1.32345i
\(424\) −4.28359 + 1.15775i −0.208029 + 0.0562255i
\(425\) 1.24689 0.405138i 0.0604828 0.0196521i
\(426\) 13.7697 1.21473i 0.667145 0.0588540i
\(427\) −7.16980 + 9.86839i −0.346971 + 0.477565i
\(428\) −7.18017 + 7.45684i −0.347066 + 0.360440i
\(429\) 0 0
\(430\) −4.51190 10.6080i −0.217583 0.511565i
\(431\) −8.23029 5.97965i −0.396439 0.288030i 0.371650 0.928373i \(-0.378792\pi\)
−0.768089 + 0.640343i \(0.778792\pi\)
\(432\) −4.13221 + 14.5697i −0.198811 + 0.700986i
\(433\) 8.50878 + 26.1873i 0.408906 + 1.25848i 0.917589 + 0.397530i \(0.130132\pi\)
−0.508683 + 0.860954i \(0.669868\pi\)
\(434\) −4.17606 + 6.96153i −0.200457 + 0.334164i
\(435\) 42.2884 30.7243i 2.02757 1.47312i
\(436\) −11.0096 + 22.6562i −0.527265 + 1.08504i
\(437\) −0.857043 0.278470i −0.0409979 0.0133210i
\(438\) 3.69186 16.0441i 0.176404 0.766618i
\(439\) −11.5438 −0.550957 −0.275479 0.961307i \(-0.588836\pi\)
−0.275479 + 0.961307i \(0.588836\pi\)
\(440\) 0 0
\(441\) 23.4241 1.11543
\(442\) 0.276269 1.20061i 0.0131408 0.0571074i
\(443\) 16.1592 + 5.25043i 0.767745 + 0.249455i 0.666599 0.745416i \(-0.267749\pi\)
0.101146 + 0.994872i \(0.467749\pi\)
\(444\) −12.4154 + 25.5492i −0.589210 + 1.21251i
\(445\) 1.12885 0.820159i 0.0535127 0.0388793i
\(446\) 7.88535 13.1450i 0.373382 0.622432i
\(447\) 14.6614 + 45.1232i 0.693461 + 2.13425i
\(448\) −8.92334 + 5.20367i −0.421588 + 0.245850i
\(449\) −4.94849 3.59529i −0.233534 0.169672i 0.464864 0.885382i \(-0.346103\pi\)
−0.698398 + 0.715710i \(0.746103\pi\)
\(450\) 1.07396 + 2.52502i 0.0506271 + 0.119031i
\(451\) 0 0
\(452\) 3.69107 3.83330i 0.173613 0.180303i
\(453\) −15.7009 + 21.6104i −0.737693 + 1.01535i
\(454\) −33.8054 + 2.98223i −1.58656 + 0.139963i
\(455\) 0.840799 0.273192i 0.0394172 0.0128074i
\(456\) 3.43929 + 12.7251i 0.161059 + 0.595905i
\(457\) −3.83457 5.27783i −0.179373 0.246886i 0.709857 0.704346i \(-0.248760\pi\)
−0.889231 + 0.457459i \(0.848760\pi\)
\(458\) −26.2196 + 22.8257i −1.22516 + 1.06657i
\(459\) −3.47255 + 10.6874i −0.162085 + 0.498846i
\(460\) −0.429422 2.41493i −0.0200219 0.112597i
\(461\) 19.0882i 0.889026i 0.895773 + 0.444513i \(0.146623\pi\)
−0.895773 + 0.444513i \(0.853377\pi\)
\(462\) 0 0
\(463\) 13.0359i 0.605829i 0.953018 + 0.302915i \(0.0979597\pi\)
−0.953018 + 0.302915i \(0.902040\pi\)
\(464\) 27.3829 + 18.3549i 1.27122 + 0.852106i
\(465\) −8.71326 + 26.8167i −0.404068 + 1.24359i
\(466\) −13.2830 15.2581i −0.615324 0.706816i
\(467\) 8.92128 + 12.2791i 0.412827 + 0.568208i 0.963905 0.266246i \(-0.0857832\pi\)
−0.551078 + 0.834454i \(0.685783\pi\)
\(468\) 2.55388 + 0.355156i 0.118053 + 0.0164171i
\(469\) 12.8020 4.15964i 0.591144 0.192074i
\(470\) −2.22057 25.1715i −0.102427 1.16107i
\(471\) 24.6179 33.8837i 1.13433 1.56128i
\(472\) −14.1849 + 37.1941i −0.652914 + 1.71200i
\(473\) 0 0
\(474\) −34.8535 + 14.8242i −1.60088 + 0.680899i
\(475\) 0.612536 + 0.445034i 0.0281051 + 0.0204195i
\(476\) −6.76248 + 3.60823i −0.309958 + 0.165383i
\(477\) −2.12945 6.55376i −0.0975006 0.300076i
\(478\) −23.9685 14.3782i −1.09630 0.657642i
\(479\) 21.1996 15.4024i 0.968633 0.703753i 0.0134937 0.999909i \(-0.495705\pi\)
0.955140 + 0.296156i \(0.0957047\pi\)
\(480\) −26.1515 + 24.5641i −1.19365 + 1.12119i
\(481\) 1.45817 + 0.473788i 0.0664869 + 0.0216029i
\(482\) −9.00038 2.07104i −0.409956 0.0943335i
\(483\) 1.84571 0.0839827
\(484\) 0 0
\(485\) 19.4230 0.881954
\(486\) 26.4588 + 6.08833i 1.20019 + 0.276172i
\(487\) 25.9179 + 8.42123i 1.17445 + 0.381602i 0.830303 0.557313i \(-0.188168\pi\)
0.344149 + 0.938915i \(0.388168\pi\)
\(488\) −26.6861 1.34049i −1.20802 0.0606811i
\(489\) 23.6842 17.2076i 1.07104 0.778153i
\(490\) 15.0865 + 9.05003i 0.681538 + 0.408839i
\(491\) −6.61682 20.3645i −0.298613 0.919035i −0.981984 0.188964i \(-0.939487\pi\)
0.683371 0.730071i \(-0.260513\pi\)
\(492\) 14.3204 + 26.8390i 0.645613 + 1.21000i
\(493\) 19.7894 + 14.3778i 0.891269 + 0.647545i
\(494\) 0.654717 0.278470i 0.0294571 0.0125290i
\(495\) 0 0
\(496\) −17.7699 + 0.672029i −0.797891 + 0.0301750i
\(497\) −2.72845 + 3.75539i −0.122388 + 0.168452i
\(498\) −1.27043 14.4011i −0.0569294 0.645329i
\(499\) 29.3376 9.53238i 1.31333 0.426728i 0.433133 0.901330i \(-0.357408\pi\)
0.880200 + 0.474602i \(0.157408\pi\)
\(500\) 2.92927 21.0640i 0.131001 0.942008i
\(501\) −10.2633 14.1262i −0.458530 0.631112i
\(502\) 4.42985 + 5.08852i 0.197714 + 0.227112i
\(503\) 9.80786 30.1855i 0.437311 1.34590i −0.453389 0.891313i \(-0.649785\pi\)
0.890700 0.454592i \(-0.150215\pi\)
\(504\) −8.76626 13.4349i −0.390480 0.598439i
\(505\) 17.9219i 0.797515i
\(506\) 0 0
\(507\) 35.1117i 1.55936i
\(508\) −39.3150 + 6.99097i −1.74432 + 0.310174i
\(509\) 2.06712 6.36194i 0.0916235 0.281988i −0.894736 0.446596i \(-0.852636\pi\)
0.986359 + 0.164608i \(0.0526360\pi\)
\(510\) −20.0798 + 17.4807i −0.889150 + 0.774057i
\(511\) 3.24959 + 4.47267i 0.143753 + 0.197859i
\(512\) −20.2276 10.1411i −0.893944 0.448179i
\(513\) −6.17201 + 2.00541i −0.272501 + 0.0885409i
\(514\) 4.27825 0.377417i 0.188706 0.0166472i
\(515\) 0.565453 0.778279i 0.0249168 0.0342951i
\(516\) 13.6875 + 13.1797i 0.602560 + 0.580202i
\(517\) 0 0
\(518\) −3.73351 8.77795i −0.164041 0.385681i
\(519\) 7.95795 + 5.78179i 0.349315 + 0.253792i
\(520\) 1.50763 + 1.21545i 0.0661139 + 0.0533008i
\(521\) 3.82221 + 11.7636i 0.167454 + 0.515371i 0.999209 0.0397725i \(-0.0126633\pi\)
−0.831755 + 0.555144i \(0.812663\pi\)
\(522\) −26.3356 + 43.9017i −1.15268 + 1.92152i
\(523\) 5.04862 3.66804i 0.220761 0.160392i −0.471908 0.881648i \(-0.656435\pi\)
0.692669 + 0.721256i \(0.256435\pi\)
\(524\) 36.9009 + 17.9317i 1.61202 + 0.783351i
\(525\) −1.47485 0.479208i −0.0643677 0.0209143i
\(526\) 4.49283 19.5250i 0.195897 0.851332i
\(527\) −13.1950 −0.574784
\(528\) 0 0
\(529\) 22.7236 0.987983
\(530\) 1.16059 5.04373i 0.0504130 0.219086i
\(531\) −58.7942 19.1034i −2.55145 0.829017i
\(532\) −3.98131 1.93469i −0.172611 0.0838793i
\(533\) 1.32836 0.965108i 0.0575376 0.0418035i
\(534\) −1.18314 + 1.97231i −0.0511997 + 0.0853504i
\(535\) −3.73109 11.4831i −0.161309 0.496458i
\(536\) 22.9552 + 18.5064i 0.991515 + 0.799356i
\(537\) 11.0153 + 8.00306i 0.475344 + 0.345357i
\(538\) −0.554489 1.30367i −0.0239057 0.0562053i
\(539\) 0 0
\(540\) −12.7242 12.2521i −0.547561 0.527245i
\(541\) 15.2241 20.9541i 0.654534 0.900889i −0.344751 0.938694i \(-0.612037\pi\)
0.999285 + 0.0378054i \(0.0120367\pi\)
\(542\) −25.0630 + 2.21100i −1.07655 + 0.0949708i
\(543\) −25.3463 + 8.23551i −1.08771 + 0.353419i
\(544\) −14.7142 8.08677i −0.630866 0.346717i
\(545\) −17.2694 23.7693i −0.739741 1.01817i
\(546\) −1.09909 + 0.956825i −0.0470369 + 0.0409483i
\(547\) −5.15788 + 15.8743i −0.220535 + 0.678737i 0.778179 + 0.628042i \(0.216143\pi\)
−0.998714 + 0.0506945i \(0.983857\pi\)
\(548\) −12.3373 + 2.19380i −0.527022 + 0.0937147i
\(549\) 41.4954i 1.77098i
\(550\) 0 0
\(551\) 14.1263i 0.601801i
\(552\) 2.20935 + 3.38599i 0.0940362 + 0.144117i
\(553\) 3.93031 12.0962i 0.167134 0.514384i
\(554\) 18.0021 + 20.6788i 0.764836 + 0.878558i
\(555\) −19.4745 26.8044i −0.826648 1.13778i
\(556\) −3.71356 + 26.7036i −0.157490 + 1.13249i
\(557\) 17.6599 5.73806i 0.748276 0.243130i 0.0900368 0.995938i \(-0.471302\pi\)
0.658239 + 0.752809i \(0.271302\pi\)
\(558\) −2.42680 27.5092i −0.102735 1.16456i
\(559\) 0.602830 0.829724i 0.0254970 0.0350936i
\(560\) −0.455325 12.0398i −0.0192410 0.508773i
\(561\) 0 0
\(562\) 19.1257 8.13471i 0.806769 0.343142i
\(563\) 18.3480 + 13.3306i 0.773277 + 0.561819i 0.902954 0.429738i \(-0.141394\pi\)
−0.129677 + 0.991556i \(0.541394\pi\)
\(564\) 19.6076 + 36.7481i 0.825628 + 1.54738i
\(565\) 1.91802 + 5.90305i 0.0806916 + 0.248343i
\(566\) 3.02808 + 1.81647i 0.127280 + 0.0763520i
\(567\) −3.01209 + 2.18841i −0.126496 + 0.0919048i
\(568\) −10.1554 0.510121i −0.426109 0.0214042i
\(569\) −0.141422 0.0459508i −0.00592872 0.00192636i 0.306051 0.952015i \(-0.400992\pi\)
−0.311980 + 0.950089i \(0.600992\pi\)
\(570\) −14.9832 3.44772i −0.627576 0.144409i
\(571\) 22.0331 0.922057 0.461028 0.887385i \(-0.347481\pi\)
0.461028 + 0.887385i \(0.347481\pi\)
\(572\) 0 0
\(573\) 31.7832 1.32776
\(574\) −9.95525 2.29077i −0.415524 0.0956147i
\(575\) 0.220861 + 0.0717621i 0.00921054 + 0.00299268i
\(576\) 14.1532 32.1637i 0.589719 1.34016i
\(577\) −3.18631 + 2.31499i −0.132648 + 0.0963743i −0.652131 0.758107i \(-0.726125\pi\)
0.519483 + 0.854481i \(0.326125\pi\)
\(578\) 9.93301 + 5.95858i 0.413159 + 0.247844i
\(579\) −0.970064 2.98555i −0.0403145 0.124075i
\(580\) −33.9233 + 18.1003i −1.40859 + 0.751576i
\(581\) 3.92759 + 2.85356i 0.162944 + 0.118386i
\(582\) −29.4613 + 12.5307i −1.22121 + 0.519416i
\(583\) 0 0
\(584\) −4.31539 + 11.3153i −0.178572 + 0.468231i
\(585\) −1.76773 + 2.43307i −0.0730866 + 0.100595i
\(586\) −0.934417 10.5922i −0.0386004 0.437559i
\(587\) 18.0331 5.85930i 0.744305 0.241839i 0.0877761 0.996140i \(-0.472024\pi\)
0.656529 + 0.754301i \(0.272024\pi\)
\(588\) −28.7222 3.99427i −1.18448 0.164721i
\(589\) −4.47901 6.16483i −0.184555 0.254018i
\(590\) −30.4862 35.0192i −1.25510 1.44172i
\(591\) −13.1278 + 40.4032i −0.540006 + 1.66197i
\(592\) 11.6342 17.3566i 0.478164 0.713351i
\(593\) 31.9983i 1.31401i −0.753885 0.657007i \(-0.771822\pi\)
0.753885 0.657007i \(-0.228178\pi\)
\(594\) 0 0
\(595\) 8.94012i 0.366509i
\(596\) −6.11008 34.3612i −0.250279 1.40749i
\(597\) 9.21552 28.3624i 0.377166 1.16080i
\(598\) 0.164591 0.143286i 0.00673062 0.00585940i
\(599\) 5.08850 + 7.00371i 0.207910 + 0.286164i 0.900219 0.435438i \(-0.143406\pi\)
−0.692309 + 0.721602i \(0.743406\pi\)
\(600\) −0.886308 3.27926i −0.0361834 0.133875i
\(601\) 20.9520 6.80772i 0.854650 0.277693i 0.151258 0.988494i \(-0.451668\pi\)
0.703392 + 0.710802i \(0.251668\pi\)
\(602\) −6.35611 + 0.560721i −0.259056 + 0.0228533i
\(603\) −26.9155 + 37.0461i −1.09609 + 1.50863i
\(604\) 13.6289 14.1540i 0.554551 0.575919i
\(605\) 0 0
\(606\) −11.5623 27.1844i −0.469687 1.10429i
\(607\) −34.5592 25.1088i −1.40272 1.01913i −0.994332 0.106323i \(-0.966092\pi\)
−0.408385 0.912810i \(-0.633908\pi\)
\(608\) −1.21648 9.61964i −0.0493348 0.390128i
\(609\) −8.94084 27.5171i −0.362301 1.11505i
\(610\) 16.0320 26.7255i 0.649116 1.08208i
\(611\) 1.81880 1.32143i 0.0735806 0.0534594i
\(612\) 11.3964 23.4522i 0.460673 0.947998i
\(613\) 9.29962 + 3.02163i 0.375608 + 0.122042i 0.490736 0.871308i \(-0.336728\pi\)
−0.115128 + 0.993351i \(0.536728\pi\)
\(614\) −8.18171 + 35.5562i −0.330187 + 1.43493i
\(615\) −35.4817 −1.43076
\(616\) 0 0
\(617\) −22.4213 −0.902649 −0.451324 0.892360i \(-0.649048\pi\)
−0.451324 + 0.892360i \(0.649048\pi\)
\(618\) −0.355586 + 1.54531i −0.0143038 + 0.0621616i
\(619\) 18.3360 + 5.95771i 0.736984 + 0.239461i 0.653371 0.757038i \(-0.273354\pi\)
0.0836131 + 0.996498i \(0.473354\pi\)
\(620\) 9.06534 18.6552i 0.364073 0.749209i
\(621\) −1.61033 + 1.16998i −0.0646205 + 0.0469495i
\(622\) 2.15657 3.59502i 0.0864704 0.144147i
\(623\) −0.238668 0.734544i −0.00956203 0.0294289i
\(624\) −3.07095 0.870971i −0.122936 0.0348668i
\(625\) 21.8544 + 15.8781i 0.874174 + 0.635125i
\(626\) −0.334322 0.786031i −0.0133622 0.0314161i
\(627\) 0 0
\(628\) −21.3691 + 22.1925i −0.852720 + 0.885579i
\(629\) 9.11336 12.5435i 0.363373 0.500141i
\(630\) 18.6385 1.64425i 0.742577 0.0655085i
\(631\) −36.4092 + 11.8301i −1.44943 + 0.470947i −0.924822 0.380400i \(-0.875786\pi\)
−0.524604 + 0.851347i \(0.675786\pi\)
\(632\) 26.8954 7.26921i 1.06984 0.289154i
\(633\) 30.8500 + 42.4614i 1.22618 + 1.68769i
\(634\) 24.4748 21.3067i 0.972017 0.846197i
\(635\) 14.3926 44.2958i 0.571152 1.75783i
\(636\) 1.49354 + 8.39921i 0.0592227 + 0.333050i
\(637\) 1.56519i 0.0620153i
\(638\) 0 0
\(639\) 15.7910i 0.624682i
\(640\) 21.5422 15.2471i 0.851529 0.602696i
\(641\) −9.77625 + 30.0882i −0.386139 + 1.18841i 0.549512 + 0.835486i \(0.314814\pi\)
−0.935651 + 0.352927i \(0.885186\pi\)
\(642\) 13.0677 + 15.0107i 0.515742 + 0.592427i
\(643\) 8.75854 + 12.0551i 0.345403 + 0.475407i 0.946010 0.324138i \(-0.105074\pi\)
−0.600607 + 0.799545i \(0.705074\pi\)
\(644\) −1.34474 0.187007i −0.0529902 0.00736911i
\(645\) −21.0780 + 6.84865i −0.829945 + 0.269665i
\(646\) −0.632254 7.16697i −0.0248757 0.281981i
\(647\) −24.1610 + 33.2547i −0.949866 + 1.30738i 0.00172043 + 0.999999i \(0.499452\pi\)
−0.951587 + 0.307380i \(0.900548\pi\)
\(648\) −7.62022 2.90617i −0.299351 0.114165i
\(649\) 0 0
\(650\) −0.168721 + 0.0717621i −0.00661780 + 0.00281474i
\(651\) 12.6267 + 9.17381i 0.494878 + 0.359550i
\(652\) −18.9992 + 10.1373i −0.744066 + 0.397009i
\(653\) 1.41618 + 4.35856i 0.0554194 + 0.170564i 0.974935 0.222490i \(-0.0714186\pi\)
−0.919515 + 0.393054i \(0.871419\pi\)
\(654\) 41.5294 + 24.9125i 1.62393 + 0.974157i
\(655\) −38.7139 + 28.1273i −1.51268 + 1.09902i
\(656\) −7.71417 21.0052i −0.301188 0.820115i
\(657\) −17.8866 5.81170i −0.697822 0.226736i
\(658\) −13.6308 3.13653i −0.531384 0.122275i
\(659\) 38.0732 1.48312 0.741560 0.670886i \(-0.234086\pi\)
0.741560 + 0.670886i \(0.234086\pi\)
\(660\) 0 0
\(661\) −9.34038 −0.363299 −0.181649 0.983363i \(-0.558144\pi\)
−0.181649 + 0.983363i \(0.558144\pi\)
\(662\) 6.11150 + 1.40630i 0.237530 + 0.0546572i
\(663\) −2.25265 0.731931i −0.0874858 0.0284258i
\(664\) −0.533512 + 10.6210i −0.0207043 + 0.412175i
\(665\) 4.17691 3.03470i 0.161974 0.117681i
\(666\) 27.8270 + 16.6927i 1.07827 + 0.646831i
\(667\) 1.33890 + 4.12072i 0.0518426 + 0.159555i
\(668\) 6.04632 + 11.3319i 0.233939 + 0.438444i
\(669\) −23.8420 17.3223i −0.921787 0.669717i
\(670\) −31.6481 + 13.4609i −1.22267 + 0.520039i
\(671\) 0 0
\(672\) 8.45810 + 17.9685i 0.326278 + 0.693148i
\(673\) 8.33504 11.4722i 0.321292 0.442221i −0.617569 0.786517i \(-0.711882\pi\)
0.938861 + 0.344296i \(0.111882\pi\)
\(674\) −2.20737 25.0218i −0.0850247 0.963805i
\(675\) 1.59053 0.516796i 0.0612197 0.0198915i
\(676\) 3.55751 25.5815i 0.136827 0.983905i
\(677\) −2.77000 3.81258i −0.106460 0.146529i 0.752463 0.658635i \(-0.228866\pi\)
−0.858923 + 0.512105i \(0.828866\pi\)
\(678\) −6.71765 7.71649i −0.257990 0.296350i
\(679\) 3.32225 10.2248i 0.127496 0.392393i
\(680\) 16.4008 10.7015i 0.628943 0.410384i
\(681\) 65.2454i 2.50021i
\(682\) 0 0
\(683\) 18.0462i 0.690519i −0.938507 0.345260i \(-0.887791\pi\)
0.938507 0.345260i \(-0.112209\pi\)
\(684\) 14.8256 2.63627i 0.566869 0.100800i
\(685\) 4.51647 13.9003i 0.172566 0.531102i
\(686\) 16.9856 14.7870i 0.648515 0.564569i
\(687\) 39.2843 + 54.0702i 1.49879 + 2.06291i
\(688\) −8.63704 10.9892i −0.329284 0.418960i
\(689\) 0.437921 0.142289i 0.0166835 0.00542079i
\(690\) −4.69745 + 0.414399i −0.178829 + 0.0157759i
\(691\) −0.790392 + 1.08788i −0.0300679 + 0.0413849i −0.823786 0.566900i \(-0.808142\pi\)
0.793718 + 0.608285i \(0.208142\pi\)
\(692\) −5.21216 5.01877i −0.198137 0.190785i
\(693\) 0 0
\(694\) −2.14791 5.05000i −0.0815336 0.191695i
\(695\) −25.4405 18.4836i −0.965012 0.701122i
\(696\) 39.7783 49.3406i 1.50779 1.87025i
\(697\) −5.13095 15.7914i −0.194349 0.598143i
\(698\) −14.3448 + 23.9129i −0.542959 + 0.905117i
\(699\) −31.4653 + 22.8609i −1.19013 + 0.864677i
\(700\) 1.02599 + 0.498571i 0.0387787 + 0.0188442i
\(701\) 15.8467 + 5.14892i 0.598523 + 0.194472i 0.592582 0.805510i \(-0.298109\pi\)
0.00594136 + 0.999982i \(0.498109\pi\)
\(702\) 0.352410 1.53151i 0.0133009 0.0578031i
\(703\) 8.95393 0.337704
\(704\) 0 0
\(705\) −48.5817 −1.82969
\(706\) 0.506215 2.19992i 0.0190517 0.0827950i
\(707\) 9.43459 + 3.06548i 0.354824 + 0.115289i
\(708\) 68.8348 + 33.4498i 2.58697 + 1.25712i
\(709\) −19.4666 + 14.1433i −0.731083 + 0.531163i −0.889906 0.456144i \(-0.849230\pi\)
0.158823 + 0.987307i \(0.449230\pi\)
\(710\) 6.10094 10.1703i 0.228964 0.381685i
\(711\) 13.3702 + 41.1492i 0.501422 + 1.54322i
\(712\) 1.06185 1.31710i 0.0397944 0.0493606i
\(713\) −1.89086 1.37379i −0.0708133 0.0514489i
\(714\) 5.76771 + 13.5606i 0.215851 + 0.507493i
\(715\) 0 0
\(716\) −7.21459 6.94690i −0.269622 0.259618i
\(717\) −31.5854 + 43.4736i −1.17958 + 1.62355i
\(718\) 21.7266 1.91667i 0.810830 0.0715295i
\(719\) 10.7749 3.50096i 0.401834 0.130564i −0.101126 0.994874i \(-0.532244\pi\)
0.502960 + 0.864310i \(0.332244\pi\)
\(720\) 25.3271 + 32.2246i 0.943886 + 1.20094i
\(721\) −0.312989 0.430792i −0.0116563 0.0160435i
\(722\) −17.1325 + 14.9148i −0.637605 + 0.555072i
\(723\) −5.48691 + 16.8870i −0.204060 + 0.628033i
\(724\) 19.3011 3.43211i 0.717320 0.127553i
\(725\) 3.64037i 0.135200i
\(726\) 0 0
\(727\) 0.700673i 0.0259865i 0.999916 + 0.0129933i \(0.00413600\pi\)
−0.999916 + 0.0129933i \(0.995864\pi\)
\(728\) 0.897719 0.585760i 0.0332717 0.0217097i
\(729\) 13.4570 41.4163i 0.498407 1.53394i
\(730\) −9.27462 10.6537i −0.343269 0.394310i
\(731\) −6.09611 8.39057i −0.225473 0.310337i
\(732\) −7.07578 + 50.8808i −0.261528 + 1.88061i
\(733\) −28.5106 + 9.26367i −1.05306 + 0.342162i −0.783870 0.620924i \(-0.786757\pi\)
−0.269194 + 0.963086i \(0.586757\pi\)
\(734\) 1.31136 + 14.8650i 0.0484031 + 0.548678i
\(735\) 19.8808 27.3636i 0.733314 1.00932i
\(736\) −1.26661 2.69080i −0.0466879 0.0991843i
\(737\) 0 0
\(738\) 31.9786 13.6014i 1.17715 0.500676i
\(739\) 35.2943 + 25.6428i 1.29832 + 0.943286i 0.999938 0.0111594i \(-0.00355221\pi\)
0.298385 + 0.954446i \(0.403552\pi\)
\(740\) 11.4729 + 21.5022i 0.421751 + 0.790437i
\(741\) −0.422692 1.30091i −0.0155280 0.0477902i
\(742\) −2.45664 1.47368i −0.0901862 0.0541006i
\(743\) −27.6735 + 20.1060i −1.01524 + 0.737616i −0.965302 0.261136i \(-0.915903\pi\)
−0.0499398 + 0.998752i \(0.515903\pi\)
\(744\) −1.71517 + 34.1451i −0.0628810 + 1.25182i
\(745\) 38.7144 + 12.5791i 1.41839 + 0.460861i
\(746\) 51.6760 + 11.8910i 1.89199 + 0.435359i
\(747\) −16.5151 −0.604255
\(748\) 0 0
\(749\) −6.68321 −0.244199
\(750\) −39.8452 9.16864i −1.45494 0.334791i
\(751\) −1.37755 0.447593i −0.0502675 0.0163329i 0.283775 0.958891i \(-0.408413\pi\)
−0.334043 + 0.942558i \(0.608413\pi\)
\(752\) −10.5623 28.7604i −0.385167 1.04879i
\(753\) 10.4936 7.62403i 0.382407 0.277835i
\(754\) −2.93350 1.75974i −0.106832 0.0640859i
\(755\) 7.08208 + 21.7964i 0.257743 + 0.793252i
\(756\) −8.62625 + 4.60268i −0.313734 + 0.167398i
\(757\) −24.6383 17.9008i −0.895495 0.650615i 0.0418101 0.999126i \(-0.486688\pi\)
−0.937305 + 0.348511i \(0.886688\pi\)
\(758\) 27.7573 11.8060i 1.00819 0.428812i
\(759\) 0 0
\(760\) 10.5671 + 4.03002i 0.383308 + 0.146184i
\(761\) 14.1354 19.4557i 0.512408 0.705269i −0.471915 0.881644i \(-0.656437\pi\)
0.984323 + 0.176375i \(0.0564371\pi\)
\(762\) 6.74639 + 76.4743i 0.244396 + 2.77037i
\(763\) −15.4667 + 5.02544i −0.559933 + 0.181933i
\(764\) −23.1565 3.22028i −0.837773 0.116505i
\(765\) 17.8761 + 24.6044i 0.646313 + 0.889573i
\(766\) 26.7720 + 30.7528i 0.967313 + 1.11114i
\(767\) 1.27649 3.92862i 0.0460912 0.141854i
\(768\) −22.8390 + 37.0251i −0.824131 + 1.33603i
\(769\) 14.6461i 0.528151i 0.964502 + 0.264076i \(0.0850669\pi\)
−0.964502 + 0.264076i \(0.914933\pi\)
\(770\) 0 0
\(771\) 8.25715i 0.297374i
\(772\) 0.404270 + 2.27349i 0.0145500 + 0.0818246i
\(773\) −8.20185 + 25.2427i −0.295000 + 0.907917i 0.688221 + 0.725501i \(0.258392\pi\)
−0.983221 + 0.182416i \(0.941608\pi\)
\(774\) 16.3717 14.2525i 0.588467 0.512294i
\(775\) 1.15425 + 1.58868i 0.0414618 + 0.0570672i
\(776\) 22.7344 6.14459i 0.816118 0.220578i
\(777\) −17.4416 + 5.66713i −0.625715 + 0.203307i
\(778\) 49.1358 4.33465i 1.76160 0.155405i
\(779\) 5.63622 7.75759i 0.201939 0.277945i
\(780\) 2.58244 2.68195i 0.0924662 0.0960293i
\(781\) 0 0
\(782\) −0.863723 2.03072i −0.0308867 0.0726184i
\(783\) 25.2435 + 18.3404i 0.902128 + 0.655434i
\(784\) 20.5216 + 5.82026i 0.732914 + 0.207866i
\(785\) −11.1042 34.1752i −0.396326 1.21977i
\(786\) 40.5759 67.6404i 1.44729 2.41265i
\(787\) −16.5940 + 12.0562i −0.591512 + 0.429758i −0.842856 0.538139i \(-0.819127\pi\)
0.251344 + 0.967898i \(0.419127\pi\)
\(788\) 13.6583 28.1067i 0.486555 1.00126i
\(789\) −36.6338 11.9031i −1.30420 0.423760i
\(790\) −7.28705 + 31.6682i −0.259261 + 1.12670i
\(791\) 3.43560 0.122156
\(792\) 0 0
\(793\) 2.77271 0.0984620
\(794\) −5.36276 + 23.3056i −0.190317 + 0.827083i
\(795\) −9.46329 3.07481i −0.335628 0.109052i
\(796\) −9.58788 + 19.7305i −0.339834 + 0.699328i
\(797\) 26.5766 19.3091i 0.941393 0.683962i −0.00736271 0.999973i \(-0.502344\pi\)
0.948756 + 0.316011i \(0.102344\pi\)
\(798\) −4.37780 + 7.29784i −0.154973 + 0.258341i
\(799\) −7.02533 21.6217i −0.248538 0.764922i
\(800\) 0.313489 + 2.47899i 0.0110835 + 0.0876456i
\(801\) 2.12560 + 1.54434i 0.0751042 + 0.0545664i
\(802\) −8.77880 20.6400i −0.309990 0.728825i
\(803\) 0 0
\(804\) 39.3204 40.8356i 1.38672 1.44016i
\(805\) 0.930796 1.28113i 0.0328062 0.0451539i
\(806\) 1.83816 0.162158i 0.0647465 0.00571178i
\(807\) −2.59037 + 0.841664i −0.0911855 + 0.0296280i
\(808\) 5.66970 + 20.9774i 0.199459 + 0.737982i
\(809\) 10.9876 + 15.1232i 0.386304 + 0.531702i 0.957241 0.289292i \(-0.0934198\pi\)
−0.570937 + 0.820994i \(0.693420\pi\)
\(810\) 7.17464 6.24594i 0.252091 0.219460i
\(811\) 8.46018 26.0378i 0.297077 0.914309i −0.685439 0.728130i \(-0.740390\pi\)
0.982516 0.186179i \(-0.0596104\pi\)
\(812\) 3.72606 + 20.9542i 0.130759 + 0.735347i
\(813\) 48.3724i 1.69650i
\(814\) 0 0
\(815\) 25.1173i 0.879821i
\(816\) −17.9731 + 26.8133i −0.629185 + 0.938653i
\(817\) 1.85085 5.69632i 0.0647529 0.199289i
\(818\) −25.6975 29.5184i −0.898492 1.03209i
\(819\) 0.978472 + 1.34675i 0.0341906 + 0.0470593i
\(820\) 25.8511 + 3.59500i 0.902759 + 0.125543i
\(821\) −8.19415 + 2.66244i −0.285978 + 0.0929199i −0.448493 0.893786i \(-0.648039\pi\)
0.162515 + 0.986706i \(0.448039\pi\)
\(822\) 2.11705 + 23.9981i 0.0738408 + 0.837029i
\(823\) −2.24958 + 3.09628i −0.0784154 + 0.107930i −0.846423 0.532511i \(-0.821248\pi\)
0.768007 + 0.640441i \(0.221248\pi\)
\(824\) 0.415643 1.08985i 0.0144796 0.0379667i
\(825\) 0 0
\(826\) −23.6496 + 10.0589i −0.822876 + 0.349993i
\(827\) 22.1298 + 16.0783i 0.769530 + 0.559096i 0.901818 0.432115i \(-0.142233\pi\)
−0.132289 + 0.991211i \(0.542233\pi\)
\(828\) 4.07483 2.17419i 0.141610 0.0755584i
\(829\) 5.44082 + 16.7451i 0.188968 + 0.581582i 0.999994 0.00342699i \(-0.00109085\pi\)
−0.811027 + 0.585009i \(0.801091\pi\)
\(830\) −10.6367 6.38069i −0.369204 0.221477i
\(831\) 42.6439 30.9826i 1.47930 1.07478i
\(832\) 2.14917 + 0.945717i 0.0745092 + 0.0327869i
\(833\) 15.0533 + 4.89112i 0.521567 + 0.169467i
\(834\) 50.5134 + 11.6235i 1.74914 + 0.402487i
\(835\) −14.9810 −0.518438
\(836\) 0 0
\(837\) −16.8316 −0.581786
\(838\) 31.6585 + 7.28483i 1.09363 + 0.251650i
\(839\) 0.241041 + 0.0783188i 0.00832164 + 0.00270387i 0.313175 0.949695i \(-0.398607\pi\)
−0.304853 + 0.952399i \(0.598607\pi\)
\(840\) −23.1346 1.16209i −0.798220 0.0400959i
\(841\) 31.4872 22.8768i 1.08577 0.788855i
\(842\) −36.5152 21.9046i −1.25840 0.754883i
\(843\) −12.3478 38.0025i −0.425279 1.30887i
\(844\) −18.1744 34.0620i −0.625588 1.17246i
\(845\) 24.3715 + 17.7069i 0.838404 + 0.609136i
\(846\) 43.7853 18.6232i 1.50537 0.640278i
\(847\) 0 0
\(848\) −0.237151 6.27079i −0.00814381 0.215340i
\(849\) 3.99036 5.49226i 0.136949 0.188494i
\(850\) 0.162932 + 1.84694i 0.00558854 + 0.0633494i
\(851\) 2.61191 0.848661i 0.0895352 0.0290917i
\(852\) −2.69267 + 19.3626i −0.0922494 + 0.663352i
\(853\) −21.8156 30.0267i −0.746954 1.02809i −0.998188 0.0601672i \(-0.980837\pi\)
0.251235 0.967926i \(-0.419163\pi\)
\(854\) −11.3268 13.0110i −0.387595 0.445227i
\(855\) −5.42739 + 16.7038i −0.185613 + 0.571258i
\(856\) −7.99994 12.2605i −0.273432 0.419055i
\(857\) 20.9360i 0.715161i −0.933882 0.357580i \(-0.883602\pi\)
0.933882 0.357580i \(-0.116398\pi\)
\(858\) 0 0
\(859\) 20.6926i 0.706022i −0.935619 0.353011i \(-0.885158\pi\)
0.935619 0.353011i \(-0.114842\pi\)
\(860\) 16.0508 2.85415i 0.547328 0.0973255i
\(861\) −6.06902 + 18.6785i −0.206832 + 0.636563i
\(862\) 10.8512 9.44662i 0.369594 0.321753i
\(863\) −22.2064 30.5645i −0.755914 1.04043i −0.997543 0.0700579i \(-0.977682\pi\)
0.241629 0.970369i \(-0.422318\pi\)
\(864\) −18.7695 10.3155i −0.638551 0.350941i
\(865\) 8.02642 2.60794i 0.272907 0.0886727i
\(866\) −38.7897 + 3.42194i −1.31813 + 0.116282i
\(867\) 13.0896 18.0163i 0.444546 0.611865i
\(868\) −8.27000 7.96315i −0.280702 0.270287i
\(869\) 0 0
\(870\) 28.9332 + 68.0254i 0.980926 + 2.30628i
\(871\) −2.47541 1.79849i −0.0838761 0.0609396i
\(872\) −27.7332 22.3584i −0.939166 0.757152i
\(873\) 11.3017 + 34.7830i 0.382504 + 1.17723i
\(874\) 0.655582 1.09286i 0.0221754 0.0369666i
\(875\) 11.1078 8.07028i 0.375512 0.272825i
\(876\) 20.9412 + 10.1762i 0.707537 + 0.343822i
\(877\) −11.0189 3.58026i −0.372083 0.120897i 0.117006 0.993131i \(-0.462670\pi\)
−0.489088 + 0.872234i \(0.662670\pi\)
\(878\) 3.66092 15.9097i 0.123550 0.536926i
\(879\) −20.4432 −0.689532
\(880\) 0 0
\(881\) −24.6157 −0.829325 −0.414662 0.909975i \(-0.636100\pi\)
−0.414662 + 0.909975i \(0.636100\pi\)
\(882\) −7.42853 + 32.2830i −0.250132 + 1.08703i
\(883\) 37.2302 + 12.0968i 1.25290 + 0.407091i 0.858958 0.512046i \(-0.171112\pi\)
0.393939 + 0.919137i \(0.371112\pi\)
\(884\) 1.56707 + 0.761506i 0.0527062 + 0.0256122i
\(885\) −72.2167 + 52.4685i −2.42754 + 1.76371i
\(886\) −12.3607 + 20.6054i −0.415266 + 0.692253i
\(887\) −14.7026 45.2499i −0.493665 1.51934i −0.819027 0.573755i \(-0.805486\pi\)
0.325363 0.945589i \(-0.394514\pi\)
\(888\) −31.2745 25.2134i −1.04950 0.846105i
\(889\) −20.8567 15.1533i −0.699513 0.508226i
\(890\) 0.772346 + 1.81588i 0.0258891 + 0.0608684i
\(891\) 0 0
\(892\) 15.6157 + 15.0363i 0.522851 + 0.503451i
\(893\) 7.71715 10.6217i 0.258245 0.355443i
\(894\) −66.8383 + 5.89632i −2.23541 + 0.197202i
\(895\) 11.1100 3.60987i 0.371368 0.120665i
\(896\) −4.34180 13.9484i −0.145049 0.465982i
\(897\) −0.246603 0.339420i −0.00823384 0.0113329i
\(898\) 6.52434 5.67981i 0.217720 0.189538i
\(899\) −11.3218 + 34.8450i −0.377605 + 1.16215i
\(900\) −3.82056 + 0.679370i −0.127352 + 0.0226457i
\(901\) 4.65637i 0.155126i
\(902\) 0 0
\(903\) 12.2675i 0.408236i
\(904\) 4.11248 + 6.30268i 0.136779 + 0.209624i
\(905\) −7.06582 + 21.7464i −0.234876 + 0.722873i
\(906\) −24.8042 28.4923i −0.824064 0.946593i
\(907\) −2.12114 2.91950i −0.0704313 0.0969403i 0.772348 0.635200i \(-0.219082\pi\)
−0.842779 + 0.538259i \(0.819082\pi\)
\(908\) 6.61066 47.5362i 0.219382 1.57755i
\(909\) −32.0948 + 10.4282i −1.06452 + 0.345883i
\(910\) 0.109868 + 1.24542i 0.00364210 + 0.0412854i
\(911\) −18.4726 + 25.4254i −0.612026 + 0.842381i −0.996742 0.0806536i \(-0.974299\pi\)
0.384716 + 0.923035i \(0.374299\pi\)
\(912\) −18.6283 + 0.704495i −0.616846 + 0.0233282i
\(913\) 0 0
\(914\) 8.48995 3.61102i 0.280823 0.119442i
\(915\) −48.4741 35.2185i −1.60250 1.16429i
\(916\) −23.1432 43.3745i −0.764673 1.43313i
\(917\) 8.18510 + 25.1911i 0.270296 + 0.831885i
\(918\) −13.6281 8.17518i −0.449795 0.269821i
\(919\) 21.1750 15.3845i 0.698498 0.507488i −0.180945 0.983493i \(-0.557916\pi\)
0.879443 + 0.476005i \(0.157916\pi\)
\(920\) 3.46444 + 0.174025i 0.114219 + 0.00573742i
\(921\) 66.7123 + 21.6762i 2.19825 + 0.714254i
\(922\) −26.3073 6.05347i −0.866384 0.199361i
\(923\) 1.05515 0.0347307
\(924\) 0 0
\(925\) −2.30744 −0.0758681
\(926\) −17.9660 4.13410i −0.590400 0.135855i
\(927\) 1.72277 + 0.559762i 0.0565833 + 0.0183850i
\(928\) −33.9807 + 31.9181i −1.11547 + 1.04776i
\(929\) −22.8207 + 16.5802i −0.748721 + 0.543978i −0.895430 0.445202i \(-0.853132\pi\)
0.146709 + 0.989180i \(0.453132\pi\)
\(930\) −34.1954 20.5130i −1.12131 0.672648i
\(931\) 2.82464 + 8.69334i 0.0925737 + 0.284913i
\(932\) 25.2411 13.4678i 0.826800 0.441153i
\(933\) −6.52056 4.73747i −0.213474 0.155098i
\(934\) −19.7522 + 8.40119i −0.646312 + 0.274895i
\(935\) 0 0
\(936\) −1.29939 + 3.40711i −0.0424719 + 0.111365i
\(937\) 12.6263 17.3786i 0.412484 0.567735i −0.551338 0.834282i \(-0.685883\pi\)
0.963822 + 0.266547i \(0.0858826\pi\)
\(938\) 1.67286 + 18.9629i 0.0546209 + 0.619161i
\(939\) −1.56183 + 0.507470i −0.0509684 + 0.0165606i
\(940\) 35.3955 + 4.92230i 1.15447 + 0.160548i
\(941\) 16.8196 + 23.1501i 0.548302 + 0.754673i 0.989781 0.142599i \(-0.0455458\pi\)
−0.441478 + 0.897272i \(0.645546\pi\)
\(942\) 38.8912 + 44.6739i 1.26714 + 1.45556i
\(943\) 0.908845 2.79714i 0.0295961 0.0910873i
\(944\) −46.7623 31.3451i −1.52198 1.02019i
\(945\) 11.4041i 0.370974i
\(946\) 0 0
\(947\) 0.894236i 0.0290588i −0.999894 0.0145294i \(-0.995375\pi\)
0.999894 0.0145294i \(-0.00462501\pi\)
\(948\) −9.37753 52.7363i −0.304568 1.71279i
\(949\) 0.388337 1.19518i 0.0126060 0.0387971i
\(950\) −0.807599 + 0.703062i −0.0262020 + 0.0228103i
\(951\) −36.6700 50.4720i −1.18911 1.63667i
\(952\) −2.82826 10.4643i −0.0916644 0.339150i
\(953\) 8.21027 2.66768i 0.265957 0.0864146i −0.173003 0.984921i \(-0.555347\pi\)
0.438960 + 0.898507i \(0.355347\pi\)
\(954\) 9.70769 0.856390i 0.314298 0.0277266i
\(955\) 16.0284 22.0612i 0.518666 0.713882i
\(956\) 27.4171 28.4736i 0.886733 0.920902i
\(957\) 0 0
\(958\) 14.5045 + 34.1018i 0.468618 + 1.10178i
\(959\) −6.54496 4.75519i −0.211348 0.153553i
\(960\) −25.5607 43.8319i −0.824968 1.41467i
\(961\) 3.47219 + 10.6863i 0.112006 + 0.344719i
\(962\) −1.11541 + 1.85939i −0.0359621 + 0.0599492i
\(963\) 18.3931 13.3634i 0.592709 0.430628i
\(964\) 5.70861 11.7475i 0.183862 0.378362i
\(965\) −2.56151 0.832286i −0.0824581 0.0267922i
\(966\) −0.585333 + 2.54375i −0.0188328 + 0.0818439i
\(967\) −23.2776 −0.748557 −0.374278 0.927316i \(-0.622110\pi\)
−0.374278 + 0.927316i \(0.622110\pi\)
\(968\) 0 0
\(969\) −13.8325 −0.444363
\(970\) −6.15966 + 26.7688i −0.197775 + 0.859493i
\(971\) −30.6871 9.97085i −0.984796 0.319980i −0.228022 0.973656i \(-0.573226\pi\)
−0.756774 + 0.653676i \(0.773226\pi\)
\(972\) −16.7818 + 34.5346i −0.538278 + 1.10770i
\(973\) −14.0818 + 10.2310i −0.451441 + 0.327991i
\(974\) −19.8255 + 33.0493i −0.635250 + 1.05897i
\(975\) 0.108928 + 0.335247i 0.00348850 + 0.0107365i
\(976\) 10.3105 36.3537i 0.330031 1.16365i
\(977\) −7.50527 5.45290i −0.240115 0.174454i 0.461220 0.887286i \(-0.347412\pi\)
−0.701334 + 0.712832i \(0.747412\pi\)
\(978\) 16.2044 + 38.0986i 0.518160 + 1.21826i
\(979\) 0 0
\(980\) −17.2571 + 17.9221i −0.551259 + 0.572501i
\(981\) 32.5178 44.7570i 1.03821 1.42898i
\(982\) 30.1646 2.66106i 0.962593 0.0849177i
\(983\) 22.1486 7.19653i 0.706432 0.229534i 0.0663013 0.997800i \(-0.478880\pi\)
0.640131 + 0.768266i \(0.278880\pi\)
\(984\) −41.5309 + 11.2248i −1.32396 + 0.357835i
\(985\) 21.4240 + 29.4876i 0.682625 + 0.939553i
\(986\) −26.0913 + 22.7140i −0.830918 + 0.723362i
\(987\) −8.30975 + 25.5748i −0.264502 + 0.814054i
\(988\) 0.176155 + 0.990641i 0.00560424 + 0.0315165i
\(989\) 1.83707i 0.0584155i
\(990\) 0 0
\(991\) 42.4003i 1.34689i 0.739237 + 0.673446i \(0.235186\pi\)
−0.739237 + 0.673446i \(0.764814\pi\)
\(992\) 4.70921 24.7035i 0.149517 0.784337i
\(993\) 3.72576 11.4667i 0.118233 0.363885i
\(994\) −4.31039 4.95130i −0.136717 0.157046i
\(995\) −15.0393 20.6999i −0.476779 0.656229i
\(996\) 20.2504 + 2.81614i 0.641660 + 0.0892329i
\(997\) 4.22586 1.37307i 0.133834 0.0434855i −0.241334 0.970442i \(-0.577585\pi\)
0.375168 + 0.926957i \(0.377585\pi\)
\(998\) 3.83360 + 43.4561i 0.121350 + 1.37558i
\(999\) 11.6251 16.0005i 0.367800 0.506234i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 484.2.g.f.403.3 16
4.3 odd 2 inner 484.2.g.f.403.2 16
11.2 odd 10 44.2.g.a.39.2 yes 16
11.3 even 5 484.2.g.j.239.3 16
11.4 even 5 44.2.g.a.35.1 16
11.5 even 5 484.2.c.d.483.7 16
11.6 odd 10 484.2.c.d.483.10 16
11.7 odd 10 484.2.g.i.475.4 16
11.8 odd 10 inner 484.2.g.f.239.2 16
11.9 even 5 484.2.g.i.215.3 16
11.10 odd 2 484.2.g.j.403.2 16
33.2 even 10 396.2.r.a.127.3 16
33.26 odd 10 396.2.r.a.343.4 16
44.3 odd 10 484.2.g.j.239.2 16
44.7 even 10 484.2.g.i.475.3 16
44.15 odd 10 44.2.g.a.35.2 yes 16
44.19 even 10 inner 484.2.g.f.239.3 16
44.27 odd 10 484.2.c.d.483.9 16
44.31 odd 10 484.2.g.i.215.4 16
44.35 even 10 44.2.g.a.39.1 yes 16
44.39 even 10 484.2.c.d.483.8 16
44.43 even 2 484.2.g.j.403.3 16
88.13 odd 10 704.2.u.c.127.1 16
88.35 even 10 704.2.u.c.127.4 16
88.37 even 10 704.2.u.c.255.4 16
88.59 odd 10 704.2.u.c.255.1 16
132.35 odd 10 396.2.r.a.127.4 16
132.59 even 10 396.2.r.a.343.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.g.a.35.1 16 11.4 even 5
44.2.g.a.35.2 yes 16 44.15 odd 10
44.2.g.a.39.1 yes 16 44.35 even 10
44.2.g.a.39.2 yes 16 11.2 odd 10
396.2.r.a.127.3 16 33.2 even 10
396.2.r.a.127.4 16 132.35 odd 10
396.2.r.a.343.3 16 132.59 even 10
396.2.r.a.343.4 16 33.26 odd 10
484.2.c.d.483.7 16 11.5 even 5
484.2.c.d.483.8 16 44.39 even 10
484.2.c.d.483.9 16 44.27 odd 10
484.2.c.d.483.10 16 11.6 odd 10
484.2.g.f.239.2 16 11.8 odd 10 inner
484.2.g.f.239.3 16 44.19 even 10 inner
484.2.g.f.403.2 16 4.3 odd 2 inner
484.2.g.f.403.3 16 1.1 even 1 trivial
484.2.g.i.215.3 16 11.9 even 5
484.2.g.i.215.4 16 44.31 odd 10
484.2.g.i.475.3 16 44.7 even 10
484.2.g.i.475.4 16 11.7 odd 10
484.2.g.j.239.2 16 44.3 odd 10
484.2.g.j.239.3 16 11.3 even 5
484.2.g.j.403.2 16 11.10 odd 2
484.2.g.j.403.3 16 44.43 even 2
704.2.u.c.127.1 16 88.13 odd 10
704.2.u.c.127.4 16 88.35 even 10
704.2.u.c.255.1 16 88.59 odd 10
704.2.u.c.255.4 16 88.37 even 10