Properties

Label 484.2.g
Level $484$
Weight $2$
Character orbit 484.g
Rep. character $\chi_{484}(215,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $184$
Newform subspaces $11$
Sturm bound $132$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 484.g (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 44 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 11 \)
Sturm bound: \(132\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\), \(5\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(484, [\chi])\).

Total New Old
Modular forms 312 248 64
Cusp forms 216 184 32
Eisenstein series 96 64 32

Trace form

\( 184 q + 5 q^{2} + q^{4} + 6 q^{5} + 5 q^{6} + 5 q^{8} + 40 q^{9} - 18 q^{12} + 10 q^{13} - 12 q^{14} - 27 q^{16} + 10 q^{17} - 20 q^{18} - 12 q^{20} - 25 q^{24} - 16 q^{25} - 20 q^{26} - 20 q^{28} + 10 q^{29}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(484, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
484.2.g.a 484.g 44.g $8$ $3.865$ 8.0.64000000.1 None 484.2.c.c \(0\) \(-10\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{1}q^{2}+(-2+2\beta _{2}-\beta _{4})q^{3}+2\beta _{2}q^{4}+\cdots\)
484.2.g.b 484.g 44.g $8$ $3.865$ 8.0.64000000.1 None 484.2.c.c \(0\) \(-10\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{1}q^{2}+(-2-2\beta _{4}+\beta _{6})q^{3}+2\beta _{2}q^{4}+\cdots\)
484.2.g.c 484.g 44.g $8$ $3.865$ 8.0.64000000.1 \(\Q(\sqrt{-1}) \) 484.2.c.a \(0\) \(0\) \(8\) \(0\) $\mathrm{U}(1)[D_{10}]$ \(q+\beta _{1}q^{2}+2\beta _{2}q^{4}-4\beta _{4}q^{5}+2\beta _{3}q^{8}+\cdots\)
484.2.g.d 484.g 44.g $8$ $3.865$ 8.0.64000000.1 None 484.2.c.c \(0\) \(10\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q-\beta _{5}q^{2}+(2-2\beta _{2}+\beta _{4})q^{3}-2q^{4}+\cdots\)
484.2.g.e 484.g 44.g $8$ $3.865$ 8.0.64000000.1 None 484.2.c.c \(0\) \(10\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{1}q^{2}+(\beta _{2}-2\beta _{4}+2\beta _{6})q^{3}+2\beta _{2}q^{4}+\cdots\)
484.2.g.f 484.g 44.g $16$ $3.865$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 44.2.g.a \(-5\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{15}q^{2}+(1-\beta _{1}-\beta _{3}-\beta _{4}+\beta _{6}+\cdots)q^{3}+\cdots\)
484.2.g.g 484.g 44.g $16$ $3.865$ 16.0.\(\cdots\).2 None 44.2.c.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{5}q^{2}-\beta _{11}q^{3}+(-\beta _{2}-\beta _{7}+\beta _{9}+\cdots)q^{4}+\cdots\)
484.2.g.h 484.g 44.g $16$ $3.865$ 16.0.\(\cdots\).7 \(\Q(\sqrt{-1}) \) 484.2.c.b \(0\) \(0\) \(-8\) \(0\) $\mathrm{U}(1)[D_{10}]$ \(q+(-\beta _{1}+\beta _{3})q^{2}+2\beta _{4}q^{4}+(-2\beta _{8}+\cdots)q^{5}+\cdots\)
484.2.g.i 484.g 44.g $16$ $3.865$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 44.2.g.a \(5\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q-\beta _{2}q^{2}+(-1-\beta _{1}-\beta _{2}-\beta _{13}-\beta _{14}+\cdots)q^{3}+\cdots\)
484.2.g.j 484.g 44.g $16$ $3.865$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 44.2.g.a \(5\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q-\beta _{15}q^{2}+(1-\beta _{1}-\beta _{3}-\beta _{4}+\beta _{6}+\cdots)q^{3}+\cdots\)
484.2.g.k 484.g 44.g $64$ $3.865$ None 484.2.c.e \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{2}^{\mathrm{old}}(484, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(484, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 2}\)