Defining parameters
| Level: | \( N \) | \(=\) | \( 484 = 2^{2} \cdot 11^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 484.g (of order \(10\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 44 \) |
| Character field: | \(\Q(\zeta_{10})\) | ||
| Newform subspaces: | \( 11 \) | ||
| Sturm bound: | \(132\) | ||
| Trace bound: | \(9\) | ||
| Distinguishing \(T_p\): | \(3\), \(5\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(484, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 312 | 248 | 64 |
| Cusp forms | 216 | 184 | 32 |
| Eisenstein series | 96 | 64 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(484, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(484, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(484, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 2}\)