gp: [N,k,chi] = [4830,2,Mod(1,4830)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4830, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4830.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level :
N N N
= = =
4830 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 23 4830 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 23 4 8 3 0 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 2 3
Weight :
k k k
= = =
2 2 2
Character orbit :
[ χ ] [\chi] [ χ ]
= = =
4830.a (trivial)
Newform invariants
sage: traces = [1,-1,1,1,-1,-1,1,-1,1,1,0,1,-4,-1,-1,1,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
3 3 3
− 1 -1 − 1
5 5 5
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
23 23 2 3
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 4830 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(4830)) S 2 n e w ( Γ 0 ( 4 8 3 0 ) ) :
T 11 T_{11} T 1 1
T11
T 13 + 4 T_{13} + 4 T 1 3 + 4
T13 + 4
T 17 T_{17} T 1 7
T17
T 19 − 2 T_{19} - 2 T 1 9 − 2
T19 - 2
T 29 − 6 T_{29} - 6 T 2 9 − 6
T29 - 6
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 1 T + 1 T + 1
T + 1
3 3 3
T − 1 T - 1 T − 1
T - 1
5 5 5
T + 1 T + 1 T + 1
T + 1
7 7 7
T − 1 T - 1 T − 1
T - 1
11 11 1 1
T T T
T
13 13 1 3
T + 4 T + 4 T + 4
T + 4
17 17 1 7
T T T
T
19 19 1 9
T − 2 T - 2 T − 2
T - 2
23 23 2 3
T − 1 T - 1 T − 1
T - 1
29 29 2 9
T − 6 T - 6 T − 6
T - 6
31 31 3 1
T − 2 T - 2 T − 2
T - 2
37 37 3 7
T + 10 T + 10 T + 1 0
T + 10
41 41 4 1
T − 6 T - 6 T − 6
T - 6
43 43 4 3
T + 4 T + 4 T + 4
T + 4
47 47 4 7
T − 6 T - 6 T − 6
T - 6
53 53 5 3
T + 6 T + 6 T + 6
T + 6
59 59 5 9
T − 12 T - 12 T − 1 2
T - 12
61 61 6 1
T + 10 T + 10 T + 1 0
T + 10
67 67 6 7
T + 4 T + 4 T + 4
T + 4
71 71 7 1
T T T
T
73 73 7 3
T − 14 T - 14 T − 1 4
T - 14
79 79 7 9
T − 8 T - 8 T − 8
T - 8
83 83 8 3
T − 6 T - 6 T − 6
T - 6
89 89 8 9
T T T
T
97 97 9 7
T − 8 T - 8 T − 8
T - 8
show more
show less