Properties

Label 483.2.q.c.211.1
Level $483$
Weight $2$
Character 483.211
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 40 x^{18} - 117 x^{17} + 295 x^{16} - 575 x^{15} + 1777 x^{14} - 1560 x^{13} + 4383 x^{12} - 6446 x^{11} + 7261 x^{10} + 7700 x^{9} + 7852 x^{8} - 39430 x^{7} - 101709 x^{6} + 156742 x^{5} + 999838 x^{4} + 2029154 x^{3} + 3616480 x^{2} + 4299390 x + 2374681\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 211.1
Root \(1.58077 - 3.46140i\) of defining polynomial
Character \(\chi\) \(=\) 483.211
Dual form 483.2.q.c.190.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.698939 + 1.53046i) q^{2} +(-0.959493 + 0.281733i) q^{3} +(-0.544078 + 0.627899i) q^{4} +(-2.50227 - 1.60811i) q^{5} +(-1.10181 - 1.27155i) q^{6} +(-0.142315 - 0.989821i) q^{7} +(1.88745 + 0.554206i) q^{8} +(0.841254 - 0.540641i) q^{9} +O(q^{10})\) \(q+(0.698939 + 1.53046i) q^{2} +(-0.959493 + 0.281733i) q^{3} +(-0.544078 + 0.627899i) q^{4} +(-2.50227 - 1.60811i) q^{5} +(-1.10181 - 1.27155i) q^{6} +(-0.142315 - 0.989821i) q^{7} +(1.88745 + 0.554206i) q^{8} +(0.841254 - 0.540641i) q^{9} +(0.712219 - 4.95359i) q^{10} +(2.05182 - 4.49286i) q^{11} +(0.345139 - 0.755750i) q^{12} +(-0.165305 + 1.14972i) q^{13} +(1.41542 - 0.909632i) q^{14} +(2.85396 + 0.837999i) q^{15} +(0.707501 + 4.92078i) q^{16} +(-1.62788 - 1.87868i) q^{17} +(1.41542 + 0.909632i) q^{18} +(3.78746 - 4.37096i) q^{19} +(2.37116 - 0.696235i) q^{20} +(0.415415 + 0.909632i) q^{21} +8.31025 q^{22} +(0.794372 - 4.72958i) q^{23} -1.96714 q^{24} +(1.59825 + 3.49968i) q^{25} +(-1.87514 + 0.550590i) q^{26} +(-0.654861 + 0.755750i) q^{27} +(0.698939 + 0.449181i) q^{28} +(3.45622 + 3.98869i) q^{29} +(0.712219 + 4.95359i) q^{30} +(6.16054 + 1.80890i) q^{31} +(-3.72685 + 2.39510i) q^{32} +(-0.702922 + 4.88893i) q^{33} +(1.73746 - 3.80450i) q^{34} +(-1.23563 + 2.70566i) q^{35} +(-0.118239 + 0.822373i) q^{36} +(0.716896 - 0.460721i) q^{37} +(9.33679 + 2.74153i) q^{38} +(-0.165305 - 1.14972i) q^{39} +(-3.83169 - 4.42200i) q^{40} +(-7.78884 - 5.00558i) q^{41} +(-1.10181 + 1.27155i) q^{42} +(-6.05983 + 1.77933i) q^{43} +(1.70471 + 3.73280i) q^{44} -2.97445 q^{45} +(7.79367 - 2.08993i) q^{46} -7.03910 q^{47} +(-2.06519 - 4.52213i) q^{48} +(-0.959493 + 0.281733i) q^{49} +(-4.23905 + 4.89212i) q^{50} +(2.09123 + 1.34395i) q^{51} +(-0.631969 - 0.729331i) q^{52} +(-1.92906 - 13.4169i) q^{53} +(-1.61435 - 0.474017i) q^{54} +(-12.3592 + 7.94278i) q^{55} +(0.279953 - 1.94711i) q^{56} +(-2.40260 + 5.26096i) q^{57} +(-3.68885 + 8.07746i) q^{58} +(0.0785911 - 0.546613i) q^{59} +(-2.07896 + 1.33607i) q^{60} +(6.57602 + 1.93089i) q^{61} +(1.53739 + 10.6928i) q^{62} +(-0.654861 - 0.755750i) q^{63} +(2.09394 + 1.34569i) q^{64} +(2.26251 - 2.61107i) q^{65} +(-7.97362 + 2.34127i) q^{66} +(2.36319 + 5.17466i) q^{67} +2.06532 q^{68} +(0.570283 + 4.76180i) q^{69} -5.00453 q^{70} +(1.31231 + 2.87356i) q^{71} +(1.88745 - 0.554206i) q^{72} +(3.77134 - 4.35236i) q^{73} +(1.20618 + 0.775167i) q^{74} +(-2.51948 - 2.90764i) q^{75} +(0.683851 + 4.75629i) q^{76} +(-4.73913 - 1.39153i) q^{77} +(1.64406 - 1.05658i) q^{78} +(-0.688738 + 4.79028i) q^{79} +(6.14279 - 13.4508i) q^{80} +(0.415415 - 0.909632i) q^{81} +(2.21693 - 15.4191i) q^{82} +(-7.71983 + 4.96124i) q^{83} +(-0.797176 - 0.234072i) q^{84} +(1.05228 + 7.31877i) q^{85} +(-6.95864 - 8.03070i) q^{86} +(-4.43996 - 2.85339i) q^{87} +(6.36269 - 7.34293i) q^{88} +(0.622265 - 0.182713i) q^{89} +(-2.07896 - 4.55228i) q^{90} +1.16154 q^{91} +(2.53750 + 3.07205i) q^{92} -6.42062 q^{93} +(-4.91990 - 10.7731i) q^{94} +(-16.5062 + 4.84666i) q^{95} +(2.90111 - 3.34805i) q^{96} +(2.40373 + 1.54478i) q^{97} +(-1.10181 - 1.27155i) q^{98} +(-0.702922 - 4.88893i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + O(q^{10}) \) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + 9q^{10} + 3q^{11} + 18q^{12} - 2q^{13} + 18q^{14} - q^{15} + 8q^{16} + 8q^{17} + 18q^{18} + 6q^{19} - 2q^{20} - 2q^{21} + 6q^{22} + 11q^{23} + 9q^{25} + 7q^{26} - 2q^{27} - 4q^{28} + 23q^{29} + 9q^{30} + q^{31} - 28q^{32} + 14q^{33} - 28q^{34} + 10q^{35} - 4q^{36} - 9q^{37} + 34q^{38} - 2q^{39} - 15q^{41} - 4q^{42} - 23q^{43} - 16q^{44} - 12q^{45} + 11q^{46} - 66q^{47} - 36q^{48} - 2q^{49} - 26q^{50} - 14q^{51} + 7q^{52} + 9q^{53} - 4q^{54} - 62q^{55} + 22q^{56} - 27q^{57} - 20q^{58} + 49q^{59} - 2q^{60} + 46q^{61} - 9q^{62} - 2q^{63} + 16q^{64} + 11q^{65} - 16q^{66} + 14q^{67} + 38q^{68} + 11q^{69} - 2q^{70} + 36q^{71} - q^{73} + 4q^{74} - 2q^{75} + 34q^{76} - 8q^{77} - 15q^{78} - 22q^{79} + 15q^{80} - 2q^{81} - 30q^{82} + 8q^{83} - 4q^{84} - 32q^{85} - 68q^{86} + q^{87} - 11q^{88} - 2q^{89} - 2q^{90} - 24q^{91} + 11q^{92} - 32q^{93} + 33q^{94} - 107q^{95} + 16q^{96} + 18q^{97} - 4q^{98} + 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.698939 + 1.53046i 0.494224 + 1.08220i 0.978304 + 0.207176i \(0.0664273\pi\)
−0.484079 + 0.875024i \(0.660845\pi\)
\(3\) −0.959493 + 0.281733i −0.553964 + 0.162658i
\(4\) −0.544078 + 0.627899i −0.272039 + 0.313950i
\(5\) −2.50227 1.60811i −1.11905 0.719168i −0.155802 0.987788i \(-0.549796\pi\)
−0.963246 + 0.268620i \(0.913432\pi\)
\(6\) −1.10181 1.27155i −0.449811 0.519110i
\(7\) −0.142315 0.989821i −0.0537900 0.374117i
\(8\) 1.88745 + 0.554206i 0.667316 + 0.195942i
\(9\) 0.841254 0.540641i 0.280418 0.180214i
\(10\) 0.712219 4.95359i 0.225224 1.56646i
\(11\) 2.05182 4.49286i 0.618647 1.35465i −0.297853 0.954612i \(-0.596270\pi\)
0.916499 0.400036i \(-0.131002\pi\)
\(12\) 0.345139 0.755750i 0.0996331 0.218166i
\(13\) −0.165305 + 1.14972i −0.0458472 + 0.318875i 0.953973 + 0.299894i \(0.0969512\pi\)
−0.999820 + 0.0189808i \(0.993958\pi\)
\(14\) 1.41542 0.909632i 0.378286 0.243109i
\(15\) 2.85396 + 0.837999i 0.736890 + 0.216371i
\(16\) 0.707501 + 4.92078i 0.176875 + 1.23020i
\(17\) −1.62788 1.87868i −0.394820 0.455647i 0.523183 0.852220i \(-0.324744\pi\)
−0.918003 + 0.396574i \(0.870199\pi\)
\(18\) 1.41542 + 0.909632i 0.333617 + 0.214402i
\(19\) 3.78746 4.37096i 0.868902 1.00277i −0.131033 0.991378i \(-0.541829\pi\)
0.999935 0.0113889i \(-0.00362527\pi\)
\(20\) 2.37116 0.696235i 0.530207 0.155683i
\(21\) 0.415415 + 0.909632i 0.0906510 + 0.198498i
\(22\) 8.31025 1.77175
\(23\) 0.794372 4.72958i 0.165638 0.986187i
\(24\) −1.96714 −0.401540
\(25\) 1.59825 + 3.49968i 0.319650 + 0.699935i
\(26\) −1.87514 + 0.550590i −0.367745 + 0.107980i
\(27\) −0.654861 + 0.755750i −0.126028 + 0.145444i
\(28\) 0.698939 + 0.449181i 0.132087 + 0.0848872i
\(29\) 3.45622 + 3.98869i 0.641804 + 0.740681i 0.979693 0.200505i \(-0.0642583\pi\)
−0.337889 + 0.941186i \(0.609713\pi\)
\(30\) 0.712219 + 4.95359i 0.130033 + 0.904399i
\(31\) 6.16054 + 1.80890i 1.10647 + 0.324888i 0.783418 0.621495i \(-0.213474\pi\)
0.323048 + 0.946383i \(0.395293\pi\)
\(32\) −3.72685 + 2.39510i −0.658820 + 0.423398i
\(33\) −0.702922 + 4.88893i −0.122363 + 0.851054i
\(34\) 1.73746 3.80450i 0.297971 0.652466i
\(35\) −1.23563 + 2.70566i −0.208860 + 0.457339i
\(36\) −0.118239 + 0.822373i −0.0197066 + 0.137062i
\(37\) 0.716896 0.460721i 0.117857 0.0757421i −0.480384 0.877058i \(-0.659503\pi\)
0.598241 + 0.801316i \(0.295866\pi\)
\(38\) 9.33679 + 2.74153i 1.51463 + 0.444735i
\(39\) −0.165305 1.14972i −0.0264699 0.184102i
\(40\) −3.83169 4.42200i −0.605843 0.699180i
\(41\) −7.78884 5.00558i −1.21641 0.781740i −0.234692 0.972070i \(-0.575408\pi\)
−0.981720 + 0.190329i \(0.939044\pi\)
\(42\) −1.10181 + 1.27155i −0.170013 + 0.196205i
\(43\) −6.05983 + 1.77933i −0.924115 + 0.271345i −0.708971 0.705238i \(-0.750840\pi\)
−0.215144 + 0.976582i \(0.569022\pi\)
\(44\) 1.70471 + 3.73280i 0.256995 + 0.562741i
\(45\) −2.97445 −0.443405
\(46\) 7.79367 2.08993i 1.14911 0.308144i
\(47\) −7.03910 −1.02676 −0.513379 0.858162i \(-0.671606\pi\)
−0.513379 + 0.858162i \(0.671606\pi\)
\(48\) −2.06519 4.52213i −0.298084 0.652713i
\(49\) −0.959493 + 0.281733i −0.137070 + 0.0402475i
\(50\) −4.23905 + 4.89212i −0.599492 + 0.691850i
\(51\) 2.09123 + 1.34395i 0.292831 + 0.188191i
\(52\) −0.631969 0.729331i −0.0876383 0.101140i
\(53\) −1.92906 13.4169i −0.264977 1.84296i −0.493906 0.869515i \(-0.664431\pi\)
0.228928 0.973443i \(-0.426478\pi\)
\(54\) −1.61435 0.474017i −0.219686 0.0645055i
\(55\) −12.3592 + 7.94278i −1.66652 + 1.07100i
\(56\) 0.279953 1.94711i 0.0374103 0.260194i
\(57\) −2.40260 + 5.26096i −0.318232 + 0.696831i
\(58\) −3.68885 + 8.07746i −0.484370 + 1.06062i
\(59\) 0.0785911 0.546613i 0.0102317 0.0711630i −0.984066 0.177804i \(-0.943101\pi\)
0.994298 + 0.106641i \(0.0340097\pi\)
\(60\) −2.07896 + 1.33607i −0.268392 + 0.172485i
\(61\) 6.57602 + 1.93089i 0.841973 + 0.247226i 0.674153 0.738592i \(-0.264509\pi\)
0.167820 + 0.985818i \(0.446327\pi\)
\(62\) 1.53739 + 10.6928i 0.195249 + 1.35798i
\(63\) −0.654861 0.755750i −0.0825047 0.0952155i
\(64\) 2.09394 + 1.34569i 0.261742 + 0.168212i
\(65\) 2.26251 2.61107i 0.280630 0.323864i
\(66\) −7.97362 + 2.34127i −0.981485 + 0.288190i
\(67\) 2.36319 + 5.17466i 0.288709 + 0.632185i 0.997300 0.0734344i \(-0.0233960\pi\)
−0.708591 + 0.705620i \(0.750669\pi\)
\(68\) 2.06532 0.250457
\(69\) 0.570283 + 4.76180i 0.0686541 + 0.573254i
\(70\) −5.00453 −0.598156
\(71\) 1.31231 + 2.87356i 0.155743 + 0.341029i 0.971379 0.237536i \(-0.0763399\pi\)
−0.815636 + 0.578566i \(0.803613\pi\)
\(72\) 1.88745 0.554206i 0.222439 0.0653139i
\(73\) 3.77134 4.35236i 0.441402 0.509405i −0.490835 0.871252i \(-0.663308\pi\)
0.932237 + 0.361847i \(0.117854\pi\)
\(74\) 1.20618 + 0.775167i 0.140216 + 0.0901113i
\(75\) −2.51948 2.90764i −0.290925 0.335745i
\(76\) 0.683851 + 4.75629i 0.0784430 + 0.545583i
\(77\) −4.73913 1.39153i −0.540074 0.158580i
\(78\) 1.64406 1.05658i 0.186153 0.119634i
\(79\) −0.688738 + 4.79028i −0.0774891 + 0.538949i 0.913689 + 0.406414i \(0.133221\pi\)
−0.991178 + 0.132535i \(0.957688\pi\)
\(80\) 6.14279 13.4508i 0.686785 1.50385i
\(81\) 0.415415 0.909632i 0.0461572 0.101070i
\(82\) 2.21693 15.4191i 0.244819 1.70276i
\(83\) −7.71983 + 4.96124i −0.847362 + 0.544566i −0.890751 0.454492i \(-0.849821\pi\)
0.0433891 + 0.999058i \(0.486184\pi\)
\(84\) −0.797176 0.234072i −0.0869790 0.0255393i
\(85\) 1.05228 + 7.31877i 0.114136 + 0.793832i
\(86\) −6.95864 8.03070i −0.750370 0.865973i
\(87\) −4.43996 2.85339i −0.476014 0.305915i
\(88\) 6.36269 7.34293i 0.678265 0.782759i
\(89\) 0.622265 0.182713i 0.0659599 0.0193676i −0.248586 0.968610i \(-0.579966\pi\)
0.314546 + 0.949242i \(0.398148\pi\)
\(90\) −2.07896 4.55228i −0.219141 0.479853i
\(91\) 1.16154 0.121763
\(92\) 2.53750 + 3.07205i 0.264553 + 0.320283i
\(93\) −6.42062 −0.665787
\(94\) −4.91990 10.7731i −0.507449 1.11116i
\(95\) −16.5062 + 4.84666i −1.69350 + 0.497257i
\(96\) 2.90111 3.34805i 0.296093 0.341709i
\(97\) 2.40373 + 1.54478i 0.244061 + 0.156849i 0.656953 0.753931i \(-0.271845\pi\)
−0.412892 + 0.910780i \(0.635481\pi\)
\(98\) −1.10181 1.27155i −0.111299 0.128446i
\(99\) −0.702922 4.88893i −0.0706463 0.491356i
\(100\) −3.06702 0.900558i −0.306702 0.0900558i
\(101\) 13.4143 8.62084i 1.33477 0.857805i 0.338243 0.941059i \(-0.390168\pi\)
0.996528 + 0.0832537i \(0.0265312\pi\)
\(102\) −0.595226 + 4.13989i −0.0589361 + 0.409910i
\(103\) −3.43082 + 7.51245i −0.338049 + 0.740224i −0.999956 0.00936183i \(-0.997020\pi\)
0.661907 + 0.749586i \(0.269747\pi\)
\(104\) −0.949186 + 2.07843i −0.0930754 + 0.203807i
\(105\) 0.423308 2.94417i 0.0413107 0.287322i
\(106\) 19.1858 12.3300i 1.86349 1.19759i
\(107\) 12.5745 + 3.69219i 1.21562 + 0.356938i 0.825805 0.563956i \(-0.190721\pi\)
0.389814 + 0.920894i \(0.372539\pi\)
\(108\) −0.118239 0.822373i −0.0113776 0.0791329i
\(109\) 2.58631 + 2.98476i 0.247723 + 0.285888i 0.865970 0.500096i \(-0.166702\pi\)
−0.618246 + 0.785984i \(0.712157\pi\)
\(110\) −20.7945 13.3638i −1.98267 1.27419i
\(111\) −0.558057 + 0.644032i −0.0529684 + 0.0611288i
\(112\) 4.77001 1.40060i 0.450723 0.132344i
\(113\) −1.52195 3.33261i −0.143173 0.313505i 0.824437 0.565953i \(-0.191492\pi\)
−0.967611 + 0.252448i \(0.918764\pi\)
\(114\) −9.73096 −0.911388
\(115\) −9.59342 + 10.5572i −0.894591 + 0.984468i
\(116\) −4.38495 −0.407132
\(117\) 0.482522 + 1.05658i 0.0446091 + 0.0976804i
\(118\) 0.891502 0.261768i 0.0820694 0.0240977i
\(119\) −1.62788 + 1.87868i −0.149228 + 0.172218i
\(120\) 4.92230 + 3.16337i 0.449343 + 0.288775i
\(121\) −8.77234 10.1238i −0.797486 0.920348i
\(122\) 1.64107 + 11.4139i 0.148576 + 1.03337i
\(123\) 8.88357 + 2.60845i 0.801004 + 0.235196i
\(124\) −4.48762 + 2.88402i −0.403000 + 0.258993i
\(125\) −0.487924 + 3.39359i −0.0436413 + 0.303532i
\(126\) 0.698939 1.53046i 0.0622664 0.136344i
\(127\) 1.05108 2.30154i 0.0932683 0.204229i −0.857248 0.514904i \(-0.827828\pi\)
0.950516 + 0.310675i \(0.100555\pi\)
\(128\) −1.85694 + 12.9153i −0.164132 + 1.14156i
\(129\) 5.31307 3.41450i 0.467790 0.300630i
\(130\) 5.57751 + 1.63770i 0.489180 + 0.143636i
\(131\) 2.32174 + 16.1481i 0.202852 + 1.41086i 0.795769 + 0.605600i \(0.207067\pi\)
−0.592917 + 0.805263i \(0.702024\pi\)
\(132\) −2.68731 3.10132i −0.233901 0.269936i
\(133\) −4.86548 3.12685i −0.421891 0.271133i
\(134\) −6.26790 + 7.23354i −0.541464 + 0.624883i
\(135\) 2.85396 0.837999i 0.245630 0.0721235i
\(136\) −2.03138 4.44810i −0.174189 0.381422i
\(137\) −19.8966 −1.69988 −0.849942 0.526877i \(-0.823363\pi\)
−0.849942 + 0.526877i \(0.823363\pi\)
\(138\) −6.88917 + 4.20101i −0.586445 + 0.357613i
\(139\) 1.96713 0.166850 0.0834250 0.996514i \(-0.473414\pi\)
0.0834250 + 0.996514i \(0.473414\pi\)
\(140\) −1.02660 2.24794i −0.0867635 0.189986i
\(141\) 6.75396 1.98314i 0.568786 0.167011i
\(142\) −3.48066 + 4.01689i −0.292090 + 0.337090i
\(143\) 4.82635 + 3.10170i 0.403599 + 0.259378i
\(144\) 3.25556 + 3.75712i 0.271297 + 0.313093i
\(145\) −2.23413 15.5387i −0.185535 1.29042i
\(146\) 9.29706 + 2.72986i 0.769430 + 0.225925i
\(147\) 0.841254 0.540641i 0.0693854 0.0445913i
\(148\) −0.100761 + 0.700807i −0.00828249 + 0.0576060i
\(149\) −7.92976 + 17.3637i −0.649631 + 1.42249i 0.242246 + 0.970215i \(0.422116\pi\)
−0.891877 + 0.452279i \(0.850611\pi\)
\(150\) 2.68907 5.88823i 0.219561 0.480772i
\(151\) 2.30425 16.0264i 0.187517 1.30421i −0.650893 0.759169i \(-0.725606\pi\)
0.838410 0.545040i \(-0.183485\pi\)
\(152\) 9.57107 6.15095i 0.776316 0.498908i
\(153\) −2.38515 0.700344i −0.192828 0.0566195i
\(154\) −1.18267 8.22566i −0.0953024 0.662843i
\(155\) −12.5064 14.4332i −1.00454 1.15930i
\(156\) 0.811846 + 0.521742i 0.0649997 + 0.0417728i
\(157\) −11.4560 + 13.2209i −0.914284 + 1.05514i 0.0839928 + 0.996466i \(0.473233\pi\)
−0.998277 + 0.0586740i \(0.981313\pi\)
\(158\) −7.81273 + 2.29402i −0.621547 + 0.182503i
\(159\) 5.63091 + 12.3300i 0.446560 + 0.977831i
\(160\) 13.1771 1.04174
\(161\) −4.79450 0.113197i −0.377859 0.00892114i
\(162\) 1.68251 0.132190
\(163\) −4.76876 10.4421i −0.373518 0.817890i −0.999282 0.0378780i \(-0.987940\pi\)
0.625765 0.780012i \(-0.284787\pi\)
\(164\) 7.38074 2.16718i 0.576339 0.169228i
\(165\) 9.62083 11.1030i 0.748981 0.864370i
\(166\) −12.9887 8.34731i −1.00812 0.647877i
\(167\) 15.3370 + 17.6998i 1.18681 + 1.36965i 0.913046 + 0.407857i \(0.133724\pi\)
0.273766 + 0.961796i \(0.411731\pi\)
\(168\) 0.279953 + 1.94711i 0.0215988 + 0.150223i
\(169\) 11.1789 + 3.28242i 0.859914 + 0.252494i
\(170\) −10.4656 + 6.72585i −0.802677 + 0.515849i
\(171\) 0.823093 5.72474i 0.0629435 0.437782i
\(172\) 2.17978 4.77306i 0.166207 0.363942i
\(173\) 7.41299 16.2322i 0.563599 1.23411i −0.386537 0.922274i \(-0.626329\pi\)
0.950136 0.311836i \(-0.100944\pi\)
\(174\) 1.26374 8.78954i 0.0958042 0.666333i
\(175\) 3.23660 2.08004i 0.244664 0.157236i
\(176\) 23.5600 + 6.91785i 1.77590 + 0.521453i
\(177\) 0.0785911 + 0.546613i 0.00590727 + 0.0410860i
\(178\) 0.714561 + 0.824647i 0.0535586 + 0.0618099i
\(179\) 7.36286 + 4.73182i 0.550326 + 0.353673i 0.786065 0.618143i \(-0.212115\pi\)
−0.235740 + 0.971816i \(0.575751\pi\)
\(180\) 1.61833 1.86766i 0.120623 0.139207i
\(181\) 20.2362 5.94188i 1.50414 0.441656i 0.577120 0.816660i \(-0.304177\pi\)
0.927023 + 0.375003i \(0.122358\pi\)
\(182\) 0.811846 + 1.77769i 0.0601780 + 0.131772i
\(183\) −6.85364 −0.506636
\(184\) 4.12051 8.48663i 0.303768 0.625642i
\(185\) −2.53476 −0.186359
\(186\) −4.48762 9.82652i −0.329048 0.720515i
\(187\) −11.7808 + 3.45914i −0.861495 + 0.252958i
\(188\) 3.82982 4.41985i 0.279318 0.322350i
\(189\) 0.841254 + 0.540641i 0.0611922 + 0.0393258i
\(190\) −18.9545 21.8746i −1.37510 1.58695i
\(191\) 2.97341 + 20.6805i 0.215148 + 1.49639i 0.755611 + 0.655020i \(0.227340\pi\)
−0.540463 + 0.841368i \(0.681751\pi\)
\(192\) −2.38825 0.701252i −0.172357 0.0506085i
\(193\) −18.9755 + 12.1948i −1.36589 + 0.877801i −0.998630 0.0523190i \(-0.983339\pi\)
−0.367255 + 0.930120i \(0.619702\pi\)
\(194\) −0.684172 + 4.75852i −0.0491207 + 0.341642i
\(195\) −1.43524 + 3.14273i −0.102779 + 0.225056i
\(196\) 0.345139 0.755750i 0.0246528 0.0539821i
\(197\) −0.165477 + 1.15092i −0.0117897 + 0.0819993i −0.994867 0.101193i \(-0.967734\pi\)
0.983077 + 0.183192i \(0.0586431\pi\)
\(198\) 6.99102 4.49286i 0.496830 0.319294i
\(199\) −11.9966 3.52251i −0.850413 0.249704i −0.172649 0.984983i \(-0.555233\pi\)
−0.677764 + 0.735279i \(0.737051\pi\)
\(200\) 1.07708 + 7.49124i 0.0761609 + 0.529711i
\(201\) −3.72533 4.29926i −0.262765 0.303247i
\(202\) 22.5696 + 14.5046i 1.58799 + 1.02054i
\(203\) 3.45622 3.98869i 0.242579 0.279951i
\(204\) −1.98166 + 0.581867i −0.138744 + 0.0407389i
\(205\) 11.4402 + 25.0506i 0.799020 + 1.74961i
\(206\) −13.8955 −0.968143
\(207\) −1.88874 4.40825i −0.131276 0.306395i
\(208\) −5.77446 −0.400387
\(209\) −11.8669 25.9849i −0.820852 1.79742i
\(210\) 4.80181 1.40994i 0.331357 0.0972951i
\(211\) −6.66039 + 7.68650i −0.458520 + 0.529160i −0.937183 0.348839i \(-0.886576\pi\)
0.478663 + 0.877999i \(0.341122\pi\)
\(212\) 9.47405 + 6.08860i 0.650681 + 0.418167i
\(213\) −2.06873 2.38744i −0.141747 0.163585i
\(214\) 3.13801 + 21.8254i 0.214510 + 1.49195i
\(215\) 18.0247 + 5.29252i 1.22927 + 0.360947i
\(216\) −1.65486 + 1.06351i −0.112599 + 0.0723630i
\(217\) 0.913750 6.35527i 0.0620294 0.431424i
\(218\) −2.76039 + 6.04441i −0.186957 + 0.409379i
\(219\) −2.39237 + 5.23857i −0.161662 + 0.353990i
\(220\) 1.73711 12.0818i 0.117116 0.814557i
\(221\) 2.42905 1.56105i 0.163395 0.105008i
\(222\) −1.37571 0.403946i −0.0923319 0.0271111i
\(223\) 2.69112 + 18.7172i 0.180211 + 1.25339i 0.856263 + 0.516540i \(0.172780\pi\)
−0.676052 + 0.736854i \(0.736310\pi\)
\(224\) 2.90111 + 3.34805i 0.193838 + 0.223701i
\(225\) 3.23660 + 2.08004i 0.215773 + 0.138669i
\(226\) 4.03668 4.65858i 0.268516 0.309884i
\(227\) 11.3065 3.31990i 0.750441 0.220349i 0.115924 0.993258i \(-0.463017\pi\)
0.634517 + 0.772909i \(0.281199\pi\)
\(228\) −1.99615 4.37096i −0.132198 0.289474i
\(229\) 23.0550 1.52352 0.761759 0.647860i \(-0.224336\pi\)
0.761759 + 0.647860i \(0.224336\pi\)
\(230\) −22.8627 7.30350i −1.50752 0.481579i
\(231\) 4.93920 0.324976
\(232\) 4.31290 + 9.44393i 0.283156 + 0.620024i
\(233\) 5.46980 1.60608i 0.358338 0.105218i −0.0976079 0.995225i \(-0.531119\pi\)
0.455946 + 0.890007i \(0.349301\pi\)
\(234\) −1.27980 + 1.47696i −0.0836628 + 0.0965520i
\(235\) 17.6137 + 11.3196i 1.14899 + 0.738412i
\(236\) 0.300459 + 0.346748i 0.0195582 + 0.0225713i
\(237\) −0.688738 4.79028i −0.0447384 0.311162i
\(238\) −4.01304 1.17833i −0.260127 0.0763801i
\(239\) −17.2343 + 11.0758i −1.11479 + 0.716434i −0.962332 0.271875i \(-0.912356\pi\)
−0.152461 + 0.988310i \(0.548720\pi\)
\(240\) −2.10443 + 14.6366i −0.135840 + 0.944789i
\(241\) −4.01316 + 8.78759i −0.258510 + 0.566058i −0.993735 0.111765i \(-0.964350\pi\)
0.735224 + 0.677824i \(0.237077\pi\)
\(242\) 9.36280 20.5017i 0.601864 1.31790i
\(243\) −0.142315 + 0.989821i −0.00912950 + 0.0634971i
\(244\) −4.79027 + 3.07852i −0.306666 + 0.197082i
\(245\) 2.85396 + 0.837999i 0.182333 + 0.0535378i
\(246\) 2.21693 + 15.4191i 0.141347 + 0.983087i
\(247\) 4.39929 + 5.07705i 0.279920 + 0.323045i
\(248\) 10.6252 + 6.82842i 0.674703 + 0.433605i
\(249\) 6.00938 6.93520i 0.380829 0.439500i
\(250\) −5.53479 + 1.62516i −0.350051 + 0.102784i
\(251\) 2.86876 + 6.28170i 0.181074 + 0.396498i 0.978303 0.207180i \(-0.0664286\pi\)
−0.797228 + 0.603678i \(0.793701\pi\)
\(252\) 0.830830 0.0523374
\(253\) −19.6194 13.2733i −1.23346 0.834483i
\(254\) 4.25707 0.267112
\(255\) −3.07159 6.72585i −0.192351 0.421189i
\(256\) −16.2878 + 4.78252i −1.01798 + 0.298907i
\(257\) 8.50844 9.81927i 0.530742 0.612509i −0.425545 0.904937i \(-0.639918\pi\)
0.956288 + 0.292428i \(0.0944632\pi\)
\(258\) 8.93928 + 5.74492i 0.556535 + 0.357663i
\(259\) −0.558057 0.644032i −0.0346760 0.0400182i
\(260\) 0.408511 + 2.84126i 0.0253348 + 0.176207i
\(261\) 5.06400 + 1.48693i 0.313454 + 0.0920384i
\(262\) −23.0913 + 14.8398i −1.42658 + 0.916809i
\(263\) 2.35917 16.4084i 0.145472 1.01178i −0.778040 0.628215i \(-0.783786\pi\)
0.923513 0.383568i \(-0.125305\pi\)
\(264\) −4.03621 + 8.83807i −0.248412 + 0.543945i
\(265\) −16.7489 + 36.6749i −1.02888 + 2.25292i
\(266\) 1.38486 9.63191i 0.0849112 0.590571i
\(267\) −0.545582 + 0.350624i −0.0333891 + 0.0214579i
\(268\) −4.53492 1.33157i −0.277015 0.0813388i
\(269\) 1.79067 + 12.4544i 0.109179 + 0.759358i 0.968696 + 0.248250i \(0.0798555\pi\)
−0.859517 + 0.511107i \(0.829235\pi\)
\(270\) 3.27727 + 3.78217i 0.199448 + 0.230176i
\(271\) −10.3829 6.67265i −0.630713 0.405335i 0.185860 0.982576i \(-0.440493\pi\)
−0.816574 + 0.577241i \(0.804129\pi\)
\(272\) 8.09284 9.33963i 0.490700 0.566298i
\(273\) −1.11449 + 0.327244i −0.0674520 + 0.0198057i
\(274\) −13.9065 30.4510i −0.840124 1.83961i
\(275\) 19.0029 1.14592
\(276\) −3.30021 2.23271i −0.198649 0.134393i
\(277\) 17.4586 1.04899 0.524493 0.851415i \(-0.324255\pi\)
0.524493 + 0.851415i \(0.324255\pi\)
\(278\) 1.37490 + 3.01062i 0.0824613 + 0.180565i
\(279\) 6.16054 1.80890i 0.368822 0.108296i
\(280\) −3.83169 + 4.42200i −0.228987 + 0.264265i
\(281\) −3.16062 2.03121i −0.188547 0.121172i 0.442962 0.896540i \(-0.353928\pi\)
−0.631509 + 0.775369i \(0.717564\pi\)
\(282\) 7.75573 + 8.95059i 0.461847 + 0.533000i
\(283\) −2.84864 19.8127i −0.169334 1.17774i −0.880265 0.474482i \(-0.842635\pi\)
0.710931 0.703261i \(-0.248274\pi\)
\(284\) −2.51831 0.739442i −0.149434 0.0438778i
\(285\) 14.4721 9.30067i 0.857255 0.550924i
\(286\) −1.37372 + 9.55444i −0.0812299 + 0.564966i
\(287\) −3.84616 + 8.42193i −0.227032 + 0.497131i
\(288\) −1.84033 + 4.02977i −0.108443 + 0.237457i
\(289\) 1.53993 10.7104i 0.0905839 0.630025i
\(290\) 22.2199 14.2799i 1.30480 0.838544i
\(291\) −2.74157 0.804999i −0.160714 0.0471899i
\(292\) 0.680941 + 4.73605i 0.0398490 + 0.277156i
\(293\) −13.0037 15.0071i −0.759685 0.876723i 0.235785 0.971805i \(-0.424234\pi\)
−0.995469 + 0.0950825i \(0.969689\pi\)
\(294\) 1.41542 + 0.909632i 0.0825487 + 0.0530508i
\(295\) −1.07567 + 1.24139i −0.0626279 + 0.0722765i
\(296\) 1.60844 0.472282i 0.0934889 0.0274508i
\(297\) 2.05182 + 4.49286i 0.119059 + 0.260702i
\(298\) −32.1170 −1.86049
\(299\) 5.30638 + 1.69513i 0.306876 + 0.0980317i
\(300\) 3.19650 0.184550
\(301\) 2.62362 + 5.74492i 0.151223 + 0.331132i
\(302\) 26.1383 7.67490i 1.50409 0.441641i
\(303\) −10.4421 + 12.0509i −0.599885 + 0.692305i
\(304\) 24.1882 + 15.5448i 1.38729 + 0.891555i
\(305\) −13.3499 15.4066i −0.764411 0.882178i
\(306\) −0.595226 4.13989i −0.0340268 0.236662i
\(307\) 19.6743 + 5.77688i 1.12287 + 0.329704i 0.789901 0.613234i \(-0.210132\pi\)
0.332968 + 0.942938i \(0.391950\pi\)
\(308\) 3.45220 2.21859i 0.196707 0.126416i
\(309\) 1.17535 8.17472i 0.0668632 0.465044i
\(310\) 13.3482 29.2285i 0.758127 1.66007i
\(311\) 4.17554 9.14316i 0.236773 0.518461i −0.753525 0.657419i \(-0.771648\pi\)
0.990298 + 0.138958i \(0.0443753\pi\)
\(312\) 0.325177 2.26165i 0.0184095 0.128041i
\(313\) −0.243828 + 0.156699i −0.0137820 + 0.00885715i −0.547514 0.836797i \(-0.684426\pi\)
0.533732 + 0.845654i \(0.320789\pi\)
\(314\) −28.2411 8.29232i −1.59373 0.467963i
\(315\) 0.423308 + 2.94417i 0.0238507 + 0.165885i
\(316\) −2.63309 3.03874i −0.148123 0.170943i
\(317\) 18.4583 + 11.8624i 1.03672 + 0.666261i 0.944174 0.329447i \(-0.106862\pi\)
0.0925486 + 0.995708i \(0.470499\pi\)
\(318\) −14.9349 + 17.2358i −0.837508 + 0.966536i
\(319\) 25.0122 7.34423i 1.40041 0.411198i
\(320\) −3.07557 6.73456i −0.171930 0.376474i
\(321\) −13.1053 −0.731467
\(322\) −3.17782 7.41691i −0.177093 0.413328i
\(323\) −14.3772 −0.799967
\(324\) 0.345139 + 0.755750i 0.0191744 + 0.0419861i
\(325\) −4.28784 + 1.25902i −0.237847 + 0.0698381i
\(326\) 12.6482 14.5968i 0.700519 0.808442i
\(327\) −3.32245 2.13521i −0.183732 0.118077i
\(328\) −11.9269 13.7644i −0.658555 0.760013i
\(329\) 1.00177 + 6.96745i 0.0552293 + 0.384128i
\(330\) 23.7171 + 6.96398i 1.30559 + 0.383355i
\(331\) −19.6751 + 12.6444i −1.08144 + 0.694999i −0.954890 0.296961i \(-0.904027\pi\)
−0.126551 + 0.991960i \(0.540391\pi\)
\(332\) 1.08503 7.54658i 0.0595490 0.414172i
\(333\) 0.354007 0.775167i 0.0193995 0.0424789i
\(334\) −16.3693 + 35.8438i −0.895688 + 1.96128i
\(335\) 2.40809 16.7486i 0.131568 0.915076i
\(336\) −4.18219 + 2.68773i −0.228157 + 0.146628i
\(337\) 12.7046 + 3.73041i 0.692065 + 0.203209i 0.608806 0.793319i \(-0.291649\pi\)
0.0832592 + 0.996528i \(0.473467\pi\)
\(338\) 2.78974 + 19.4031i 0.151742 + 1.05539i
\(339\) 2.39921 + 2.76883i 0.130307 + 0.150382i
\(340\) −5.16798 3.32126i −0.280273 0.180120i
\(341\) 20.7674 23.9669i 1.12462 1.29788i
\(342\) 9.33679 2.74153i 0.504876 0.148245i
\(343\) 0.415415 + 0.909632i 0.0224303 + 0.0491155i
\(344\) −12.4238 −0.669844
\(345\) 6.23050 12.8324i 0.335439 0.690872i
\(346\) 30.0240 1.61410
\(347\) 5.45426 + 11.9432i 0.292800 + 0.641142i 0.997672 0.0681920i \(-0.0217231\pi\)
−0.704872 + 0.709334i \(0.748996\pi\)
\(348\) 4.20733 1.23538i 0.225536 0.0662235i
\(349\) 13.5127 15.5945i 0.723320 0.834756i −0.268382 0.963312i \(-0.586489\pi\)
0.991702 + 0.128557i \(0.0410345\pi\)
\(350\) 5.44560 + 3.49968i 0.291080 + 0.187066i
\(351\) −0.760648 0.877834i −0.0406004 0.0468553i
\(352\) 3.11402 + 21.6585i 0.165978 + 1.15440i
\(353\) −28.5422 8.38074i −1.51915 0.446062i −0.587438 0.809269i \(-0.699863\pi\)
−0.931708 + 0.363208i \(0.881682\pi\)
\(354\) −0.781641 + 0.502330i −0.0415437 + 0.0266985i
\(355\) 1.33725 9.30077i 0.0709738 0.493633i
\(356\) −0.223835 + 0.490130i −0.0118632 + 0.0259768i
\(357\) 1.03266 2.26121i 0.0546541 0.119676i
\(358\) −2.09569 + 14.5758i −0.110761 + 0.770356i
\(359\) 29.1923 18.7607i 1.54071 0.990154i 0.553118 0.833103i \(-0.313438\pi\)
0.987591 0.157051i \(-0.0501987\pi\)
\(360\) −5.61414 1.64846i −0.295891 0.0868814i
\(361\) −2.05647 14.3030i −0.108235 0.752792i
\(362\) 23.2377 + 26.8177i 1.22134 + 1.40951i
\(363\) 11.2692 + 7.24228i 0.591480 + 0.380121i
\(364\) −0.631969 + 0.729331i −0.0331242 + 0.0382273i
\(365\) −16.4360 + 4.82604i −0.860298 + 0.252606i
\(366\) −4.79027 10.4892i −0.250392 0.548281i
\(367\) 8.08738 0.422158 0.211079 0.977469i \(-0.432302\pi\)
0.211079 + 0.977469i \(0.432302\pi\)
\(368\) 23.8353 + 0.562743i 1.24250 + 0.0293350i
\(369\) −9.25861 −0.481984
\(370\) −1.77164 3.87935i −0.0921031 0.201678i
\(371\) −13.0058 + 3.81886i −0.675230 + 0.198265i
\(372\) 3.49332 4.03150i 0.181120 0.209024i
\(373\) −19.6724 12.6427i −1.01860 0.654615i −0.0789954 0.996875i \(-0.525171\pi\)
−0.939605 + 0.342260i \(0.888808\pi\)
\(374\) −13.5281 15.6123i −0.699523 0.807292i
\(375\) −0.487924 3.39359i −0.0251963 0.175244i
\(376\) −13.2860 3.90111i −0.685172 0.201185i
\(377\) −5.15720 + 3.31433i −0.265609 + 0.170697i
\(378\) −0.239446 + 1.66538i −0.0123158 + 0.0856580i
\(379\) −4.60367 + 10.0806i −0.236475 + 0.517807i −0.990246 0.139329i \(-0.955505\pi\)
0.753771 + 0.657137i \(0.228233\pi\)
\(380\) 5.93745 13.0012i 0.304585 0.666948i
\(381\) −0.360084 + 2.50444i −0.0184477 + 0.128306i
\(382\) −29.5725 + 19.0051i −1.51306 + 0.972385i
\(383\) 21.4546 + 6.29963i 1.09628 + 0.321896i 0.779372 0.626561i \(-0.215538\pi\)
0.316905 + 0.948457i \(0.397356\pi\)
\(384\) −1.85694 12.9153i −0.0947615 0.659081i
\(385\) 9.62083 + 11.1030i 0.490323 + 0.565863i
\(386\) −31.9264 20.5178i −1.62501 1.04433i
\(387\) −4.13588 + 4.77306i −0.210238 + 0.242628i
\(388\) −2.27778 + 0.668817i −0.115637 + 0.0339541i
\(389\) 0.0784648 + 0.171814i 0.00397832 + 0.00871131i 0.911611 0.411055i \(-0.134839\pi\)
−0.907632 + 0.419766i \(0.862112\pi\)
\(390\) −5.81297 −0.294351
\(391\) −10.1785 + 6.20685i −0.514750 + 0.313894i
\(392\) −1.96714 −0.0993554
\(393\) −6.77713 14.8398i −0.341861 0.748571i
\(394\) −1.87709 + 0.551164i −0.0945665 + 0.0277672i
\(395\) 9.42670 10.8790i 0.474309 0.547381i
\(396\) 3.45220 + 2.21859i 0.173480 + 0.111489i
\(397\) 2.40451 + 2.77495i 0.120679 + 0.139271i 0.812874 0.582439i \(-0.197902\pi\)
−0.692195 + 0.721710i \(0.743356\pi\)
\(398\) −2.99379 20.8223i −0.150065 1.04373i
\(399\) 5.54933 + 1.62943i 0.277814 + 0.0815736i
\(400\) −16.0904 + 10.3407i −0.804519 + 0.517033i
\(401\) 1.21719 8.46574i 0.0607835 0.422759i −0.936596 0.350411i \(-0.886042\pi\)
0.997379 0.0723476i \(-0.0230491\pi\)
\(402\) 3.97608 8.70640i 0.198309 0.434236i
\(403\) −3.09809 + 6.78387i −0.154327 + 0.337929i
\(404\) −1.88540 + 13.1132i −0.0938020 + 0.652407i
\(405\) −2.50227 + 1.60811i −0.124339 + 0.0799076i
\(406\) 8.52022 + 2.50176i 0.422852 + 0.124160i
\(407\) −0.599014 4.16623i −0.0296920 0.206512i
\(408\) 3.20227 + 3.69562i 0.158536 + 0.182960i
\(409\) −26.6283 17.1130i −1.31669 0.846182i −0.321762 0.946821i \(-0.604275\pi\)
−0.994923 + 0.100638i \(0.967911\pi\)
\(410\) −30.3430 + 35.0177i −1.49853 + 1.72940i
\(411\) 19.0907 5.60553i 0.941674 0.276500i
\(412\) −2.85043 6.24157i −0.140431 0.307500i
\(413\) −0.552234 −0.0271737
\(414\) 5.42655 5.97174i 0.266700 0.293495i
\(415\) 27.2953 1.33987
\(416\) −2.13762 4.68074i −0.104806 0.229492i
\(417\) −1.88745 + 0.554205i −0.0924288 + 0.0271395i
\(418\) 31.4747 36.3238i 1.53948 1.77665i
\(419\) 6.99655 + 4.49641i 0.341804 + 0.219664i 0.700269 0.713879i \(-0.253063\pi\)
−0.358465 + 0.933543i \(0.616700\pi\)
\(420\) 1.61833 + 1.86766i 0.0789666 + 0.0911323i
\(421\) −2.95595 20.5591i −0.144064 1.00199i −0.925701 0.378256i \(-0.876524\pi\)
0.781637 0.623734i \(-0.214385\pi\)
\(422\) −16.4191 4.82108i −0.799269 0.234687i
\(423\) −5.92167 + 3.80562i −0.287921 + 0.185036i
\(424\) 3.79473 26.3930i 0.184289 1.28176i
\(425\) 3.97300 8.69967i 0.192719 0.421996i
\(426\) 2.20798 4.83479i 0.106977 0.234246i
\(427\) 0.975375 6.78388i 0.0472017 0.328295i
\(428\) −9.15981 + 5.88665i −0.442756 + 0.284542i
\(429\) −5.50470 1.61632i −0.265769 0.0780369i
\(430\) 4.49813 + 31.2852i 0.216919 + 1.50871i
\(431\) −25.7712 29.7416i −1.24136 1.43260i −0.861656 0.507493i \(-0.830572\pi\)
−0.379701 0.925109i \(-0.623973\pi\)
\(432\) −4.18219 2.68773i −0.201216 0.129314i
\(433\) 4.26452 4.92152i 0.204940 0.236513i −0.643970 0.765051i \(-0.722714\pi\)
0.848910 + 0.528537i \(0.177259\pi\)
\(434\) 10.3652 3.04348i 0.497543 0.146092i
\(435\) 6.52141 + 14.2799i 0.312677 + 0.684668i
\(436\) −3.28128 −0.157145
\(437\) −17.6642 21.3853i −0.844992 1.02300i
\(438\) −9.68956 −0.462985
\(439\) 3.85084 + 8.43217i 0.183791 + 0.402445i 0.978992 0.203901i \(-0.0653620\pi\)
−0.795201 + 0.606346i \(0.792635\pi\)
\(440\) −27.7294 + 8.14208i −1.32195 + 0.388158i
\(441\) −0.654861 + 0.755750i −0.0311838 + 0.0359881i
\(442\) 4.08689 + 2.62649i 0.194394 + 0.124929i
\(443\) 12.5023 + 14.4284i 0.594002 + 0.685515i 0.970555 0.240880i \(-0.0774361\pi\)
−0.376553 + 0.926395i \(0.622891\pi\)
\(444\) −0.100761 0.700807i −0.00478190 0.0332588i
\(445\) −1.85090 0.543472i −0.0877409 0.0257630i
\(446\) −26.7650 + 17.2008i −1.26736 + 0.814482i
\(447\) 2.71661 18.8945i 0.128491 0.893678i
\(448\) 1.03400 2.26414i 0.0488518 0.106970i
\(449\) 12.2499 26.8236i 0.578110 1.26588i −0.364256 0.931299i \(-0.618677\pi\)
0.942366 0.334585i \(-0.108596\pi\)
\(450\) −0.921233 + 6.40731i −0.0434273 + 0.302044i
\(451\) −38.4707 + 24.7236i −1.81151 + 1.16419i
\(452\) 2.92060 + 0.857566i 0.137374 + 0.0403365i
\(453\) 2.30425 + 16.0264i 0.108263 + 0.752985i
\(454\) 12.9836 + 14.9838i 0.609349 + 0.703226i
\(455\) −2.90649 1.86789i −0.136258 0.0875678i
\(456\) −7.45045 + 8.59828i −0.348899 + 0.402651i
\(457\) −30.8185 + 9.04913i −1.44163 + 0.423301i −0.906765 0.421637i \(-0.861456\pi\)
−0.534865 + 0.844938i \(0.679637\pi\)
\(458\) 16.1140 + 35.2848i 0.752960 + 1.64875i
\(459\) 2.48585 0.116029
\(460\) −1.40932 11.7677i −0.0657099 0.548670i
\(461\) 32.9314 1.53377 0.766884 0.641786i \(-0.221806\pi\)
0.766884 + 0.641786i \(0.221806\pi\)
\(462\) 3.45220 + 7.55927i 0.160611 + 0.351689i
\(463\) −25.2954 + 7.42739i −1.17558 + 0.345180i −0.810467 0.585785i \(-0.800786\pi\)
−0.365109 + 0.930965i \(0.618968\pi\)
\(464\) −17.1822 + 19.8293i −0.797663 + 0.920552i
\(465\) 16.0661 + 10.3251i 0.745048 + 0.478813i
\(466\) 6.28109 + 7.24877i 0.290966 + 0.335793i
\(467\) 4.72330 + 32.8513i 0.218568 + 1.52018i 0.743329 + 0.668926i \(0.233246\pi\)
−0.524760 + 0.851250i \(0.675845\pi\)
\(468\) −0.925952 0.271884i −0.0428022 0.0125678i
\(469\) 4.78567 3.07557i 0.220982 0.142016i
\(470\) −5.01338 + 34.8688i −0.231250 + 1.60838i
\(471\) 7.26715 15.9128i 0.334853 0.733225i
\(472\) 0.451274 0.988152i 0.0207716 0.0454834i
\(473\) −4.43942 + 30.8768i −0.204125 + 1.41972i
\(474\) 6.84996 4.40220i 0.314629 0.202200i
\(475\) 21.3502 + 6.26900i 0.979617 + 0.287641i
\(476\) −0.293925 2.04430i −0.0134720 0.0937001i
\(477\) −8.87658 10.2441i −0.406431 0.469046i
\(478\) −28.9968 18.6351i −1.32628 0.852350i
\(479\) −15.9947 + 18.4588i −0.730816 + 0.843406i −0.992563 0.121730i \(-0.961156\pi\)
0.261748 + 0.965136i \(0.415701\pi\)
\(480\) −12.6434 + 3.71243i −0.577089 + 0.169449i
\(481\) 0.411194 + 0.900388i 0.0187488 + 0.0410542i
\(482\) −16.2540 −0.740351
\(483\) 4.63218 1.24215i 0.210771 0.0565200i
\(484\) 11.1296 0.505890
\(485\) −3.53059 7.73091i −0.160316 0.351043i
\(486\) −1.61435 + 0.474017i −0.0732286 + 0.0215018i
\(487\) 3.26025 3.76253i 0.147736 0.170496i −0.677058 0.735929i \(-0.736745\pi\)
0.824794 + 0.565433i \(0.191291\pi\)
\(488\) 11.3418 + 7.28895i 0.513420 + 0.329955i
\(489\) 7.51747 + 8.67563i 0.339952 + 0.392325i
\(490\) 0.712219 + 4.95359i 0.0321748 + 0.223781i
\(491\) −24.4370 7.17534i −1.10283 0.323819i −0.320851 0.947130i \(-0.603969\pi\)
−0.781974 + 0.623311i \(0.785787\pi\)
\(492\) −6.47120 + 4.15879i −0.291744 + 0.187493i
\(493\) 1.86714 12.9863i 0.0840918 0.584871i
\(494\) −4.69540 + 10.2815i −0.211256 + 0.462586i
\(495\) −6.10304 + 13.3638i −0.274311 + 0.600657i
\(496\) −4.54260 + 31.5945i −0.203969 + 1.41863i
\(497\) 2.65755 1.70791i 0.119208 0.0766101i
\(498\) 14.8143 + 4.34986i 0.663842 + 0.194922i
\(499\) −2.63495 18.3265i −0.117957 0.820406i −0.959800 0.280684i \(-0.909439\pi\)
0.841844 0.539721i \(-0.181470\pi\)
\(500\) −1.86536 2.15274i −0.0834216 0.0962737i
\(501\) −19.7023 12.6619i −0.880236 0.565693i
\(502\) −7.60882 + 8.78105i −0.339598 + 0.391918i
\(503\) 15.0880 4.43023i 0.672739 0.197534i 0.0725168 0.997367i \(-0.476897\pi\)
0.600222 + 0.799833i \(0.295079\pi\)
\(504\) −0.817178 1.78937i −0.0364000 0.0797049i
\(505\) −47.4294 −2.11058
\(506\) 6.60143 39.3040i 0.293469 1.74728i
\(507\) −11.6508 −0.517431
\(508\) 0.873269 + 1.91219i 0.0387450 + 0.0848398i
\(509\) −8.91966 + 2.61905i −0.395357 + 0.116087i −0.473367 0.880865i \(-0.656962\pi\)
0.0780100 + 0.996953i \(0.475143\pi\)
\(510\) 8.14680 9.40191i 0.360747 0.416324i
\(511\) −4.84478 3.11355i −0.214320 0.137735i
\(512\) −1.61423 1.86292i −0.0713396 0.0823303i
\(513\) 0.823093 + 5.72474i 0.0363405 + 0.252753i
\(514\) 20.9749 + 6.15879i 0.925163 + 0.271652i
\(515\) 20.6657 13.2810i 0.910639 0.585232i
\(516\) −0.746760 + 5.19383i −0.0328743 + 0.228646i
\(517\) −14.4430 + 31.6257i −0.635201 + 1.39090i
\(518\) 0.595619 1.30422i 0.0261700 0.0573043i
\(519\) −2.53958 + 17.6631i −0.111475 + 0.775326i
\(520\) 5.71746 3.67439i 0.250727 0.161132i
\(521\) −16.8131 4.93676i −0.736593 0.216283i −0.108146 0.994135i \(-0.534491\pi\)
−0.628448 + 0.777852i \(0.716309\pi\)
\(522\) 1.26374 + 8.78954i 0.0553126 + 0.384708i
\(523\) 9.51604 + 10.9821i 0.416108 + 0.480214i 0.924647 0.380825i \(-0.124360\pi\)
−0.508540 + 0.861039i \(0.669814\pi\)
\(524\) −11.4026 7.32799i −0.498124 0.320125i
\(525\) −2.51948 + 2.90764i −0.109959 + 0.126900i
\(526\) 26.7613 7.85782i 1.16685 0.342617i
\(527\) −6.63031 14.5184i −0.288821 0.632429i
\(528\) −24.5547 −1.06860
\(529\) −21.7379 7.51410i −0.945128 0.326700i
\(530\) −67.8360 −2.94661
\(531\) −0.229406 0.502330i −0.00995539 0.0217993i
\(532\) 4.61055 1.35378i 0.199893 0.0586938i
\(533\) 7.04254 8.12752i 0.305046 0.352042i
\(534\) −0.917946 0.589928i −0.0397234 0.0255287i
\(535\) −25.5272 29.4600i −1.10364 1.27366i
\(536\) 1.59258 + 11.0766i 0.0687889 + 0.478437i
\(537\) −8.39772 2.46579i −0.362388 0.106407i
\(538\) −17.8094 + 11.4454i −0.767818 + 0.493447i
\(539\) −0.702922 + 4.88893i −0.0302770 + 0.210581i
\(540\) −1.02660 + 2.24794i −0.0441778 + 0.0967359i
\(541\) −1.04199 + 2.28164i −0.0447987 + 0.0980956i −0.930708 0.365763i \(-0.880808\pi\)
0.885909 + 0.463858i \(0.153535\pi\)
\(542\) 2.95527 20.5543i 0.126940 0.882885i
\(543\) −17.7424 + 11.4024i −0.761401 + 0.489323i
\(544\) 10.5665 + 3.10260i 0.453035 + 0.133023i
\(545\) −1.67182 11.6277i −0.0716127 0.498077i
\(546\) −1.27980 1.47696i −0.0547702 0.0632082i
\(547\) 2.81963 + 1.81206i 0.120558 + 0.0774782i 0.599530 0.800352i \(-0.295354\pi\)
−0.478972 + 0.877830i \(0.658990\pi\)
\(548\) 10.8253 12.4931i 0.462435 0.533678i
\(549\) 6.57602 1.93089i 0.280658 0.0824085i
\(550\) 13.2818 + 29.0832i 0.566340 + 1.24011i
\(551\) 30.5247 1.30040
\(552\) −1.56264 + 9.30374i −0.0665103 + 0.395993i
\(553\) 4.83954 0.205798
\(554\) 12.2025 + 26.7197i 0.518434 + 1.13521i
\(555\) 2.43208 0.714123i 0.103236 0.0303128i
\(556\) −1.07027 + 1.23516i −0.0453897 + 0.0523825i
\(557\) 37.4861 + 24.0909i 1.58834 + 1.02076i 0.972504 + 0.232886i \(0.0748170\pi\)
0.615834 + 0.787876i \(0.288819\pi\)
\(558\) 7.07429 + 8.16417i 0.299479 + 0.345617i
\(559\) −1.04401 7.26123i −0.0441568 0.307117i
\(560\) −14.1881 4.16602i −0.599559 0.176046i
\(561\) 10.3290 6.63805i 0.436091 0.280259i
\(562\) 0.899606 6.25690i 0.0379476 0.263931i
\(563\) −8.73180 + 19.1200i −0.368001 + 0.805810i 0.631535 + 0.775348i \(0.282425\pi\)
−0.999536 + 0.0304628i \(0.990302\pi\)
\(564\) −2.42947 + 5.31979i −0.102299 + 0.224004i
\(565\) −1.55087 + 10.7865i −0.0652456 + 0.453793i
\(566\) 28.3316 18.2076i 1.19086 0.765322i
\(567\) −0.959493 0.281733i −0.0402949 0.0118317i
\(568\) 0.884382 + 6.15101i 0.0371078 + 0.258091i
\(569\) −17.4600 20.1499i −0.731961 0.844728i 0.260730 0.965412i \(-0.416037\pi\)
−0.992691 + 0.120684i \(0.961491\pi\)
\(570\) 24.3495 + 15.6485i 1.01989 + 0.655441i
\(571\) 21.5255 24.8418i 0.900815 1.03960i −0.0981979 0.995167i \(-0.531308\pi\)
0.999013 0.0444287i \(-0.0141467\pi\)
\(572\) −4.57347 + 1.34289i −0.191226 + 0.0561491i
\(573\) −8.67933 19.0051i −0.362584 0.793949i
\(574\) −15.5777 −0.650199
\(575\) 17.8216 4.77901i 0.743213 0.199298i
\(576\) 2.48907 0.103711
\(577\) 10.1661 + 22.2608i 0.423222 + 0.926727i 0.994378 + 0.105886i \(0.0337678\pi\)
−0.571156 + 0.820841i \(0.693505\pi\)
\(578\) 17.4682 5.12913i 0.726582 0.213344i
\(579\) 14.7712 17.0468i 0.613869 0.708443i
\(580\) 10.9723 + 7.05148i 0.455600 + 0.292797i
\(581\) 6.00938 + 6.93520i 0.249311 + 0.287721i
\(582\) −0.684172 4.75852i −0.0283598 0.197247i
\(583\) −64.2385 18.8621i −2.66049 0.781190i
\(584\) 9.53034 6.12478i 0.394368 0.253445i
\(585\) 0.491690 3.41978i 0.0203289 0.141391i
\(586\) 13.8790 30.3907i 0.573335 1.25543i
\(587\) −12.8180 + 28.0675i −0.529056 + 1.15847i 0.436840 + 0.899539i \(0.356098\pi\)
−0.965896 + 0.258931i \(0.916630\pi\)
\(588\) −0.118239 + 0.822373i −0.00487611 + 0.0339141i
\(589\) 31.2394 20.0764i 1.28720 0.827232i
\(590\) −2.65173 0.778617i −0.109170 0.0320552i
\(591\) −0.165477 1.15092i −0.00680680 0.0473423i
\(592\) 2.77431 + 3.20173i 0.114024 + 0.131590i
\(593\) −11.1267 7.15071i −0.456920 0.293645i 0.291863 0.956460i \(-0.405725\pi\)
−0.748783 + 0.662816i \(0.769361\pi\)
\(594\) −5.44205 + 6.28047i −0.223290 + 0.257691i
\(595\) 7.09452 2.08314i 0.290847 0.0854004i
\(596\) −6.58828 14.4263i −0.269867 0.590925i
\(597\) 12.5030 0.511714
\(598\) 1.11451 + 9.30600i 0.0455755 + 0.380551i
\(599\) 26.5308 1.08402 0.542010 0.840372i \(-0.317663\pi\)
0.542010 + 0.840372i \(0.317663\pi\)
\(600\) −3.14397 6.88434i −0.128352 0.281052i
\(601\) 16.8575 4.94980i 0.687630 0.201907i 0.0807911 0.996731i \(-0.474255\pi\)
0.606839 + 0.794825i \(0.292437\pi\)
\(602\) −6.95864 + 8.03070i −0.283613 + 0.327307i
\(603\) 4.78567 + 3.07557i 0.194888 + 0.125247i
\(604\) 8.80927 + 10.1664i 0.358444 + 0.413666i
\(605\) 5.67053 + 39.4394i 0.230540 + 1.60344i
\(606\) −25.7418 7.55848i −1.04569 0.307042i
\(607\) −19.8998 + 12.7888i −0.807707 + 0.519082i −0.878122 0.478436i \(-0.841204\pi\)
0.0704157 + 0.997518i \(0.477567\pi\)
\(608\) −3.64639 + 25.3612i −0.147881 + 1.02853i
\(609\) −2.19247 + 4.80085i −0.0888435 + 0.194540i
\(610\) 14.2484 31.1997i 0.576902 1.26324i
\(611\) 1.16359 8.09298i 0.0470740 0.327407i
\(612\) 1.73746 1.11659i 0.0702325 0.0451357i
\(613\) 20.6111 + 6.05197i 0.832476 + 0.244437i 0.670080 0.742289i \(-0.266260\pi\)
0.162396 + 0.986726i \(0.448078\pi\)
\(614\) 4.90980 + 34.1484i 0.198143 + 1.37812i
\(615\) −18.0344 20.8128i −0.727217 0.839253i
\(616\) −8.17370 5.25292i −0.329328 0.211646i
\(617\) 12.0123 13.8629i 0.483595 0.558099i −0.460548 0.887635i \(-0.652347\pi\)
0.944143 + 0.329536i \(0.106892\pi\)
\(618\) 13.3326 3.91480i 0.536316 0.157476i
\(619\) 1.99949 + 4.37828i 0.0803664 + 0.175978i 0.945550 0.325478i \(-0.105525\pi\)
−0.865183 + 0.501456i \(0.832798\pi\)
\(620\) 15.8670 0.637236
\(621\) 3.05418 + 3.69757i 0.122560 + 0.148378i
\(622\) 16.9117 0.678098
\(623\) −0.269411 0.589928i −0.0107937 0.0236350i
\(624\) 5.54056 1.62685i 0.221800 0.0651263i
\(625\) 19.2756 22.2452i 0.771023 0.889809i
\(626\) −0.410243 0.263647i −0.0163966 0.0105375i
\(627\) 18.7070 + 21.5891i 0.747087 + 0.862184i
\(628\) −2.06845 14.3864i −0.0825400 0.574079i
\(629\) −2.03257 0.596817i −0.0810439 0.0237966i
\(630\) −4.21008 + 2.70566i −0.167734 + 0.107796i
\(631\) 0.668946 4.65262i 0.0266303 0.185218i −0.972164 0.234300i \(-0.924720\pi\)
0.998795 + 0.0490816i \(0.0156294\pi\)
\(632\) −3.95477 + 8.65973i −0.157312 + 0.344465i
\(633\) 4.22506 9.25159i 0.167931 0.367718i
\(634\) −5.25379 + 36.5409i −0.208655 + 1.45122i
\(635\) −6.33122 + 4.06883i −0.251247 + 0.161466i
\(636\) −10.8056 3.17282i −0.428472 0.125811i
\(637\) −0.165305 1.14972i −0.00654960 0.0455535i
\(638\) 28.7220 + 33.1470i 1.13712 + 1.31230i
\(639\) 2.65755 + 1.70791i 0.105131 + 0.0675637i
\(640\) 25.4158 29.3313i 1.00465 1.15942i
\(641\) −22.4407 + 6.58919i −0.886355 + 0.260257i −0.693057 0.720883i \(-0.743737\pi\)
−0.193298 + 0.981140i \(0.561918\pi\)
\(642\) −9.15981 20.0572i −0.361509 0.791594i
\(643\) 8.12003 0.320223 0.160111 0.987099i \(-0.448815\pi\)
0.160111 + 0.987099i \(0.448815\pi\)
\(644\) 2.67966 2.94887i 0.105593 0.116202i
\(645\) −18.7856 −0.739683
\(646\) −10.0488 22.0037i −0.395363 0.865725i
\(647\) 3.09440 0.908599i 0.121654 0.0357207i −0.220339 0.975423i \(-0.570716\pi\)
0.341993 + 0.939703i \(0.388898\pi\)
\(648\) 1.28820 1.48666i 0.0506053 0.0584016i
\(649\) −2.29460 1.47465i −0.0900710 0.0578851i
\(650\) −4.92383 5.68240i −0.193128 0.222882i
\(651\) 0.913750 + 6.35527i 0.0358127 + 0.249083i
\(652\) 9.15118 + 2.68703i 0.358388 + 0.105232i
\(653\) 14.9667 9.61854i 0.585694 0.376402i −0.213979 0.976838i \(-0.568643\pi\)
0.799673 + 0.600436i \(0.205006\pi\)
\(654\) 0.945668 6.57726i 0.0369785 0.257191i
\(655\) 20.1582 44.1404i 0.787648 1.72471i
\(656\) 19.1208 41.8686i 0.746540 1.63469i
\(657\) 0.819591 5.70038i 0.0319753 0.222393i
\(658\) −9.96324 + 6.40299i −0.388408 + 0.249614i
\(659\) −26.1462 7.67722i −1.01851 0.299062i −0.270481 0.962725i \(-0.587183\pi\)
−0.748031 + 0.663663i \(0.769001\pi\)
\(660\) 1.73711 + 12.0818i 0.0676167 + 0.470285i
\(661\) −2.22897 2.57237i −0.0866969 0.100054i 0.710744 0.703451i \(-0.248359\pi\)
−0.797440 + 0.603398i \(0.793813\pi\)
\(662\) −33.1035 21.2743i −1.28660 0.826849i
\(663\) −1.89085 + 2.18216i −0.0734347 + 0.0847482i
\(664\) −17.3204 + 5.08572i −0.672161 + 0.197364i
\(665\) 7.14641 + 15.6485i 0.277126 + 0.606821i
\(666\) 1.43379 0.0555583
\(667\) 21.6104 13.1780i 0.836757 0.510253i
\(668\) −19.4582 −0.752861
\(669\) −7.85535 17.2008i −0.303705 0.665022i
\(670\) 27.3163 8.02078i 1.05532 0.309870i
\(671\) 22.1680 25.5833i 0.855788 0.987632i
\(672\) −3.72685 2.39510i −0.143766 0.0923929i
\(673\) −0.512691 0.591677i −0.0197628 0.0228075i 0.745782 0.666190i \(-0.232076\pi\)
−0.765545 + 0.643382i \(0.777531\pi\)
\(674\) 3.17049 + 22.0513i 0.122123 + 0.849383i
\(675\) −3.69151 1.08393i −0.142086 0.0417203i
\(676\) −8.14321 + 5.23332i −0.313200 + 0.201282i
\(677\) −1.98721 + 13.8214i −0.0763747 + 0.531198i 0.915334 + 0.402695i \(0.131926\pi\)
−0.991709 + 0.128503i \(0.958983\pi\)
\(678\) −2.56069 + 5.60714i −0.0983428 + 0.215341i
\(679\) 1.18697 2.59911i 0.0455518 0.0997445i
\(680\) −2.06998 + 14.3970i −0.0793801 + 0.552101i
\(681\) −9.91322 + 6.37084i −0.379875 + 0.244131i
\(682\) 51.1956 + 15.0324i 1.96038 + 0.575620i
\(683\) 2.94522 + 20.4845i 0.112696 + 0.783817i 0.965278 + 0.261224i \(0.0841261\pi\)
−0.852582 + 0.522593i \(0.824965\pi\)
\(684\) 3.14673 + 3.63152i 0.120318 + 0.138855i
\(685\) 49.7867 + 31.9960i 1.90225 + 1.22250i
\(686\) −1.10181 + 1.27155i −0.0420672 + 0.0485482i
\(687\) −22.1211 + 6.49535i −0.843974 + 0.247813i
\(688\) −13.0430 28.5602i −0.497260 1.08885i
\(689\) 15.7446 0.599821
\(690\) 23.9942 + 0.566496i 0.913444 + 0.0215661i
\(691\) −25.2135 −0.959167 −0.479584 0.877496i \(-0.659212\pi\)
−0.479584 + 0.877496i \(0.659212\pi\)
\(692\) 6.15893 + 13.4862i 0.234128 + 0.512668i
\(693\) −4.73913 + 1.39153i −0.180025 + 0.0528600i
\(694\) −14.4664 + 16.6951i −0.549135 + 0.633736i
\(695\) −4.92229 3.16336i −0.186713 0.119993i
\(696\) −6.79885 7.84630i −0.257710 0.297413i
\(697\) 3.27545 + 22.7812i 0.124066 + 0.862901i
\(698\) 33.3114 + 9.78111i 1.26085 + 0.370220i
\(699\) −4.79575 + 3.08204i −0.181392 + 0.116573i
\(700\) −0.454909 + 3.16396i −0.0171939 + 0.119587i
\(701\) −20.4861 + 44.8583i −0.773749 + 1.69427i −0.0555294 + 0.998457i \(0.517685\pi\)
−0.718219 + 0.695817i \(0.755043\pi\)
\(702\) 0.811846 1.77769i 0.0306412 0.0670948i
\(703\) 0.701421 4.87849i 0.0264546 0.183996i
\(704\) 10.3424 6.64665i 0.389794 0.250505i
\(705\) −20.0893 5.89876i −0.756608 0.222160i
\(706\) −7.12282 49.5403i −0.268071 1.86447i
\(707\) −10.4421 12.0509i −0.392717 0.453220i
\(708\) −0.385978 0.248053i −0.0145059 0.00932240i
\(709\) 6.82059 7.87138i 0.256153 0.295616i −0.613078 0.790022i \(-0.710069\pi\)
0.869231 + 0.494406i \(0.164614\pi\)
\(710\) 15.1691 4.45406i 0.569287 0.167158i
\(711\) 2.01042 + 4.40220i 0.0753965 + 0.165095i
\(712\) 1.27576 0.0478110
\(713\) 13.4491 27.6999i 0.503673 1.03737i
\(714\) 4.18246 0.156525
\(715\) −7.08893 15.5226i −0.265111 0.580512i
\(716\) −6.97707 + 2.04865i −0.260746 + 0.0765618i
\(717\) 13.4158 15.4826i 0.501021 0.578209i
\(718\) 49.1162 + 31.5651i 1.83300 + 1.17800i
\(719\) −21.6820 25.0224i −0.808602 0.933176i 0.190218 0.981742i \(-0.439081\pi\)
−0.998820 + 0.0485654i \(0.984535\pi\)
\(720\) −2.10443 14.6366i −0.0784274 0.545474i
\(721\) 7.92424 + 2.32677i 0.295114 + 0.0866534i
\(722\) 20.4529 13.1443i 0.761179 0.489180i
\(723\) 1.37485 9.56227i 0.0511311 0.355625i
\(724\) −7.27916 + 15.9391i −0.270528 + 0.592373i
\(725\) −8.43523 + 18.4706i −0.313276 + 0.685980i
\(726\) −3.20755 + 22.3090i −0.119043 + 0.827965i
\(727\) −10.2225 + 6.56961i −0.379132 + 0.243653i −0.716302 0.697790i \(-0.754167\pi\)
0.337170 + 0.941444i \(0.390530\pi\)
\(728\) 2.19236 + 0.643734i 0.0812541 + 0.0238584i
\(729\) −0.142315 0.989821i −0.00527092 0.0366601i
\(730\) −18.8738 21.7815i −0.698551 0.806171i
\(731\) 13.2075 + 8.48794i 0.488496 + 0.313938i
\(732\) 3.72891 4.30340i 0.137825 0.159058i
\(733\) 26.1799 7.68712i 0.966978 0.283930i 0.240139 0.970739i \(-0.422807\pi\)
0.726839 + 0.686808i \(0.240989\pi\)
\(734\) 5.65258 + 12.3774i 0.208641 + 0.456859i
\(735\) −2.97445 −0.109714
\(736\) 8.36732 + 19.5290i 0.308424 + 0.719850i
\(737\) 28.0979 1.03500
\(738\) −6.47120 14.1699i −0.238208 0.521603i
\(739\) 8.25117 2.42276i 0.303524 0.0891228i −0.126424 0.991976i \(-0.540350\pi\)
0.429948 + 0.902854i \(0.358532\pi\)
\(740\) 1.37910 1.59157i 0.0506969 0.0585073i
\(741\) −5.65146 3.63197i −0.207611 0.133424i
\(742\) −14.9349 17.2358i −0.548278 0.632746i
\(743\) −3.41857 23.7767i −0.125415 0.872281i −0.951261 0.308386i \(-0.900211\pi\)
0.825846 0.563895i \(-0.190698\pi\)
\(744\) −12.1186 3.55835i −0.444290 0.130455i
\(745\) 47.7652 30.6968i 1.74998 1.12464i
\(746\) 5.59936 38.9444i 0.205007 1.42586i
\(747\) −3.81209 + 8.34731i −0.139477 + 0.305412i
\(748\) 4.23766 9.27918i 0.154944 0.339280i
\(749\) 1.86508 12.9719i 0.0681486 0.473984i
\(750\) 4.85273 3.11866i 0.177197 0.113877i
\(751\) 47.7530 + 14.0215i 1.74253 + 0.511654i 0.989274 0.146071i \(-0.0466629\pi\)
0.753258 + 0.657725i \(0.228481\pi\)
\(752\) −4.98017 34.6378i −0.181608 1.26311i
\(753\) −4.52231 5.21903i −0.164802 0.190192i
\(754\) −8.67702 5.57638i −0.315998 0.203080i
\(755\) −31.5380 + 36.3968i −1.14779 + 1.32462i
\(756\) −0.797176 + 0.234072i −0.0289930 + 0.00851311i
\(757\) −6.32074 13.8405i −0.229731 0.503041i 0.759301 0.650739i \(-0.225541\pi\)
−0.989032 + 0.147698i \(0.952814\pi\)
\(758\) −18.6457 −0.677243
\(759\) 22.5642 + 7.20816i 0.819030 + 0.261640i
\(760\) −33.8408 −1.22753
\(761\) 8.49030 + 18.5912i 0.307773 + 0.673929i 0.998804 0.0488962i \(-0.0155704\pi\)
−0.691031 + 0.722825i \(0.742843\pi\)
\(762\) −4.08463 + 1.19935i −0.147970 + 0.0434480i
\(763\) 2.58631 2.98476i 0.0936307 0.108056i
\(764\) −14.6030 9.38480i −0.528319 0.339530i
\(765\) 4.84206 + 5.58804i 0.175065 + 0.202036i
\(766\) 5.35408 + 37.2385i 0.193451 + 1.34548i
\(767\) 0.615460 + 0.180715i 0.0222230 + 0.00652525i
\(768\) 14.2806 9.17758i 0.515307 0.331168i
\(769\) −3.53112 + 24.5595i −0.127336 + 0.885639i 0.821577 + 0.570098i \(0.193095\pi\)
−0.948912 + 0.315540i \(0.897814\pi\)
\(770\) −10.2684 + 22.4847i −0.370047 + 0.810291i
\(771\) −5.39738 + 11.8186i −0.194382 + 0.425637i
\(772\) 2.66703 18.5496i