Properties

Label 483.2.q.c.190.1
Level $483$
Weight $2$
Character 483.190
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 40 x^{18} - 117 x^{17} + 295 x^{16} - 575 x^{15} + 1777 x^{14} - 1560 x^{13} + 4383 x^{12} - 6446 x^{11} + 7261 x^{10} + 7700 x^{9} + 7852 x^{8} - 39430 x^{7} - 101709 x^{6} + 156742 x^{5} + 999838 x^{4} + 2029154 x^{3} + 3616480 x^{2} + 4299390 x + 2374681\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 190.1
Root \(1.58077 + 3.46140i\) of defining polynomial
Character \(\chi\) \(=\) 483.190
Dual form 483.2.q.c.211.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.698939 - 1.53046i) q^{2} +(-0.959493 - 0.281733i) q^{3} +(-0.544078 - 0.627899i) q^{4} +(-2.50227 + 1.60811i) q^{5} +(-1.10181 + 1.27155i) q^{6} +(-0.142315 + 0.989821i) q^{7} +(1.88745 - 0.554206i) q^{8} +(0.841254 + 0.540641i) q^{9} +O(q^{10})\) \(q+(0.698939 - 1.53046i) q^{2} +(-0.959493 - 0.281733i) q^{3} +(-0.544078 - 0.627899i) q^{4} +(-2.50227 + 1.60811i) q^{5} +(-1.10181 + 1.27155i) q^{6} +(-0.142315 + 0.989821i) q^{7} +(1.88745 - 0.554206i) q^{8} +(0.841254 + 0.540641i) q^{9} +(0.712219 + 4.95359i) q^{10} +(2.05182 + 4.49286i) q^{11} +(0.345139 + 0.755750i) q^{12} +(-0.165305 - 1.14972i) q^{13} +(1.41542 + 0.909632i) q^{14} +(2.85396 - 0.837999i) q^{15} +(0.707501 - 4.92078i) q^{16} +(-1.62788 + 1.87868i) q^{17} +(1.41542 - 0.909632i) q^{18} +(3.78746 + 4.37096i) q^{19} +(2.37116 + 0.696235i) q^{20} +(0.415415 - 0.909632i) q^{21} +8.31025 q^{22} +(0.794372 + 4.72958i) q^{23} -1.96714 q^{24} +(1.59825 - 3.49968i) q^{25} +(-1.87514 - 0.550590i) q^{26} +(-0.654861 - 0.755750i) q^{27} +(0.698939 - 0.449181i) q^{28} +(3.45622 - 3.98869i) q^{29} +(0.712219 - 4.95359i) q^{30} +(6.16054 - 1.80890i) q^{31} +(-3.72685 - 2.39510i) q^{32} +(-0.702922 - 4.88893i) q^{33} +(1.73746 + 3.80450i) q^{34} +(-1.23563 - 2.70566i) q^{35} +(-0.118239 - 0.822373i) q^{36} +(0.716896 + 0.460721i) q^{37} +(9.33679 - 2.74153i) q^{38} +(-0.165305 + 1.14972i) q^{39} +(-3.83169 + 4.42200i) q^{40} +(-7.78884 + 5.00558i) q^{41} +(-1.10181 - 1.27155i) q^{42} +(-6.05983 - 1.77933i) q^{43} +(1.70471 - 3.73280i) q^{44} -2.97445 q^{45} +(7.79367 + 2.08993i) q^{46} -7.03910 q^{47} +(-2.06519 + 4.52213i) q^{48} +(-0.959493 - 0.281733i) q^{49} +(-4.23905 - 4.89212i) q^{50} +(2.09123 - 1.34395i) q^{51} +(-0.631969 + 0.729331i) q^{52} +(-1.92906 + 13.4169i) q^{53} +(-1.61435 + 0.474017i) q^{54} +(-12.3592 - 7.94278i) q^{55} +(0.279953 + 1.94711i) q^{56} +(-2.40260 - 5.26096i) q^{57} +(-3.68885 - 8.07746i) q^{58} +(0.0785911 + 0.546613i) q^{59} +(-2.07896 - 1.33607i) q^{60} +(6.57602 - 1.93089i) q^{61} +(1.53739 - 10.6928i) q^{62} +(-0.654861 + 0.755750i) q^{63} +(2.09394 - 1.34569i) q^{64} +(2.26251 + 2.61107i) q^{65} +(-7.97362 - 2.34127i) q^{66} +(2.36319 - 5.17466i) q^{67} +2.06532 q^{68} +(0.570283 - 4.76180i) q^{69} -5.00453 q^{70} +(1.31231 - 2.87356i) q^{71} +(1.88745 + 0.554206i) q^{72} +(3.77134 + 4.35236i) q^{73} +(1.20618 - 0.775167i) q^{74} +(-2.51948 + 2.90764i) q^{75} +(0.683851 - 4.75629i) q^{76} +(-4.73913 + 1.39153i) q^{77} +(1.64406 + 1.05658i) q^{78} +(-0.688738 - 4.79028i) q^{79} +(6.14279 + 13.4508i) q^{80} +(0.415415 + 0.909632i) q^{81} +(2.21693 + 15.4191i) q^{82} +(-7.71983 - 4.96124i) q^{83} +(-0.797176 + 0.234072i) q^{84} +(1.05228 - 7.31877i) q^{85} +(-6.95864 + 8.03070i) q^{86} +(-4.43996 + 2.85339i) q^{87} +(6.36269 + 7.34293i) q^{88} +(0.622265 + 0.182713i) q^{89} +(-2.07896 + 4.55228i) q^{90} +1.16154 q^{91} +(2.53750 - 3.07205i) q^{92} -6.42062 q^{93} +(-4.91990 + 10.7731i) q^{94} +(-16.5062 - 4.84666i) q^{95} +(2.90111 + 3.34805i) q^{96} +(2.40373 - 1.54478i) q^{97} +(-1.10181 + 1.27155i) q^{98} +(-0.702922 + 4.88893i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + O(q^{10}) \) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + 9q^{10} + 3q^{11} + 18q^{12} - 2q^{13} + 18q^{14} - q^{15} + 8q^{16} + 8q^{17} + 18q^{18} + 6q^{19} - 2q^{20} - 2q^{21} + 6q^{22} + 11q^{23} + 9q^{25} + 7q^{26} - 2q^{27} - 4q^{28} + 23q^{29} + 9q^{30} + q^{31} - 28q^{32} + 14q^{33} - 28q^{34} + 10q^{35} - 4q^{36} - 9q^{37} + 34q^{38} - 2q^{39} - 15q^{41} - 4q^{42} - 23q^{43} - 16q^{44} - 12q^{45} + 11q^{46} - 66q^{47} - 36q^{48} - 2q^{49} - 26q^{50} - 14q^{51} + 7q^{52} + 9q^{53} - 4q^{54} - 62q^{55} + 22q^{56} - 27q^{57} - 20q^{58} + 49q^{59} - 2q^{60} + 46q^{61} - 9q^{62} - 2q^{63} + 16q^{64} + 11q^{65} - 16q^{66} + 14q^{67} + 38q^{68} + 11q^{69} - 2q^{70} + 36q^{71} - q^{73} + 4q^{74} - 2q^{75} + 34q^{76} - 8q^{77} - 15q^{78} - 22q^{79} + 15q^{80} - 2q^{81} - 30q^{82} + 8q^{83} - 4q^{84} - 32q^{85} - 68q^{86} + q^{87} - 11q^{88} - 2q^{89} - 2q^{90} - 24q^{91} + 11q^{92} - 32q^{93} + 33q^{94} - 107q^{95} + 16q^{96} + 18q^{97} - 4q^{98} + 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.698939 1.53046i 0.494224 1.08220i −0.484079 0.875024i \(-0.660845\pi\)
0.978304 0.207176i \(-0.0664273\pi\)
\(3\) −0.959493 0.281733i −0.553964 0.162658i
\(4\) −0.544078 0.627899i −0.272039 0.313950i
\(5\) −2.50227 + 1.60811i −1.11905 + 0.719168i −0.963246 0.268620i \(-0.913432\pi\)
−0.155802 + 0.987788i \(0.549796\pi\)
\(6\) −1.10181 + 1.27155i −0.449811 + 0.519110i
\(7\) −0.142315 + 0.989821i −0.0537900 + 0.374117i
\(8\) 1.88745 0.554206i 0.667316 0.195942i
\(9\) 0.841254 + 0.540641i 0.280418 + 0.180214i
\(10\) 0.712219 + 4.95359i 0.225224 + 1.56646i
\(11\) 2.05182 + 4.49286i 0.618647 + 1.35465i 0.916499 + 0.400036i \(0.131002\pi\)
−0.297853 + 0.954612i \(0.596270\pi\)
\(12\) 0.345139 + 0.755750i 0.0996331 + 0.218166i
\(13\) −0.165305 1.14972i −0.0458472 0.318875i −0.999820 0.0189808i \(-0.993958\pi\)
0.953973 0.299894i \(-0.0969512\pi\)
\(14\) 1.41542 + 0.909632i 0.378286 + 0.243109i
\(15\) 2.85396 0.837999i 0.736890 0.216371i
\(16\) 0.707501 4.92078i 0.176875 1.23020i
\(17\) −1.62788 + 1.87868i −0.394820 + 0.455647i −0.918003 0.396574i \(-0.870199\pi\)
0.523183 + 0.852220i \(0.324744\pi\)
\(18\) 1.41542 0.909632i 0.333617 0.214402i
\(19\) 3.78746 + 4.37096i 0.868902 + 1.00277i 0.999935 + 0.0113889i \(0.00362527\pi\)
−0.131033 + 0.991378i \(0.541829\pi\)
\(20\) 2.37116 + 0.696235i 0.530207 + 0.155683i
\(21\) 0.415415 0.909632i 0.0906510 0.198498i
\(22\) 8.31025 1.77175
\(23\) 0.794372 + 4.72958i 0.165638 + 0.986187i
\(24\) −1.96714 −0.401540
\(25\) 1.59825 3.49968i 0.319650 0.699935i
\(26\) −1.87514 0.550590i −0.367745 0.107980i
\(27\) −0.654861 0.755750i −0.126028 0.145444i
\(28\) 0.698939 0.449181i 0.132087 0.0848872i
\(29\) 3.45622 3.98869i 0.641804 0.740681i −0.337889 0.941186i \(-0.609713\pi\)
0.979693 + 0.200505i \(0.0642583\pi\)
\(30\) 0.712219 4.95359i 0.130033 0.904399i
\(31\) 6.16054 1.80890i 1.10647 0.324888i 0.323048 0.946383i \(-0.395293\pi\)
0.783418 + 0.621495i \(0.213474\pi\)
\(32\) −3.72685 2.39510i −0.658820 0.423398i
\(33\) −0.702922 4.88893i −0.122363 0.851054i
\(34\) 1.73746 + 3.80450i 0.297971 + 0.652466i
\(35\) −1.23563 2.70566i −0.208860 0.457339i
\(36\) −0.118239 0.822373i −0.0197066 0.137062i
\(37\) 0.716896 + 0.460721i 0.117857 + 0.0757421i 0.598241 0.801316i \(-0.295866\pi\)
−0.480384 + 0.877058i \(0.659503\pi\)
\(38\) 9.33679 2.74153i 1.51463 0.444735i
\(39\) −0.165305 + 1.14972i −0.0264699 + 0.184102i
\(40\) −3.83169 + 4.42200i −0.605843 + 0.699180i
\(41\) −7.78884 + 5.00558i −1.21641 + 0.781740i −0.981720 0.190329i \(-0.939044\pi\)
−0.234692 + 0.972070i \(0.575408\pi\)
\(42\) −1.10181 1.27155i −0.170013 0.196205i
\(43\) −6.05983 1.77933i −0.924115 0.271345i −0.215144 0.976582i \(-0.569022\pi\)
−0.708971 + 0.705238i \(0.750840\pi\)
\(44\) 1.70471 3.73280i 0.256995 0.562741i
\(45\) −2.97445 −0.443405
\(46\) 7.79367 + 2.08993i 1.14911 + 0.308144i
\(47\) −7.03910 −1.02676 −0.513379 0.858162i \(-0.671606\pi\)
−0.513379 + 0.858162i \(0.671606\pi\)
\(48\) −2.06519 + 4.52213i −0.298084 + 0.652713i
\(49\) −0.959493 0.281733i −0.137070 0.0402475i
\(50\) −4.23905 4.89212i −0.599492 0.691850i
\(51\) 2.09123 1.34395i 0.292831 0.188191i
\(52\) −0.631969 + 0.729331i −0.0876383 + 0.101140i
\(53\) −1.92906 + 13.4169i −0.264977 + 1.84296i 0.228928 + 0.973443i \(0.426478\pi\)
−0.493906 + 0.869515i \(0.664431\pi\)
\(54\) −1.61435 + 0.474017i −0.219686 + 0.0645055i
\(55\) −12.3592 7.94278i −1.66652 1.07100i
\(56\) 0.279953 + 1.94711i 0.0374103 + 0.260194i
\(57\) −2.40260 5.26096i −0.318232 0.696831i
\(58\) −3.68885 8.07746i −0.484370 1.06062i
\(59\) 0.0785911 + 0.546613i 0.0102317 + 0.0711630i 0.994298 0.106641i \(-0.0340097\pi\)
−0.984066 + 0.177804i \(0.943101\pi\)
\(60\) −2.07896 1.33607i −0.268392 0.172485i
\(61\) 6.57602 1.93089i 0.841973 0.247226i 0.167820 0.985818i \(-0.446327\pi\)
0.674153 + 0.738592i \(0.264509\pi\)
\(62\) 1.53739 10.6928i 0.195249 1.35798i
\(63\) −0.654861 + 0.755750i −0.0825047 + 0.0952155i
\(64\) 2.09394 1.34569i 0.261742 0.168212i
\(65\) 2.26251 + 2.61107i 0.280630 + 0.323864i
\(66\) −7.97362 2.34127i −0.981485 0.288190i
\(67\) 2.36319 5.17466i 0.288709 0.632185i −0.708591 0.705620i \(-0.750669\pi\)
0.997300 + 0.0734344i \(0.0233960\pi\)
\(68\) 2.06532 0.250457
\(69\) 0.570283 4.76180i 0.0686541 0.573254i
\(70\) −5.00453 −0.598156
\(71\) 1.31231 2.87356i 0.155743 0.341029i −0.815636 0.578566i \(-0.803613\pi\)
0.971379 + 0.237536i \(0.0763399\pi\)
\(72\) 1.88745 + 0.554206i 0.222439 + 0.0653139i
\(73\) 3.77134 + 4.35236i 0.441402 + 0.509405i 0.932237 0.361847i \(-0.117854\pi\)
−0.490835 + 0.871252i \(0.663308\pi\)
\(74\) 1.20618 0.775167i 0.140216 0.0901113i
\(75\) −2.51948 + 2.90764i −0.290925 + 0.335745i
\(76\) 0.683851 4.75629i 0.0784430 0.545583i
\(77\) −4.73913 + 1.39153i −0.540074 + 0.158580i
\(78\) 1.64406 + 1.05658i 0.186153 + 0.119634i
\(79\) −0.688738 4.79028i −0.0774891 0.538949i −0.991178 0.132535i \(-0.957688\pi\)
0.913689 0.406414i \(-0.133221\pi\)
\(80\) 6.14279 + 13.4508i 0.686785 + 1.50385i
\(81\) 0.415415 + 0.909632i 0.0461572 + 0.101070i
\(82\) 2.21693 + 15.4191i 0.244819 + 1.70276i
\(83\) −7.71983 4.96124i −0.847362 0.544566i 0.0433891 0.999058i \(-0.486184\pi\)
−0.890751 + 0.454492i \(0.849821\pi\)
\(84\) −0.797176 + 0.234072i −0.0869790 + 0.0255393i
\(85\) 1.05228 7.31877i 0.114136 0.793832i
\(86\) −6.95864 + 8.03070i −0.750370 + 0.865973i
\(87\) −4.43996 + 2.85339i −0.476014 + 0.305915i
\(88\) 6.36269 + 7.34293i 0.678265 + 0.782759i
\(89\) 0.622265 + 0.182713i 0.0659599 + 0.0193676i 0.314546 0.949242i \(-0.398148\pi\)
−0.248586 + 0.968610i \(0.579966\pi\)
\(90\) −2.07896 + 4.55228i −0.219141 + 0.479853i
\(91\) 1.16154 0.121763
\(92\) 2.53750 3.07205i 0.264553 0.320283i
\(93\) −6.42062 −0.665787
\(94\) −4.91990 + 10.7731i −0.507449 + 1.11116i
\(95\) −16.5062 4.84666i −1.69350 0.497257i
\(96\) 2.90111 + 3.34805i 0.296093 + 0.341709i
\(97\) 2.40373 1.54478i 0.244061 0.156849i −0.412892 0.910780i \(-0.635481\pi\)
0.656953 + 0.753931i \(0.271845\pi\)
\(98\) −1.10181 + 1.27155i −0.111299 + 0.128446i
\(99\) −0.702922 + 4.88893i −0.0706463 + 0.491356i
\(100\) −3.06702 + 0.900558i −0.306702 + 0.0900558i
\(101\) 13.4143 + 8.62084i 1.33477 + 0.857805i 0.996528 0.0832537i \(-0.0265312\pi\)
0.338243 + 0.941059i \(0.390168\pi\)
\(102\) −0.595226 4.13989i −0.0589361 0.409910i
\(103\) −3.43082 7.51245i −0.338049 0.740224i 0.661907 0.749586i \(-0.269747\pi\)
−0.999956 + 0.00936183i \(0.997020\pi\)
\(104\) −0.949186 2.07843i −0.0930754 0.203807i
\(105\) 0.423308 + 2.94417i 0.0413107 + 0.287322i
\(106\) 19.1858 + 12.3300i 1.86349 + 1.19759i
\(107\) 12.5745 3.69219i 1.21562 0.356938i 0.389814 0.920894i \(-0.372539\pi\)
0.825805 + 0.563956i \(0.190721\pi\)
\(108\) −0.118239 + 0.822373i −0.0113776 + 0.0791329i
\(109\) 2.58631 2.98476i 0.247723 0.285888i −0.618246 0.785984i \(-0.712157\pi\)
0.865970 + 0.500096i \(0.166702\pi\)
\(110\) −20.7945 + 13.3638i −1.98267 + 1.27419i
\(111\) −0.558057 0.644032i −0.0529684 0.0611288i
\(112\) 4.77001 + 1.40060i 0.450723 + 0.132344i
\(113\) −1.52195 + 3.33261i −0.143173 + 0.313505i −0.967611 0.252448i \(-0.918764\pi\)
0.824437 + 0.565953i \(0.191492\pi\)
\(114\) −9.73096 −0.911388
\(115\) −9.59342 10.5572i −0.894591 0.984468i
\(116\) −4.38495 −0.407132
\(117\) 0.482522 1.05658i 0.0446091 0.0976804i
\(118\) 0.891502 + 0.261768i 0.0820694 + 0.0240977i
\(119\) −1.62788 1.87868i −0.149228 0.172218i
\(120\) 4.92230 3.16337i 0.449343 0.288775i
\(121\) −8.77234 + 10.1238i −0.797486 + 0.920348i
\(122\) 1.64107 11.4139i 0.148576 1.03337i
\(123\) 8.88357 2.60845i 0.801004 0.235196i
\(124\) −4.48762 2.88402i −0.403000 0.258993i
\(125\) −0.487924 3.39359i −0.0436413 0.303532i
\(126\) 0.698939 + 1.53046i 0.0622664 + 0.136344i
\(127\) 1.05108 + 2.30154i 0.0932683 + 0.204229i 0.950516 0.310675i \(-0.100555\pi\)
−0.857248 + 0.514904i \(0.827828\pi\)
\(128\) −1.85694 12.9153i −0.164132 1.14156i
\(129\) 5.31307 + 3.41450i 0.467790 + 0.300630i
\(130\) 5.57751 1.63770i 0.489180 0.143636i
\(131\) 2.32174 16.1481i 0.202852 1.41086i −0.592917 0.805263i \(-0.702024\pi\)
0.795769 0.605600i \(-0.207067\pi\)
\(132\) −2.68731 + 3.10132i −0.233901 + 0.269936i
\(133\) −4.86548 + 3.12685i −0.421891 + 0.271133i
\(134\) −6.26790 7.23354i −0.541464 0.624883i
\(135\) 2.85396 + 0.837999i 0.245630 + 0.0721235i
\(136\) −2.03138 + 4.44810i −0.174189 + 0.381422i
\(137\) −19.8966 −1.69988 −0.849942 0.526877i \(-0.823363\pi\)
−0.849942 + 0.526877i \(0.823363\pi\)
\(138\) −6.88917 4.20101i −0.586445 0.357613i
\(139\) 1.96713 0.166850 0.0834250 0.996514i \(-0.473414\pi\)
0.0834250 + 0.996514i \(0.473414\pi\)
\(140\) −1.02660 + 2.24794i −0.0867635 + 0.189986i
\(141\) 6.75396 + 1.98314i 0.568786 + 0.167011i
\(142\) −3.48066 4.01689i −0.292090 0.337090i
\(143\) 4.82635 3.10170i 0.403599 0.259378i
\(144\) 3.25556 3.75712i 0.271297 0.313093i
\(145\) −2.23413 + 15.5387i −0.185535 + 1.29042i
\(146\) 9.29706 2.72986i 0.769430 0.225925i
\(147\) 0.841254 + 0.540641i 0.0693854 + 0.0445913i
\(148\) −0.100761 0.700807i −0.00828249 0.0576060i
\(149\) −7.92976 17.3637i −0.649631 1.42249i −0.891877 0.452279i \(-0.850611\pi\)
0.242246 0.970215i \(-0.422116\pi\)
\(150\) 2.68907 + 5.88823i 0.219561 + 0.480772i
\(151\) 2.30425 + 16.0264i 0.187517 + 1.30421i 0.838410 + 0.545040i \(0.183485\pi\)
−0.650893 + 0.759169i \(0.725606\pi\)
\(152\) 9.57107 + 6.15095i 0.776316 + 0.498908i
\(153\) −2.38515 + 0.700344i −0.192828 + 0.0566195i
\(154\) −1.18267 + 8.22566i −0.0953024 + 0.662843i
\(155\) −12.5064 + 14.4332i −1.00454 + 1.15930i
\(156\) 0.811846 0.521742i 0.0649997 0.0417728i
\(157\) −11.4560 13.2209i −0.914284 1.05514i −0.998277 0.0586740i \(-0.981313\pi\)
0.0839928 0.996466i \(-0.473233\pi\)
\(158\) −7.81273 2.29402i −0.621547 0.182503i
\(159\) 5.63091 12.3300i 0.446560 0.977831i
\(160\) 13.1771 1.04174
\(161\) −4.79450 + 0.113197i −0.377859 + 0.00892114i
\(162\) 1.68251 0.132190
\(163\) −4.76876 + 10.4421i −0.373518 + 0.817890i 0.625765 + 0.780012i \(0.284787\pi\)
−0.999282 + 0.0378780i \(0.987940\pi\)
\(164\) 7.38074 + 2.16718i 0.576339 + 0.169228i
\(165\) 9.62083 + 11.1030i 0.748981 + 0.864370i
\(166\) −12.9887 + 8.34731i −1.00812 + 0.647877i
\(167\) 15.3370 17.6998i 1.18681 1.36965i 0.273766 0.961796i \(-0.411731\pi\)
0.913046 0.407857i \(-0.133724\pi\)
\(168\) 0.279953 1.94711i 0.0215988 0.150223i
\(169\) 11.1789 3.28242i 0.859914 0.252494i
\(170\) −10.4656 6.72585i −0.802677 0.515849i
\(171\) 0.823093 + 5.72474i 0.0629435 + 0.437782i
\(172\) 2.17978 + 4.77306i 0.166207 + 0.363942i
\(173\) 7.41299 + 16.2322i 0.563599 + 1.23411i 0.950136 + 0.311836i \(0.100944\pi\)
−0.386537 + 0.922274i \(0.626329\pi\)
\(174\) 1.26374 + 8.78954i 0.0958042 + 0.666333i
\(175\) 3.23660 + 2.08004i 0.244664 + 0.157236i
\(176\) 23.5600 6.91785i 1.77590 0.521453i
\(177\) 0.0785911 0.546613i 0.00590727 0.0410860i
\(178\) 0.714561 0.824647i 0.0535586 0.0618099i
\(179\) 7.36286 4.73182i 0.550326 0.353673i −0.235740 0.971816i \(-0.575751\pi\)
0.786065 + 0.618143i \(0.212115\pi\)
\(180\) 1.61833 + 1.86766i 0.120623 + 0.139207i
\(181\) 20.2362 + 5.94188i 1.50414 + 0.441656i 0.927023 0.375003i \(-0.122358\pi\)
0.577120 + 0.816660i \(0.304177\pi\)
\(182\) 0.811846 1.77769i 0.0601780 0.131772i
\(183\) −6.85364 −0.506636
\(184\) 4.12051 + 8.48663i 0.303768 + 0.625642i
\(185\) −2.53476 −0.186359
\(186\) −4.48762 + 9.82652i −0.329048 + 0.720515i
\(187\) −11.7808 3.45914i −0.861495 0.252958i
\(188\) 3.82982 + 4.41985i 0.279318 + 0.322350i
\(189\) 0.841254 0.540641i 0.0611922 0.0393258i
\(190\) −18.9545 + 21.8746i −1.37510 + 1.58695i
\(191\) 2.97341 20.6805i 0.215148 1.49639i −0.540463 0.841368i \(-0.681751\pi\)
0.755611 0.655020i \(-0.227340\pi\)
\(192\) −2.38825 + 0.701252i −0.172357 + 0.0506085i
\(193\) −18.9755 12.1948i −1.36589 0.877801i −0.367255 0.930120i \(-0.619702\pi\)
−0.998630 + 0.0523190i \(0.983339\pi\)
\(194\) −0.684172 4.75852i −0.0491207 0.341642i
\(195\) −1.43524 3.14273i −0.102779 0.225056i
\(196\) 0.345139 + 0.755750i 0.0246528 + 0.0539821i
\(197\) −0.165477 1.15092i −0.0117897 0.0819993i 0.983077 0.183192i \(-0.0586431\pi\)
−0.994867 + 0.101193i \(0.967734\pi\)
\(198\) 6.99102 + 4.49286i 0.496830 + 0.319294i
\(199\) −11.9966 + 3.52251i −0.850413 + 0.249704i −0.677764 0.735279i \(-0.737051\pi\)
−0.172649 + 0.984983i \(0.555233\pi\)
\(200\) 1.07708 7.49124i 0.0761609 0.529711i
\(201\) −3.72533 + 4.29926i −0.262765 + 0.303247i
\(202\) 22.5696 14.5046i 1.58799 1.02054i
\(203\) 3.45622 + 3.98869i 0.242579 + 0.279951i
\(204\) −1.98166 0.581867i −0.138744 0.0407389i
\(205\) 11.4402 25.0506i 0.799020 1.74961i
\(206\) −13.8955 −0.968143
\(207\) −1.88874 + 4.40825i −0.131276 + 0.306395i
\(208\) −5.77446 −0.400387
\(209\) −11.8669 + 25.9849i −0.820852 + 1.79742i
\(210\) 4.80181 + 1.40994i 0.331357 + 0.0972951i
\(211\) −6.66039 7.68650i −0.458520 0.529160i 0.478663 0.877999i \(-0.341122\pi\)
−0.937183 + 0.348839i \(0.886576\pi\)
\(212\) 9.47405 6.08860i 0.650681 0.418167i
\(213\) −2.06873 + 2.38744i −0.141747 + 0.163585i
\(214\) 3.13801 21.8254i 0.214510 1.49195i
\(215\) 18.0247 5.29252i 1.22927 0.360947i
\(216\) −1.65486 1.06351i −0.112599 0.0723630i
\(217\) 0.913750 + 6.35527i 0.0620294 + 0.431424i
\(218\) −2.76039 6.04441i −0.186957 0.409379i
\(219\) −2.39237 5.23857i −0.161662 0.353990i
\(220\) 1.73711 + 12.0818i 0.117116 + 0.814557i
\(221\) 2.42905 + 1.56105i 0.163395 + 0.105008i
\(222\) −1.37571 + 0.403946i −0.0923319 + 0.0271111i
\(223\) 2.69112 18.7172i 0.180211 1.25339i −0.676052 0.736854i \(-0.736310\pi\)
0.856263 0.516540i \(-0.172780\pi\)
\(224\) 2.90111 3.34805i 0.193838 0.223701i
\(225\) 3.23660 2.08004i 0.215773 0.138669i
\(226\) 4.03668 + 4.65858i 0.268516 + 0.309884i
\(227\) 11.3065 + 3.31990i 0.750441 + 0.220349i 0.634517 0.772909i \(-0.281199\pi\)
0.115924 + 0.993258i \(0.463017\pi\)
\(228\) −1.99615 + 4.37096i −0.132198 + 0.289474i
\(229\) 23.0550 1.52352 0.761759 0.647860i \(-0.224336\pi\)
0.761759 + 0.647860i \(0.224336\pi\)
\(230\) −22.8627 + 7.30350i −1.50752 + 0.481579i
\(231\) 4.93920 0.324976
\(232\) 4.31290 9.44393i 0.283156 0.620024i
\(233\) 5.46980 + 1.60608i 0.358338 + 0.105218i 0.455946 0.890007i \(-0.349301\pi\)
−0.0976079 + 0.995225i \(0.531119\pi\)
\(234\) −1.27980 1.47696i −0.0836628 0.0965520i
\(235\) 17.6137 11.3196i 1.14899 0.738412i
\(236\) 0.300459 0.346748i 0.0195582 0.0225713i
\(237\) −0.688738 + 4.79028i −0.0447384 + 0.311162i
\(238\) −4.01304 + 1.17833i −0.260127 + 0.0763801i
\(239\) −17.2343 11.0758i −1.11479 0.716434i −0.152461 0.988310i \(-0.548720\pi\)
−0.962332 + 0.271875i \(0.912356\pi\)
\(240\) −2.10443 14.6366i −0.135840 0.944789i
\(241\) −4.01316 8.78759i −0.258510 0.566058i 0.735224 0.677824i \(-0.237077\pi\)
−0.993735 + 0.111765i \(0.964350\pi\)
\(242\) 9.36280 + 20.5017i 0.601864 + 1.31790i
\(243\) −0.142315 0.989821i −0.00912950 0.0634971i
\(244\) −4.79027 3.07852i −0.306666 0.197082i
\(245\) 2.85396 0.837999i 0.182333 0.0535378i
\(246\) 2.21693 15.4191i 0.141347 0.983087i
\(247\) 4.39929 5.07705i 0.279920 0.323045i
\(248\) 10.6252 6.82842i 0.674703 0.433605i
\(249\) 6.00938 + 6.93520i 0.380829 + 0.439500i
\(250\) −5.53479 1.62516i −0.350051 0.102784i
\(251\) 2.86876 6.28170i 0.181074 0.396498i −0.797228 0.603678i \(-0.793701\pi\)
0.978303 + 0.207180i \(0.0664286\pi\)
\(252\) 0.830830 0.0523374
\(253\) −19.6194 + 13.2733i −1.23346 + 0.834483i
\(254\) 4.25707 0.267112
\(255\) −3.07159 + 6.72585i −0.192351 + 0.421189i
\(256\) −16.2878 4.78252i −1.01798 0.298907i
\(257\) 8.50844 + 9.81927i 0.530742 + 0.612509i 0.956288 0.292428i \(-0.0944632\pi\)
−0.425545 + 0.904937i \(0.639918\pi\)
\(258\) 8.93928 5.74492i 0.556535 0.357663i
\(259\) −0.558057 + 0.644032i −0.0346760 + 0.0400182i
\(260\) 0.408511 2.84126i 0.0253348 0.176207i
\(261\) 5.06400 1.48693i 0.313454 0.0920384i
\(262\) −23.0913 14.8398i −1.42658 0.916809i
\(263\) 2.35917 + 16.4084i 0.145472 + 1.01178i 0.923513 + 0.383568i \(0.125305\pi\)
−0.778040 + 0.628215i \(0.783786\pi\)
\(264\) −4.03621 8.83807i −0.248412 0.543945i
\(265\) −16.7489 36.6749i −1.02888 2.25292i
\(266\) 1.38486 + 9.63191i 0.0849112 + 0.590571i
\(267\) −0.545582 0.350624i −0.0333891 0.0214579i
\(268\) −4.53492 + 1.33157i −0.277015 + 0.0813388i
\(269\) 1.79067 12.4544i 0.109179 0.759358i −0.859517 0.511107i \(-0.829235\pi\)
0.968696 0.248250i \(-0.0798555\pi\)
\(270\) 3.27727 3.78217i 0.199448 0.230176i
\(271\) −10.3829 + 6.67265i −0.630713 + 0.405335i −0.816574 0.577241i \(-0.804129\pi\)
0.185860 + 0.982576i \(0.440493\pi\)
\(272\) 8.09284 + 9.33963i 0.490700 + 0.566298i
\(273\) −1.11449 0.327244i −0.0674520 0.0198057i
\(274\) −13.9065 + 30.4510i −0.840124 + 1.83961i
\(275\) 19.0029 1.14592
\(276\) −3.30021 + 2.23271i −0.198649 + 0.134393i
\(277\) 17.4586 1.04899 0.524493 0.851415i \(-0.324255\pi\)
0.524493 + 0.851415i \(0.324255\pi\)
\(278\) 1.37490 3.01062i 0.0824613 0.180565i
\(279\) 6.16054 + 1.80890i 0.368822 + 0.108296i
\(280\) −3.83169 4.42200i −0.228987 0.264265i
\(281\) −3.16062 + 2.03121i −0.188547 + 0.121172i −0.631509 0.775369i \(-0.717564\pi\)
0.442962 + 0.896540i \(0.353928\pi\)
\(282\) 7.75573 8.95059i 0.461847 0.533000i
\(283\) −2.84864 + 19.8127i −0.169334 + 1.17774i 0.710931 + 0.703261i \(0.248274\pi\)
−0.880265 + 0.474482i \(0.842635\pi\)
\(284\) −2.51831 + 0.739442i −0.149434 + 0.0438778i
\(285\) 14.4721 + 9.30067i 0.857255 + 0.550924i
\(286\) −1.37372 9.55444i −0.0812299 0.564966i
\(287\) −3.84616 8.42193i −0.227032 0.497131i
\(288\) −1.84033 4.02977i −0.108443 0.237457i
\(289\) 1.53993 + 10.7104i 0.0905839 + 0.630025i
\(290\) 22.2199 + 14.2799i 1.30480 + 0.838544i
\(291\) −2.74157 + 0.804999i −0.160714 + 0.0471899i
\(292\) 0.680941 4.73605i 0.0398490 0.277156i
\(293\) −13.0037 + 15.0071i −0.759685 + 0.876723i −0.995469 0.0950825i \(-0.969689\pi\)
0.235785 + 0.971805i \(0.424234\pi\)
\(294\) 1.41542 0.909632i 0.0825487 0.0530508i
\(295\) −1.07567 1.24139i −0.0626279 0.0722765i
\(296\) 1.60844 + 0.472282i 0.0934889 + 0.0274508i
\(297\) 2.05182 4.49286i 0.119059 0.260702i
\(298\) −32.1170 −1.86049
\(299\) 5.30638 1.69513i 0.306876 0.0980317i
\(300\) 3.19650 0.184550
\(301\) 2.62362 5.74492i 0.151223 0.331132i
\(302\) 26.1383 + 7.67490i 1.50409 + 0.441641i
\(303\) −10.4421 12.0509i −0.599885 0.692305i
\(304\) 24.1882 15.5448i 1.38729 0.891555i
\(305\) −13.3499 + 15.4066i −0.764411 + 0.882178i
\(306\) −0.595226 + 4.13989i −0.0340268 + 0.236662i
\(307\) 19.6743 5.77688i 1.12287 0.329704i 0.332968 0.942938i \(-0.391950\pi\)
0.789901 + 0.613234i \(0.210132\pi\)
\(308\) 3.45220 + 2.21859i 0.196707 + 0.126416i
\(309\) 1.17535 + 8.17472i 0.0668632 + 0.465044i
\(310\) 13.3482 + 29.2285i 0.758127 + 1.66007i
\(311\) 4.17554 + 9.14316i 0.236773 + 0.518461i 0.990298 0.138958i \(-0.0443753\pi\)
−0.753525 + 0.657419i \(0.771648\pi\)
\(312\) 0.325177 + 2.26165i 0.0184095 + 0.128041i
\(313\) −0.243828 0.156699i −0.0137820 0.00885715i 0.533732 0.845654i \(-0.320789\pi\)
−0.547514 + 0.836797i \(0.684426\pi\)
\(314\) −28.2411 + 8.29232i −1.59373 + 0.467963i
\(315\) 0.423308 2.94417i 0.0238507 0.165885i
\(316\) −2.63309 + 3.03874i −0.148123 + 0.170943i
\(317\) 18.4583 11.8624i 1.03672 0.666261i 0.0925486 0.995708i \(-0.470499\pi\)
0.944174 + 0.329447i \(0.106862\pi\)
\(318\) −14.9349 17.2358i −0.837508 0.966536i
\(319\) 25.0122 + 7.34423i 1.40041 + 0.411198i
\(320\) −3.07557 + 6.73456i −0.171930 + 0.376474i
\(321\) −13.1053 −0.731467
\(322\) −3.17782 + 7.41691i −0.177093 + 0.413328i
\(323\) −14.3772 −0.799967
\(324\) 0.345139 0.755750i 0.0191744 0.0419861i
\(325\) −4.28784 1.25902i −0.237847 0.0698381i
\(326\) 12.6482 + 14.5968i 0.700519 + 0.808442i
\(327\) −3.32245 + 2.13521i −0.183732 + 0.118077i
\(328\) −11.9269 + 13.7644i −0.658555 + 0.760013i
\(329\) 1.00177 6.96745i 0.0552293 0.384128i
\(330\) 23.7171 6.96398i 1.30559 0.383355i
\(331\) −19.6751 12.6444i −1.08144 0.694999i −0.126551 0.991960i \(-0.540391\pi\)
−0.954890 + 0.296961i \(0.904027\pi\)
\(332\) 1.08503 + 7.54658i 0.0595490 + 0.414172i
\(333\) 0.354007 + 0.775167i 0.0193995 + 0.0424789i
\(334\) −16.3693 35.8438i −0.895688 1.96128i
\(335\) 2.40809 + 16.7486i 0.131568 + 0.915076i
\(336\) −4.18219 2.68773i −0.228157 0.146628i
\(337\) 12.7046 3.73041i 0.692065 0.203209i 0.0832592 0.996528i \(-0.473467\pi\)
0.608806 + 0.793319i \(0.291649\pi\)
\(338\) 2.78974 19.4031i 0.151742 1.05539i
\(339\) 2.39921 2.76883i 0.130307 0.150382i
\(340\) −5.16798 + 3.32126i −0.280273 + 0.180120i
\(341\) 20.7674 + 23.9669i 1.12462 + 1.29788i
\(342\) 9.33679 + 2.74153i 0.504876 + 0.148245i
\(343\) 0.415415 0.909632i 0.0224303 0.0491155i
\(344\) −12.4238 −0.669844
\(345\) 6.23050 + 12.8324i 0.335439 + 0.690872i
\(346\) 30.0240 1.61410
\(347\) 5.45426 11.9432i 0.292800 0.641142i −0.704872 0.709334i \(-0.748996\pi\)
0.997672 + 0.0681920i \(0.0217231\pi\)
\(348\) 4.20733 + 1.23538i 0.225536 + 0.0662235i
\(349\) 13.5127 + 15.5945i 0.723320 + 0.834756i 0.991702 0.128557i \(-0.0410345\pi\)
−0.268382 + 0.963312i \(0.586489\pi\)
\(350\) 5.44560 3.49968i 0.291080 0.187066i
\(351\) −0.760648 + 0.877834i −0.0406004 + 0.0468553i
\(352\) 3.11402 21.6585i 0.165978 1.15440i
\(353\) −28.5422 + 8.38074i −1.51915 + 0.446062i −0.931708 0.363208i \(-0.881682\pi\)
−0.587438 + 0.809269i \(0.699863\pi\)
\(354\) −0.781641 0.502330i −0.0415437 0.0266985i
\(355\) 1.33725 + 9.30077i 0.0709738 + 0.493633i
\(356\) −0.223835 0.490130i −0.0118632 0.0259768i
\(357\) 1.03266 + 2.26121i 0.0546541 + 0.119676i
\(358\) −2.09569 14.5758i −0.110761 0.770356i
\(359\) 29.1923 + 18.7607i 1.54071 + 0.990154i 0.987591 + 0.157051i \(0.0501987\pi\)
0.553118 + 0.833103i \(0.313438\pi\)
\(360\) −5.61414 + 1.64846i −0.295891 + 0.0868814i
\(361\) −2.05647 + 14.3030i −0.108235 + 0.752792i
\(362\) 23.2377 26.8177i 1.22134 1.40951i
\(363\) 11.2692 7.24228i 0.591480 0.380121i
\(364\) −0.631969 0.729331i −0.0331242 0.0382273i
\(365\) −16.4360 4.82604i −0.860298 0.252606i
\(366\) −4.79027 + 10.4892i −0.250392 + 0.548281i
\(367\) 8.08738 0.422158 0.211079 0.977469i \(-0.432302\pi\)
0.211079 + 0.977469i \(0.432302\pi\)
\(368\) 23.8353 0.562743i 1.24250 0.0293350i
\(369\) −9.25861 −0.481984
\(370\) −1.77164 + 3.87935i −0.0921031 + 0.201678i
\(371\) −13.0058 3.81886i −0.675230 0.198265i
\(372\) 3.49332 + 4.03150i 0.181120 + 0.209024i
\(373\) −19.6724 + 12.6427i −1.01860 + 0.654615i −0.939605 0.342260i \(-0.888808\pi\)
−0.0789954 + 0.996875i \(0.525171\pi\)
\(374\) −13.5281 + 15.6123i −0.699523 + 0.807292i
\(375\) −0.487924 + 3.39359i −0.0251963 + 0.175244i
\(376\) −13.2860 + 3.90111i −0.685172 + 0.201185i
\(377\) −5.15720 3.31433i −0.265609 0.170697i
\(378\) −0.239446 1.66538i −0.0123158 0.0856580i
\(379\) −4.60367 10.0806i −0.236475 0.517807i 0.753771 0.657137i \(-0.228233\pi\)
−0.990246 + 0.139329i \(0.955505\pi\)
\(380\) 5.93745 + 13.0012i 0.304585 + 0.666948i
\(381\) −0.360084 2.50444i −0.0184477 0.128306i
\(382\) −29.5725 19.0051i −1.51306 0.972385i
\(383\) 21.4546 6.29963i 1.09628 0.321896i 0.316905 0.948457i \(-0.397356\pi\)
0.779372 + 0.626561i \(0.215538\pi\)
\(384\) −1.85694 + 12.9153i −0.0947615 + 0.659081i
\(385\) 9.62083 11.1030i 0.490323 0.565863i
\(386\) −31.9264 + 20.5178i −1.62501 + 1.04433i
\(387\) −4.13588 4.77306i −0.210238 0.242628i
\(388\) −2.27778 0.668817i −0.115637 0.0339541i
\(389\) 0.0784648 0.171814i 0.00397832 0.00871131i −0.907632 0.419766i \(-0.862112\pi\)
0.911611 + 0.411055i \(0.134839\pi\)
\(390\) −5.81297 −0.294351
\(391\) −10.1785 6.20685i −0.514750 0.313894i
\(392\) −1.96714 −0.0993554
\(393\) −6.77713 + 14.8398i −0.341861 + 0.748571i
\(394\) −1.87709 0.551164i −0.0945665 0.0277672i
\(395\) 9.42670 + 10.8790i 0.474309 + 0.547381i
\(396\) 3.45220 2.21859i 0.173480 0.111489i
\(397\) 2.40451 2.77495i 0.120679 0.139271i −0.692195 0.721710i \(-0.743356\pi\)
0.812874 + 0.582439i \(0.197902\pi\)
\(398\) −2.99379 + 20.8223i −0.150065 + 1.04373i
\(399\) 5.54933 1.62943i 0.277814 0.0815736i
\(400\) −16.0904 10.3407i −0.804519 0.517033i
\(401\) 1.21719 + 8.46574i 0.0607835 + 0.422759i 0.997379 + 0.0723476i \(0.0230491\pi\)
−0.936596 + 0.350411i \(0.886042\pi\)
\(402\) 3.97608 + 8.70640i 0.198309 + 0.434236i
\(403\) −3.09809 6.78387i −0.154327 0.337929i
\(404\) −1.88540 13.1132i −0.0938020 0.652407i
\(405\) −2.50227 1.60811i −0.124339 0.0799076i
\(406\) 8.52022 2.50176i 0.422852 0.124160i
\(407\) −0.599014 + 4.16623i −0.0296920 + 0.206512i
\(408\) 3.20227 3.69562i 0.158536 0.182960i
\(409\) −26.6283 + 17.1130i −1.31669 + 0.846182i −0.994923 0.100638i \(-0.967911\pi\)
−0.321762 + 0.946821i \(0.604275\pi\)
\(410\) −30.3430 35.0177i −1.49853 1.72940i
\(411\) 19.0907 + 5.60553i 0.941674 + 0.276500i
\(412\) −2.85043 + 6.24157i −0.140431 + 0.307500i
\(413\) −0.552234 −0.0271737
\(414\) 5.42655 + 5.97174i 0.266700 + 0.293495i
\(415\) 27.2953 1.33987
\(416\) −2.13762 + 4.68074i −0.104806 + 0.229492i
\(417\) −1.88745 0.554205i −0.0924288 0.0271395i
\(418\) 31.4747 + 36.3238i 1.53948 + 1.77665i
\(419\) 6.99655 4.49641i 0.341804 0.219664i −0.358465 0.933543i \(-0.616700\pi\)
0.700269 + 0.713879i \(0.253063\pi\)
\(420\) 1.61833 1.86766i 0.0789666 0.0911323i
\(421\) −2.95595 + 20.5591i −0.144064 + 1.00199i 0.781637 + 0.623734i \(0.214385\pi\)
−0.925701 + 0.378256i \(0.876524\pi\)
\(422\) −16.4191 + 4.82108i −0.799269 + 0.234687i
\(423\) −5.92167 3.80562i −0.287921 0.185036i
\(424\) 3.79473 + 26.3930i 0.184289 + 1.28176i
\(425\) 3.97300 + 8.69967i 0.192719 + 0.421996i
\(426\) 2.20798 + 4.83479i 0.106977 + 0.234246i
\(427\) 0.975375 + 6.78388i 0.0472017 + 0.328295i
\(428\) −9.15981 5.88665i −0.442756 0.284542i
\(429\) −5.50470 + 1.61632i −0.265769 + 0.0780369i
\(430\) 4.49813 31.2852i 0.216919 1.50871i
\(431\) −25.7712 + 29.7416i −1.24136 + 1.43260i −0.379701 + 0.925109i \(0.623973\pi\)
−0.861656 + 0.507493i \(0.830572\pi\)
\(432\) −4.18219 + 2.68773i −0.201216 + 0.129314i
\(433\) 4.26452 + 4.92152i 0.204940 + 0.236513i 0.848910 0.528537i \(-0.177259\pi\)
−0.643970 + 0.765051i \(0.722714\pi\)
\(434\) 10.3652 + 3.04348i 0.497543 + 0.146092i
\(435\) 6.52141 14.2799i 0.312677 0.684668i
\(436\) −3.28128 −0.157145
\(437\) −17.6642 + 21.3853i −0.844992 + 1.02300i
\(438\) −9.68956 −0.462985
\(439\) 3.85084 8.43217i 0.183791 0.402445i −0.795201 0.606346i \(-0.792635\pi\)
0.978992 + 0.203901i \(0.0653620\pi\)
\(440\) −27.7294 8.14208i −1.32195 0.388158i
\(441\) −0.654861 0.755750i −0.0311838 0.0359881i
\(442\) 4.08689 2.62649i 0.194394 0.124929i
\(443\) 12.5023 14.4284i 0.594002 0.685515i −0.376553 0.926395i \(-0.622891\pi\)
0.970555 + 0.240880i \(0.0774361\pi\)
\(444\) −0.100761 + 0.700807i −0.00478190 + 0.0332588i
\(445\) −1.85090 + 0.543472i −0.0877409 + 0.0257630i
\(446\) −26.7650 17.2008i −1.26736 0.814482i
\(447\) 2.71661 + 18.8945i 0.128491 + 0.893678i
\(448\) 1.03400 + 2.26414i 0.0488518 + 0.106970i
\(449\) 12.2499 + 26.8236i 0.578110 + 1.26588i 0.942366 + 0.334585i \(0.108596\pi\)
−0.364256 + 0.931299i \(0.618677\pi\)
\(450\) −0.921233 6.40731i −0.0434273 0.302044i
\(451\) −38.4707 24.7236i −1.81151 1.16419i
\(452\) 2.92060 0.857566i 0.137374 0.0403365i
\(453\) 2.30425 16.0264i 0.108263 0.752985i
\(454\) 12.9836 14.9838i 0.609349 0.703226i
\(455\) −2.90649 + 1.86789i −0.136258 + 0.0875678i
\(456\) −7.45045 8.59828i −0.348899 0.402651i
\(457\) −30.8185 9.04913i −1.44163 0.423301i −0.534865 0.844938i \(-0.679637\pi\)
−0.906765 + 0.421637i \(0.861456\pi\)
\(458\) 16.1140 35.2848i 0.752960 1.64875i
\(459\) 2.48585 0.116029
\(460\) −1.40932 + 11.7677i −0.0657099 + 0.548670i
\(461\) 32.9314 1.53377 0.766884 0.641786i \(-0.221806\pi\)
0.766884 + 0.641786i \(0.221806\pi\)
\(462\) 3.45220 7.55927i 0.160611 0.351689i
\(463\) −25.2954 7.42739i −1.17558 0.345180i −0.365109 0.930965i \(-0.618968\pi\)
−0.810467 + 0.585785i \(0.800786\pi\)
\(464\) −17.1822 19.8293i −0.797663 0.920552i
\(465\) 16.0661 10.3251i 0.745048 0.478813i
\(466\) 6.28109 7.24877i 0.290966 0.335793i
\(467\) 4.72330 32.8513i 0.218568 1.52018i −0.524760 0.851250i \(-0.675845\pi\)
0.743329 0.668926i \(-0.233246\pi\)
\(468\) −0.925952 + 0.271884i −0.0428022 + 0.0125678i
\(469\) 4.78567 + 3.07557i 0.220982 + 0.142016i
\(470\) −5.01338 34.8688i −0.231250 1.60838i
\(471\) 7.26715 + 15.9128i 0.334853 + 0.733225i
\(472\) 0.451274 + 0.988152i 0.0207716 + 0.0454834i
\(473\) −4.43942 30.8768i −0.204125 1.41972i
\(474\) 6.84996 + 4.40220i 0.314629 + 0.202200i
\(475\) 21.3502 6.26900i 0.979617 0.287641i
\(476\) −0.293925 + 2.04430i −0.0134720 + 0.0937001i
\(477\) −8.87658 + 10.2441i −0.406431 + 0.469046i
\(478\) −28.9968 + 18.6351i −1.32628 + 0.852350i
\(479\) −15.9947 18.4588i −0.730816 0.843406i 0.261748 0.965136i \(-0.415701\pi\)
−0.992563 + 0.121730i \(0.961156\pi\)
\(480\) −12.6434 3.71243i −0.577089 0.169449i
\(481\) 0.411194 0.900388i 0.0187488 0.0410542i
\(482\) −16.2540 −0.740351
\(483\) 4.63218 + 1.24215i 0.210771 + 0.0565200i
\(484\) 11.1296 0.505890
\(485\) −3.53059 + 7.73091i −0.160316 + 0.351043i
\(486\) −1.61435 0.474017i −0.0732286 0.0215018i
\(487\) 3.26025 + 3.76253i 0.147736 + 0.170496i 0.824794 0.565433i \(-0.191291\pi\)
−0.677058 + 0.735929i \(0.736745\pi\)
\(488\) 11.3418 7.28895i 0.513420 0.329955i
\(489\) 7.51747 8.67563i 0.339952 0.392325i
\(490\) 0.712219 4.95359i 0.0321748 0.223781i
\(491\) −24.4370 + 7.17534i −1.10283 + 0.323819i −0.781974 0.623311i \(-0.785787\pi\)
−0.320851 + 0.947130i \(0.603969\pi\)
\(492\) −6.47120 4.15879i −0.291744 0.187493i
\(493\) 1.86714 + 12.9863i 0.0840918 + 0.584871i
\(494\) −4.69540 10.2815i −0.211256 0.462586i
\(495\) −6.10304 13.3638i −0.274311 0.600657i
\(496\) −4.54260 31.5945i −0.203969 1.41863i
\(497\) 2.65755 + 1.70791i 0.119208 + 0.0766101i
\(498\) 14.8143 4.34986i 0.663842 0.194922i
\(499\) −2.63495 + 18.3265i −0.117957 + 0.820406i 0.841844 + 0.539721i \(0.181470\pi\)
−0.959800 + 0.280684i \(0.909439\pi\)
\(500\) −1.86536 + 2.15274i −0.0834216 + 0.0962737i
\(501\) −19.7023 + 12.6619i −0.880236 + 0.565693i
\(502\) −7.60882 8.78105i −0.339598 0.391918i
\(503\) 15.0880 + 4.43023i 0.672739 + 0.197534i 0.600222 0.799833i \(-0.295079\pi\)
0.0725168 + 0.997367i \(0.476897\pi\)
\(504\) −0.817178 + 1.78937i −0.0364000 + 0.0797049i
\(505\) −47.4294 −2.11058
\(506\) 6.60143 + 39.3040i 0.293469 + 1.74728i
\(507\) −11.6508 −0.517431
\(508\) 0.873269 1.91219i 0.0387450 0.0848398i
\(509\) −8.91966 2.61905i −0.395357 0.116087i 0.0780100 0.996953i \(-0.475143\pi\)
−0.473367 + 0.880865i \(0.656962\pi\)
\(510\) 8.14680 + 9.40191i 0.360747 + 0.416324i
\(511\) −4.84478 + 3.11355i −0.214320 + 0.137735i
\(512\) −1.61423 + 1.86292i −0.0713396 + 0.0823303i
\(513\) 0.823093 5.72474i 0.0363405 0.252753i
\(514\) 20.9749 6.15879i 0.925163 0.271652i
\(515\) 20.6657 + 13.2810i 0.910639 + 0.585232i
\(516\) −0.746760 5.19383i −0.0328743 0.228646i
\(517\) −14.4430 31.6257i −0.635201 1.39090i
\(518\) 0.595619 + 1.30422i 0.0261700 + 0.0573043i
\(519\) −2.53958 17.6631i −0.111475 0.775326i
\(520\) 5.71746 + 3.67439i 0.250727 + 0.161132i
\(521\) −16.8131 + 4.93676i −0.736593 + 0.216283i −0.628448 0.777852i \(-0.716309\pi\)
−0.108146 + 0.994135i \(0.534491\pi\)
\(522\) 1.26374 8.78954i 0.0553126 0.384708i
\(523\) 9.51604 10.9821i 0.416108 0.480214i −0.508540 0.861039i \(-0.669814\pi\)
0.924647 + 0.380825i \(0.124360\pi\)
\(524\) −11.4026 + 7.32799i −0.498124 + 0.320125i
\(525\) −2.51948 2.90764i −0.109959 0.126900i
\(526\) 26.7613 + 7.85782i 1.16685 + 0.342617i
\(527\) −6.63031 + 14.5184i −0.288821 + 0.632429i
\(528\) −24.5547 −1.06860
\(529\) −21.7379 + 7.51410i −0.945128 + 0.326700i
\(530\) −67.8360 −2.94661
\(531\) −0.229406 + 0.502330i −0.00995539 + 0.0217993i
\(532\) 4.61055 + 1.35378i 0.199893 + 0.0586938i
\(533\) 7.04254 + 8.12752i 0.305046 + 0.352042i
\(534\) −0.917946 + 0.589928i −0.0397234 + 0.0255287i
\(535\) −25.5272 + 29.4600i −1.10364 + 1.27366i
\(536\) 1.59258 11.0766i 0.0687889 0.478437i
\(537\) −8.39772 + 2.46579i −0.362388 + 0.106407i
\(538\) −17.8094 11.4454i −0.767818 0.493447i
\(539\) −0.702922 4.88893i −0.0302770 0.210581i
\(540\) −1.02660 2.24794i −0.0441778 0.0967359i
\(541\) −1.04199 2.28164i −0.0447987 0.0980956i 0.885909 0.463858i \(-0.153535\pi\)
−0.930708 + 0.365763i \(0.880808\pi\)
\(542\) 2.95527 + 20.5543i 0.126940 + 0.882885i
\(543\) −17.7424 11.4024i −0.761401 0.489323i
\(544\) 10.5665 3.10260i 0.453035 0.133023i
\(545\) −1.67182 + 11.6277i −0.0716127 + 0.498077i
\(546\) −1.27980 + 1.47696i −0.0547702 + 0.0632082i
\(547\) 2.81963 1.81206i 0.120558 0.0774782i −0.478972 0.877830i \(-0.658990\pi\)
0.599530 + 0.800352i \(0.295354\pi\)
\(548\) 10.8253 + 12.4931i 0.462435 + 0.533678i
\(549\) 6.57602 + 1.93089i 0.280658 + 0.0824085i
\(550\) 13.2818 29.0832i 0.566340 1.24011i
\(551\) 30.5247 1.30040
\(552\) −1.56264 9.30374i −0.0665103 0.395993i
\(553\) 4.83954 0.205798
\(554\) 12.2025 26.7197i 0.518434 1.13521i
\(555\) 2.43208 + 0.714123i 0.103236 + 0.0303128i
\(556\) −1.07027 1.23516i −0.0453897 0.0523825i
\(557\) 37.4861 24.0909i 1.58834 1.02076i 0.615834 0.787876i \(-0.288819\pi\)
0.972504 0.232886i \(-0.0748170\pi\)
\(558\) 7.07429 8.16417i 0.299479 0.345617i
\(559\) −1.04401 + 7.26123i −0.0441568 + 0.307117i
\(560\) −14.1881 + 4.16602i −0.599559 + 0.176046i
\(561\) 10.3290 + 6.63805i 0.436091 + 0.280259i
\(562\) 0.899606 + 6.25690i 0.0379476 + 0.263931i
\(563\) −8.73180 19.1200i −0.368001 0.805810i −0.999536 0.0304628i \(-0.990302\pi\)
0.631535 0.775348i \(-0.282425\pi\)
\(564\) −2.42947 5.31979i −0.102299 0.224004i
\(565\) −1.55087 10.7865i −0.0652456 0.453793i
\(566\) 28.3316 + 18.2076i 1.19086 + 0.765322i
\(567\) −0.959493 + 0.281733i −0.0402949 + 0.0118317i
\(568\) 0.884382 6.15101i 0.0371078 0.258091i
\(569\) −17.4600 + 20.1499i −0.731961 + 0.844728i −0.992691 0.120684i \(-0.961491\pi\)
0.260730 + 0.965412i \(0.416037\pi\)
\(570\) 24.3495 15.6485i 1.01989 0.655441i
\(571\) 21.5255 + 24.8418i 0.900815 + 1.03960i 0.999013 + 0.0444287i \(0.0141467\pi\)
−0.0981979 + 0.995167i \(0.531308\pi\)
\(572\) −4.57347 1.34289i −0.191226 0.0561491i
\(573\) −8.67933 + 19.0051i −0.362584 + 0.793949i
\(574\) −15.5777 −0.650199
\(575\) 17.8216 + 4.77901i 0.743213 + 0.199298i
\(576\) 2.48907 0.103711
\(577\) 10.1661 22.2608i 0.423222 0.926727i −0.571156 0.820841i \(-0.693505\pi\)
0.994378 0.105886i \(-0.0337678\pi\)
\(578\) 17.4682 + 5.12913i 0.726582 + 0.213344i
\(579\) 14.7712 + 17.0468i 0.613869 + 0.708443i
\(580\) 10.9723 7.05148i 0.455600 0.292797i
\(581\) 6.00938 6.93520i 0.249311 0.287721i
\(582\) −0.684172 + 4.75852i −0.0283598 + 0.197247i
\(583\) −64.2385 + 18.8621i −2.66049 + 0.781190i
\(584\) 9.53034 + 6.12478i 0.394368 + 0.253445i
\(585\) 0.491690 + 3.41978i 0.0203289 + 0.141391i
\(586\) 13.8790 + 30.3907i 0.573335 + 1.25543i
\(587\) −12.8180 28.0675i −0.529056 1.15847i −0.965896 0.258931i \(-0.916630\pi\)
0.436840 0.899539i \(-0.356098\pi\)
\(588\) −0.118239 0.822373i −0.00487611 0.0339141i
\(589\) 31.2394 + 20.0764i 1.28720 + 0.827232i
\(590\) −2.65173 + 0.778617i −0.109170 + 0.0320552i
\(591\) −0.165477 + 1.15092i −0.00680680 + 0.0473423i
\(592\) 2.77431 3.20173i 0.114024 0.131590i
\(593\) −11.1267 + 7.15071i −0.456920 + 0.293645i −0.748783 0.662816i \(-0.769361\pi\)
0.291863 + 0.956460i \(0.405725\pi\)
\(594\) −5.44205 6.28047i −0.223290 0.257691i
\(595\) 7.09452 + 2.08314i 0.290847 + 0.0854004i
\(596\) −6.58828 + 14.4263i −0.269867 + 0.590925i
\(597\) 12.5030 0.511714
\(598\) 1.11451 9.30600i 0.0455755 0.380551i
\(599\) 26.5308 1.08402 0.542010 0.840372i \(-0.317663\pi\)
0.542010 + 0.840372i \(0.317663\pi\)
\(600\) −3.14397 + 6.88434i −0.128352 + 0.281052i
\(601\) 16.8575 + 4.94980i 0.687630 + 0.201907i 0.606839 0.794825i \(-0.292437\pi\)
0.0807911 + 0.996731i \(0.474255\pi\)
\(602\) −6.95864 8.03070i −0.283613 0.327307i
\(603\) 4.78567 3.07557i 0.194888 0.125247i
\(604\) 8.80927 10.1664i 0.358444 0.413666i
\(605\) 5.67053 39.4394i 0.230540 1.60344i
\(606\) −25.7418 + 7.55848i −1.04569 + 0.307042i
\(607\) −19.8998 12.7888i −0.807707 0.519082i 0.0704157 0.997518i \(-0.477567\pi\)
−0.878122 + 0.478436i \(0.841204\pi\)
\(608\) −3.64639 25.3612i −0.147881 1.02853i
\(609\) −2.19247 4.80085i −0.0888435 0.194540i
\(610\) 14.2484 + 31.1997i 0.576902 + 1.26324i
\(611\) 1.16359 + 8.09298i 0.0470740 + 0.327407i
\(612\) 1.73746 + 1.11659i 0.0702325 + 0.0451357i
\(613\) 20.6111 6.05197i 0.832476 0.244437i 0.162396 0.986726i \(-0.448078\pi\)
0.670080 + 0.742289i \(0.266260\pi\)
\(614\) 4.90980 34.1484i 0.198143 1.37812i
\(615\) −18.0344 + 20.8128i −0.727217 + 0.839253i
\(616\) −8.17370 + 5.25292i −0.329328 + 0.211646i
\(617\) 12.0123 + 13.8629i 0.483595 + 0.558099i 0.944143 0.329536i \(-0.106892\pi\)
−0.460548 + 0.887635i \(0.652347\pi\)
\(618\) 13.3326 + 3.91480i 0.536316 + 0.157476i
\(619\) 1.99949 4.37828i 0.0803664 0.175978i −0.865183 0.501456i \(-0.832798\pi\)
0.945550 + 0.325478i \(0.105525\pi\)
\(620\) 15.8670 0.637236
\(621\) 3.05418 3.69757i 0.122560 0.148378i
\(622\) 16.9117 0.678098
\(623\) −0.269411 + 0.589928i −0.0107937 + 0.0236350i
\(624\) 5.54056 + 1.62685i 0.221800 + 0.0651263i
\(625\) 19.2756 + 22.2452i 0.771023 + 0.889809i
\(626\) −0.410243 + 0.263647i −0.0163966 + 0.0105375i
\(627\) 18.7070 21.5891i 0.747087 0.862184i
\(628\) −2.06845 + 14.3864i −0.0825400 + 0.574079i
\(629\) −2.03257 + 0.596817i −0.0810439 + 0.0237966i
\(630\) −4.21008 2.70566i −0.167734 0.107796i
\(631\) 0.668946 + 4.65262i 0.0266303 + 0.185218i 0.998795 0.0490816i \(-0.0156294\pi\)
−0.972164 + 0.234300i \(0.924720\pi\)
\(632\) −3.95477 8.65973i −0.157312 0.344465i
\(633\) 4.22506 + 9.25159i 0.167931 + 0.367718i
\(634\) −5.25379 36.5409i −0.208655 1.45122i
\(635\) −6.33122 4.06883i −0.251247 0.161466i
\(636\) −10.8056 + 3.17282i −0.428472 + 0.125811i
\(637\) −0.165305 + 1.14972i −0.00654960 + 0.0455535i
\(638\) 28.7220 33.1470i 1.13712 1.31230i
\(639\) 2.65755 1.70791i 0.105131 0.0675637i
\(640\) 25.4158 + 29.3313i 1.00465 + 1.15942i
\(641\) −22.4407 6.58919i −0.886355 0.260257i −0.193298 0.981140i \(-0.561918\pi\)
−0.693057 + 0.720883i \(0.743737\pi\)
\(642\) −9.15981 + 20.0572i −0.361509 + 0.791594i
\(643\) 8.12003 0.320223 0.160111 0.987099i \(-0.448815\pi\)
0.160111 + 0.987099i \(0.448815\pi\)
\(644\) 2.67966 + 2.94887i 0.105593 + 0.116202i
\(645\) −18.7856 −0.739683
\(646\) −10.0488 + 22.0037i −0.395363 + 0.865725i
\(647\) 3.09440 + 0.908599i 0.121654 + 0.0357207i 0.341993 0.939703i \(-0.388898\pi\)
−0.220339 + 0.975423i \(0.570716\pi\)
\(648\) 1.28820 + 1.48666i 0.0506053 + 0.0584016i
\(649\) −2.29460 + 1.47465i −0.0900710 + 0.0578851i
\(650\) −4.92383 + 5.68240i −0.193128 + 0.222882i
\(651\) 0.913750 6.35527i 0.0358127 0.249083i
\(652\) 9.15118 2.68703i 0.358388 0.105232i
\(653\) 14.9667 + 9.61854i 0.585694 + 0.376402i 0.799673 0.600436i \(-0.205006\pi\)
−0.213979 + 0.976838i \(0.568643\pi\)
\(654\) 0.945668 + 6.57726i 0.0369785 + 0.257191i
\(655\) 20.1582 + 44.1404i 0.787648 + 1.72471i
\(656\) 19.1208 + 41.8686i 0.746540 + 1.63469i
\(657\) 0.819591 + 5.70038i 0.0319753 + 0.222393i
\(658\) −9.96324 6.40299i −0.388408 0.249614i
\(659\) −26.1462 + 7.67722i −1.01851 + 0.299062i −0.748031 0.663663i \(-0.769001\pi\)
−0.270481 + 0.962725i \(0.587183\pi\)
\(660\) 1.73711 12.0818i 0.0676167 0.470285i
\(661\) −2.22897 + 2.57237i −0.0866969 + 0.100054i −0.797440 0.603398i \(-0.793813\pi\)
0.710744 + 0.703451i \(0.248359\pi\)
\(662\) −33.1035 + 21.2743i −1.28660 + 0.826849i
\(663\) −1.89085 2.18216i −0.0734347 0.0847482i
\(664\) −17.3204 5.08572i −0.672161 0.197364i
\(665\) 7.14641 15.6485i 0.277126 0.606821i
\(666\) 1.43379 0.0555583
\(667\) 21.6104 + 13.1780i 0.836757 + 0.510253i
\(668\) −19.4582 −0.752861
\(669\) −7.85535 + 17.2008i −0.303705 + 0.665022i
\(670\) 27.3163 + 8.02078i 1.05532 + 0.309870i
\(671\) 22.1680 + 25.5833i 0.855788 + 0.987632i
\(672\) −3.72685 + 2.39510i −0.143766 + 0.0923929i
\(673\) −0.512691 + 0.591677i −0.0197628 + 0.0228075i −0.765545 0.643382i \(-0.777531\pi\)
0.745782 + 0.666190i \(0.232076\pi\)
\(674\) 3.17049 22.0513i 0.122123 0.849383i
\(675\) −3.69151 + 1.08393i −0.142086 + 0.0417203i
\(676\) −8.14321 5.23332i −0.313200 0.201282i
\(677\) −1.98721 13.8214i −0.0763747 0.531198i −0.991709 0.128503i \(-0.958983\pi\)
0.915334 0.402695i \(-0.131926\pi\)
\(678\) −2.56069 5.60714i −0.0983428 0.215341i
\(679\) 1.18697 + 2.59911i 0.0455518 + 0.0997445i
\(680\) −2.06998 14.3970i −0.0793801 0.552101i
\(681\) −9.91322 6.37084i −0.379875 0.244131i
\(682\) 51.1956 15.0324i 1.96038 0.575620i
\(683\) 2.94522 20.4845i 0.112696 0.783817i −0.852582 0.522593i \(-0.824965\pi\)
0.965278 0.261224i \(-0.0841261\pi\)
\(684\) 3.14673 3.63152i 0.120318 0.138855i
\(685\) 49.7867 31.9960i 1.90225 1.22250i
\(686\) −1.10181 1.27155i −0.0420672 0.0485482i
\(687\) −22.1211 6.49535i −0.843974 0.247813i
\(688\) −13.0430 + 28.5602i −0.497260 + 1.08885i
\(689\) 15.7446 0.599821
\(690\) 23.9942 0.566496i 0.913444 0.0215661i
\(691\) −25.2135 −0.959167 −0.479584 0.877496i \(-0.659212\pi\)
−0.479584 + 0.877496i \(0.659212\pi\)
\(692\) 6.15893 13.4862i 0.234128 0.512668i
\(693\) −4.73913 1.39153i −0.180025 0.0528600i
\(694\) −14.4664 16.6951i −0.549135 0.633736i
\(695\) −4.92229 + 3.16336i −0.186713 + 0.119993i
\(696\) −6.79885 + 7.84630i −0.257710 + 0.297413i
\(697\) 3.27545 22.7812i 0.124066 0.862901i
\(698\) 33.3114 9.78111i 1.26085 0.370220i
\(699\) −4.79575 3.08204i −0.181392 0.116573i
\(700\) −0.454909 3.16396i −0.0171939 0.119587i
\(701\) −20.4861 44.8583i −0.773749 1.69427i −0.718219 0.695817i \(-0.755043\pi\)
−0.0555294 0.998457i \(-0.517685\pi\)
\(702\) 0.811846 + 1.77769i 0.0306412 + 0.0670948i
\(703\) 0.701421 + 4.87849i 0.0264546 + 0.183996i
\(704\) 10.3424 + 6.64665i 0.389794 + 0.250505i
\(705\) −20.0893 + 5.89876i −0.756608 + 0.222160i
\(706\) −7.12282 + 49.5403i −0.268071 + 1.86447i
\(707\) −10.4421 + 12.0509i −0.392717 + 0.453220i
\(708\) −0.385978 + 0.248053i −0.0145059 + 0.00932240i
\(709\) 6.82059 + 7.87138i 0.256153 + 0.295616i 0.869231 0.494406i \(-0.164614\pi\)
−0.613078 + 0.790022i \(0.710069\pi\)
\(710\) 15.1691 + 4.45406i 0.569287 + 0.167158i
\(711\) 2.01042 4.40220i 0.0753965 0.165095i
\(712\) 1.27576 0.0478110
\(713\) 13.4491 + 27.6999i 0.503673 + 1.03737i
\(714\) 4.18246 0.156525
\(715\) −7.08893 + 15.5226i −0.265111 + 0.580512i
\(716\) −6.97707 2.04865i −0.260746 0.0765618i
\(717\) 13.4158 + 15.4826i 0.501021 + 0.578209i
\(718\) 49.1162 31.5651i 1.83300 1.17800i
\(719\) −21.6820 + 25.0224i −0.808602 + 0.933176i −0.998820 0.0485654i \(-0.984535\pi\)
0.190218 + 0.981742i \(0.439081\pi\)
\(720\) −2.10443 + 14.6366i −0.0784274 + 0.545474i
\(721\) 7.92424 2.32677i 0.295114 0.0866534i
\(722\) 20.4529 + 13.1443i 0.761179 + 0.489180i
\(723\) 1.37485 + 9.56227i 0.0511311 + 0.355625i
\(724\) −7.27916 15.9391i −0.270528 0.592373i
\(725\) −8.43523 18.4706i −0.313276 0.685980i
\(726\) −3.20755 22.3090i −0.119043 0.827965i
\(727\) −10.2225 6.56961i −0.379132 0.243653i 0.337170 0.941444i \(-0.390530\pi\)
−0.716302 + 0.697790i \(0.754167\pi\)
\(728\) 2.19236 0.643734i 0.0812541 0.0238584i
\(729\) −0.142315 + 0.989821i −0.00527092 + 0.0366601i
\(730\) −18.8738 + 21.7815i −0.698551 + 0.806171i
\(731\) 13.2075 8.48794i 0.488496 0.313938i
\(732\) 3.72891 + 4.30340i 0.137825 + 0.159058i
\(733\) 26.1799 + 7.68712i 0.966978 + 0.283930i 0.726839 0.686808i \(-0.240989\pi\)
0.240139 + 0.970739i \(0.422807\pi\)
\(734\) 5.65258 12.3774i 0.208641 0.456859i
\(735\) −2.97445 −0.109714
\(736\) 8.36732 19.5290i 0.308424 0.719850i
\(737\) 28.0979 1.03500
\(738\) −6.47120 + 14.1699i −0.238208 + 0.521603i
\(739\) 8.25117 + 2.42276i 0.303524 + 0.0891228i 0.429948 0.902854i \(-0.358532\pi\)
−0.126424 + 0.991976i \(0.540350\pi\)
\(740\) 1.37910 + 1.59157i 0.0506969 + 0.0585073i
\(741\) −5.65146 + 3.63197i −0.207611 + 0.133424i
\(742\) −14.9349 + 17.2358i −0.548278 + 0.632746i
\(743\) −3.41857 + 23.7767i −0.125415 + 0.872281i 0.825846 + 0.563895i \(0.190698\pi\)
−0.951261 + 0.308386i \(0.900211\pi\)
\(744\) −12.1186 + 3.55835i −0.444290 + 0.130455i
\(745\) 47.7652 + 30.6968i 1.74998 + 1.12464i
\(746\) 5.59936 + 38.9444i 0.205007 + 1.42586i
\(747\) −3.81209 8.34731i −0.139477 0.305412i
\(748\) 4.23766 + 9.27918i 0.154944 + 0.339280i
\(749\) 1.86508 + 12.9719i 0.0681486 + 0.473984i
\(750\) 4.85273 + 3.11866i 0.177197 + 0.113877i
\(751\) 47.7530 14.0215i 1.74253 0.511654i 0.753258 0.657725i \(-0.228481\pi\)
0.989274 + 0.146071i \(0.0466629\pi\)
\(752\) −4.98017 + 34.6378i −0.181608 + 1.26311i
\(753\) −4.52231 + 5.21903i −0.164802 + 0.190192i
\(754\) −8.67702 + 5.57638i −0.315998 + 0.203080i
\(755\) −31.5380 36.3968i −1.14779 1.32462i
\(756\) −0.797176 0.234072i −0.0289930 0.00851311i
\(757\) −6.32074 + 13.8405i −0.229731 + 0.503041i −0.989032 0.147698i \(-0.952814\pi\)
0.759301 + 0.650739i \(0.225541\pi\)
\(758\) −18.6457 −0.677243
\(759\) 22.5642 7.20816i 0.819030 0.261640i
\(760\) −33.8408 −1.22753
\(761\) 8.49030 18.5912i 0.307773 0.673929i −0.691031 0.722825i \(-0.742843\pi\)
0.998804 + 0.0488962i \(0.0155704\pi\)
\(762\) −4.08463 1.19935i −0.147970 0.0434480i
\(763\) 2.58631 + 2.98476i 0.0936307 + 0.108056i
\(764\) −14.6030 + 9.38480i −0.528319 + 0.339530i
\(765\) 4.84206 5.58804i 0.175065 0.202036i
\(766\) 5.35408 37.2385i 0.193451 1.34548i
\(767\) 0.615460 0.180715i 0.0222230 0.00652525i
\(768\) 14.2806 + 9.17758i 0.515307 + 0.331168i
\(769\) −3.53112 24.5595i −0.127336 0.885639i −0.948912 0.315540i \(-0.897814\pi\)
0.821577 0.570098i \(-0.193095\pi\)
\(770\) −10.2684 22.4847i −0.370047 0.810291i
\(771\) −5.39738 11.8186i −0.194382 0.425637i
\(772\) 2.66703 + 18.5496i 0.0959886 +