Properties

Label 483.2.i.c
Level $483$
Weight $2$
Character orbit 483.i
Analytic conductor $3.857$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{3} + ( 1 - \zeta_{6} ) q^{4} -\zeta_{6} q^{5} - q^{6} + ( -2 - \zeta_{6} ) q^{7} + 3 q^{8} -\zeta_{6} q^{9} +O(q^{10})\) \( q + \zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{3} + ( 1 - \zeta_{6} ) q^{4} -\zeta_{6} q^{5} - q^{6} + ( -2 - \zeta_{6} ) q^{7} + 3 q^{8} -\zeta_{6} q^{9} + ( 1 - \zeta_{6} ) q^{10} + ( 2 - 2 \zeta_{6} ) q^{11} + \zeta_{6} q^{12} + 7 q^{13} + ( 1 - 3 \zeta_{6} ) q^{14} + q^{15} + \zeta_{6} q^{16} + ( 3 - 3 \zeta_{6} ) q^{17} + ( 1 - \zeta_{6} ) q^{18} + 8 \zeta_{6} q^{19} - q^{20} + ( 3 - 2 \zeta_{6} ) q^{21} + 2 q^{22} -\zeta_{6} q^{23} + ( -3 + 3 \zeta_{6} ) q^{24} + ( 4 - 4 \zeta_{6} ) q^{25} + 7 \zeta_{6} q^{26} + q^{27} + ( -3 + 2 \zeta_{6} ) q^{28} -8 q^{29} + \zeta_{6} q^{30} + ( 6 - 6 \zeta_{6} ) q^{31} + ( 5 - 5 \zeta_{6} ) q^{32} + 2 \zeta_{6} q^{33} + 3 q^{34} + ( -1 + 3 \zeta_{6} ) q^{35} - q^{36} -6 \zeta_{6} q^{37} + ( -8 + 8 \zeta_{6} ) q^{38} + ( -7 + 7 \zeta_{6} ) q^{39} -3 \zeta_{6} q^{40} -4 q^{41} + ( 2 + \zeta_{6} ) q^{42} -4 q^{43} -2 \zeta_{6} q^{44} + ( -1 + \zeta_{6} ) q^{45} + ( 1 - \zeta_{6} ) q^{46} + 9 \zeta_{6} q^{47} - q^{48} + ( 3 + 5 \zeta_{6} ) q^{49} + 4 q^{50} + 3 \zeta_{6} q^{51} + ( 7 - 7 \zeta_{6} ) q^{52} + ( -3 + 3 \zeta_{6} ) q^{53} + \zeta_{6} q^{54} -2 q^{55} + ( -6 - 3 \zeta_{6} ) q^{56} -8 q^{57} -8 \zeta_{6} q^{58} + ( -12 + 12 \zeta_{6} ) q^{59} + ( 1 - \zeta_{6} ) q^{60} + 2 \zeta_{6} q^{61} + 6 q^{62} + ( -1 + 3 \zeta_{6} ) q^{63} + 7 q^{64} -7 \zeta_{6} q^{65} + ( -2 + 2 \zeta_{6} ) q^{66} + ( -1 + \zeta_{6} ) q^{67} -3 \zeta_{6} q^{68} + q^{69} + ( -3 + 2 \zeta_{6} ) q^{70} + 9 q^{71} -3 \zeta_{6} q^{72} + ( -3 + 3 \zeta_{6} ) q^{73} + ( 6 - 6 \zeta_{6} ) q^{74} + 4 \zeta_{6} q^{75} + 8 q^{76} + ( -6 + 4 \zeta_{6} ) q^{77} -7 q^{78} + 4 \zeta_{6} q^{79} + ( 1 - \zeta_{6} ) q^{80} + ( -1 + \zeta_{6} ) q^{81} -4 \zeta_{6} q^{82} -18 q^{83} + ( 1 - 3 \zeta_{6} ) q^{84} -3 q^{85} -4 \zeta_{6} q^{86} + ( 8 - 8 \zeta_{6} ) q^{87} + ( 6 - 6 \zeta_{6} ) q^{88} -10 \zeta_{6} q^{89} - q^{90} + ( -14 - 7 \zeta_{6} ) q^{91} - q^{92} + 6 \zeta_{6} q^{93} + ( -9 + 9 \zeta_{6} ) q^{94} + ( 8 - 8 \zeta_{6} ) q^{95} + 5 \zeta_{6} q^{96} + ( -5 + 8 \zeta_{6} ) q^{98} -2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{2} - q^{3} + q^{4} - q^{5} - 2q^{6} - 5q^{7} + 6q^{8} - q^{9} + O(q^{10}) \) \( 2q + q^{2} - q^{3} + q^{4} - q^{5} - 2q^{6} - 5q^{7} + 6q^{8} - q^{9} + q^{10} + 2q^{11} + q^{12} + 14q^{13} - q^{14} + 2q^{15} + q^{16} + 3q^{17} + q^{18} + 8q^{19} - 2q^{20} + 4q^{21} + 4q^{22} - q^{23} - 3q^{24} + 4q^{25} + 7q^{26} + 2q^{27} - 4q^{28} - 16q^{29} + q^{30} + 6q^{31} + 5q^{32} + 2q^{33} + 6q^{34} + q^{35} - 2q^{36} - 6q^{37} - 8q^{38} - 7q^{39} - 3q^{40} - 8q^{41} + 5q^{42} - 8q^{43} - 2q^{44} - q^{45} + q^{46} + 9q^{47} - 2q^{48} + 11q^{49} + 8q^{50} + 3q^{51} + 7q^{52} - 3q^{53} + q^{54} - 4q^{55} - 15q^{56} - 16q^{57} - 8q^{58} - 12q^{59} + q^{60} + 2q^{61} + 12q^{62} + q^{63} + 14q^{64} - 7q^{65} - 2q^{66} - q^{67} - 3q^{68} + 2q^{69} - 4q^{70} + 18q^{71} - 3q^{72} - 3q^{73} + 6q^{74} + 4q^{75} + 16q^{76} - 8q^{77} - 14q^{78} + 4q^{79} + q^{80} - q^{81} - 4q^{82} - 36q^{83} - q^{84} - 6q^{85} - 4q^{86} + 8q^{87} + 6q^{88} - 10q^{89} - 2q^{90} - 35q^{91} - 2q^{92} + 6q^{93} - 9q^{94} + 8q^{95} + 5q^{96} - 2q^{98} - 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
277.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 0.866025i −0.500000 0.866025i −1.00000 −2.50000 0.866025i 3.00000 −0.500000 0.866025i 0.500000 0.866025i
415.1 0.500000 0.866025i −0.500000 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i −1.00000 −2.50000 + 0.866025i 3.00000 −0.500000 + 0.866025i 0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 483.2.i.c 2
7.c even 3 1 inner 483.2.i.c 2
7.c even 3 1 3381.2.a.d 1
7.d odd 6 1 3381.2.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
483.2.i.c 2 1.a even 1 1 trivial
483.2.i.c 2 7.c even 3 1 inner
3381.2.a.a 1 7.d odd 6 1
3381.2.a.d 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(483, [\chi])\):

\( T_{2}^{2} - T_{2} + 1 \)
\( T_{5}^{2} + T_{5} + 1 \)
\( T_{11}^{2} - 2 T_{11} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T + T^{2} \)
$3$ \( 1 + T + T^{2} \)
$5$ \( 1 + T + T^{2} \)
$7$ \( 7 + 5 T + T^{2} \)
$11$ \( 4 - 2 T + T^{2} \)
$13$ \( ( -7 + T )^{2} \)
$17$ \( 9 - 3 T + T^{2} \)
$19$ \( 64 - 8 T + T^{2} \)
$23$ \( 1 + T + T^{2} \)
$29$ \( ( 8 + T )^{2} \)
$31$ \( 36 - 6 T + T^{2} \)
$37$ \( 36 + 6 T + T^{2} \)
$41$ \( ( 4 + T )^{2} \)
$43$ \( ( 4 + T )^{2} \)
$47$ \( 81 - 9 T + T^{2} \)
$53$ \( 9 + 3 T + T^{2} \)
$59$ \( 144 + 12 T + T^{2} \)
$61$ \( 4 - 2 T + T^{2} \)
$67$ \( 1 + T + T^{2} \)
$71$ \( ( -9 + T )^{2} \)
$73$ \( 9 + 3 T + T^{2} \)
$79$ \( 16 - 4 T + T^{2} \)
$83$ \( ( 18 + T )^{2} \)
$89$ \( 100 + 10 T + T^{2} \)
$97$ \( T^{2} \)
show more
show less