Properties

Label 483.2.i
Level $483$
Weight $2$
Character orbit 483.i
Rep. character $\chi_{483}(277,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $60$
Newform subspaces $8$
Sturm bound $128$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 8 \)
Sturm bound: \(128\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(483, [\chi])\).

Total New Old
Modular forms 136 60 76
Cusp forms 120 60 60
Eisenstein series 16 0 16

Trace form

\( 60 q + 2 q^{3} - 32 q^{4} - 8 q^{6} + 6 q^{7} + 24 q^{8} - 30 q^{9} - 16 q^{10} + 4 q^{12} - 4 q^{13} - 12 q^{14} + 8 q^{15} - 52 q^{16} - 8 q^{17} - 6 q^{19} - 16 q^{20} - 8 q^{21} + 48 q^{22} - 46 q^{25}+ \cdots - 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(483, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
483.2.i.a 483.i 7.c $2$ $3.857$ \(\Q(\sqrt{-3}) \) None 483.2.i.a \(0\) \(-1\) \(0\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+(2-2\zeta_{6})q^{4}+(2-3\zeta_{6})q^{7}+\cdots\)
483.2.i.b 483.i 7.c $2$ $3.857$ \(\Q(\sqrt{-3}) \) None 483.2.i.b \(0\) \(-1\) \(0\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+(2-2\zeta_{6})q^{4}+(2+\zeta_{6})q^{7}+\cdots\)
483.2.i.c 483.i 7.c $2$ $3.857$ \(\Q(\sqrt{-3}) \) None 483.2.i.c \(1\) \(-1\) \(-1\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
483.2.i.d 483.i 7.c $2$ $3.857$ \(\Q(\sqrt{-3}) \) None 483.2.i.d \(1\) \(-1\) \(3\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
483.2.i.e 483.i 7.c $4$ $3.857$ \(\Q(\sqrt{-3}, \sqrt{17})\) None 483.2.i.e \(1\) \(-2\) \(1\) \(10\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{2})q^{3}+(-2+\beta _{1}+\cdots)q^{4}+\cdots\)
483.2.i.f 483.i 7.c $12$ $3.857$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 483.2.i.f \(1\) \(6\) \(-3\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-\beta _{5})q^{2}+\beta _{7}q^{3}+(1+\beta _{4}+\cdots)q^{4}+\cdots\)
483.2.i.g 483.i 7.c $16$ $3.857$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 483.2.i.g \(-1\) \(-8\) \(-5\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}-\beta _{5})q^{2}+(-1-\beta _{4})q^{3}+(-2+\cdots)q^{4}+\cdots\)
483.2.i.h 483.i 7.c $20$ $3.857$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 483.2.i.h \(-3\) \(10\) \(5\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}+\beta _{4})q^{2}-\beta _{9}q^{3}+(-\beta _{1}-\beta _{8}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(483, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(483, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(161, [\chi])\)\(^{\oplus 2}\)