Defining parameters
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(128\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(483, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 136 | 60 | 76 |
Cusp forms | 120 | 60 | 60 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(483, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(483, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(483, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(161, [\chi])\)\(^{\oplus 2}\)