gp: [N,k,chi] = [4805,2,Mod(1,4805)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4805.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4805, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [48,16,0,64,48,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(5\)
\( -1 \)
\(31\)
\( +1 \)
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4805))\):
\( T_{2}^{24} - 8 T_{2}^{23} - 8 T_{2}^{22} + 216 T_{2}^{21} - 268 T_{2}^{20} - 2328 T_{2}^{19} + 5336 T_{2}^{18} + \cdots - 2 \)
T2^24 - 8*T2^23 - 8*T2^22 + 216*T2^21 - 268*T2^20 - 2328*T2^19 + 5336*T2^18 + 12408*T2^17 - 42507*T2^16 - 30168*T2^15 + 185608*T2^14 - 2168*T2^13 - 479120*T2^12 + 197344*T2^11 + 735616*T2^10 - 489960*T2^9 - 640870*T2^8 + 547816*T2^7 + 275124*T2^6 - 291320*T2^5 - 32538*T2^4 + 59056*T2^3 - 6948*T2^2 - 376*T2 - 2
\( T_{3}^{48} - 96 T_{3}^{46} + 4272 T_{3}^{44} - 117000 T_{3}^{42} + 2208336 T_{3}^{40} - 30482944 T_{3}^{38} + \cdots + 51076 \)
T3^48 - 96*T3^46 + 4272*T3^44 - 117000*T3^42 + 2208336*T3^40 - 30482944*T3^38 + 318709212*T3^36 - 2579396296*T3^34 + 16376872650*T3^32 - 82184936320*T3^30 + 326959320304*T3^28 - 1030280902616*T3^26 + 2560035536870*T3^24 - 4975968553840*T3^22 + 7476750559276*T3^20 - 8546662652760*T3^18 + 7279988773009*T3^16 - 4501601346000*T3^14 + 1955411531320*T3^12 - 571745514400*T3^10 + 106102372876*T3^8 - 11477875808*T3^6 + 638805888*T3^4 - 14707616*T3^2 + 51076