Properties

Label 2-4805-1.1-c1-0-114
Degree $2$
Conductor $4805$
Sign $1$
Analytic cond. $38.3681$
Root an. cond. $6.19420$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.45·2-s + 2.53·3-s + 0.116·4-s + 5-s − 3.68·6-s − 0.554·7-s + 2.74·8-s + 3.41·9-s − 1.45·10-s − 0.0423·11-s + 0.294·12-s + 3.60·13-s + 0.806·14-s + 2.53·15-s − 4.21·16-s − 2.41·17-s − 4.96·18-s − 7.73·19-s + 0.116·20-s − 1.40·21-s + 0.0616·22-s + 4.31·23-s + 6.93·24-s + 25-s − 5.24·26-s + 1.04·27-s − 0.0645·28-s + ⋯
L(s)  = 1  − 1.02·2-s + 1.46·3-s + 0.0582·4-s + 0.447·5-s − 1.50·6-s − 0.209·7-s + 0.968·8-s + 1.13·9-s − 0.460·10-s − 0.0127·11-s + 0.0851·12-s + 0.999·13-s + 0.215·14-s + 0.653·15-s − 1.05·16-s − 0.585·17-s − 1.16·18-s − 1.77·19-s + 0.0260·20-s − 0.306·21-s + 0.0131·22-s + 0.898·23-s + 1.41·24-s + 0.200·25-s − 1.02·26-s + 0.200·27-s − 0.0122·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4805 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4805 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4805\)    =    \(5 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(38.3681\)
Root analytic conductor: \(6.19420\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4805,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.935123342\)
\(L(\frac12)\) \(\approx\) \(1.935123342\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
31 \( 1 \)
good2 \( 1 + 1.45T + 2T^{2} \)
3 \( 1 - 2.53T + 3T^{2} \)
7 \( 1 + 0.554T + 7T^{2} \)
11 \( 1 + 0.0423T + 11T^{2} \)
13 \( 1 - 3.60T + 13T^{2} \)
17 \( 1 + 2.41T + 17T^{2} \)
19 \( 1 + 7.73T + 19T^{2} \)
23 \( 1 - 4.31T + 23T^{2} \)
29 \( 1 - 5.23T + 29T^{2} \)
37 \( 1 + 3.28T + 37T^{2} \)
41 \( 1 - 9.41T + 41T^{2} \)
43 \( 1 + 4.62T + 43T^{2} \)
47 \( 1 - 3.14T + 47T^{2} \)
53 \( 1 - 10.1T + 53T^{2} \)
59 \( 1 - 7.38T + 59T^{2} \)
61 \( 1 - 13.6T + 61T^{2} \)
67 \( 1 - 11.3T + 67T^{2} \)
71 \( 1 - 5.88T + 71T^{2} \)
73 \( 1 - 10.5T + 73T^{2} \)
79 \( 1 - 14.7T + 79T^{2} \)
83 \( 1 + 15.4T + 83T^{2} \)
89 \( 1 - 10.1T + 89T^{2} \)
97 \( 1 + 15.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.450138030698922344716648874716, −8.055188338496276486583225013902, −6.93670668606049987861316838010, −6.55250805910308915307439533854, −5.31784189117462934797775177425, −4.27365089911310745636202711804, −3.70782021113861175691843346814, −2.55248633109996931077839361539, −1.97787600416764416885520487717, −0.853672526227313886249196019613, 0.853672526227313886249196019613, 1.97787600416764416885520487717, 2.55248633109996931077839361539, 3.70782021113861175691843346814, 4.27365089911310745636202711804, 5.31784189117462934797775177425, 6.55250805910308915307439533854, 6.93670668606049987861316838010, 8.055188338496276486583225013902, 8.450138030698922344716648874716

Graph of the $Z$-function along the critical line