Properties

Label 4800.2.k.r.2401.8
Level $4800$
Weight $2$
Character 4800.2401
Analytic conductor $38.328$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4800,2,Mod(2401,4800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4800.2401"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4800 = 2^{6} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4800.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-8,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,-8,0,0,0,0,0,0,0,48,0,0,0,0,0,0,0,24,0,0,0,0,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(57)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.3281929702\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{31}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 960)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2401.8
Root \(-1.09445 - 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 4800.2401
Dual form 4800.2.k.r.2401.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +4.37780 q^{7} -1.00000 q^{9} +5.58258i q^{11} -4.37780i q^{13} +5.58258 q^{17} +4.00000i q^{19} +4.37780i q^{21} -1.00000i q^{27} -2.55040i q^{29} -5.29150 q^{31} -5.58258 q^{33} +2.55040i q^{37} +4.37780 q^{39} +6.00000 q^{41} +11.1652i q^{43} +6.92820 q^{47} +12.1652 q^{49} +5.58258i q^{51} +7.84190i q^{53} -4.00000 q^{57} -1.58258i q^{59} -10.5830i q^{61} -4.37780 q^{63} -3.16515i q^{67} +6.92820 q^{71} -12.0000 q^{73} +24.4394i q^{77} -5.29150 q^{79} +1.00000 q^{81} -7.16515i q^{83} +2.55040 q^{87} +2.00000 q^{89} -19.1652i q^{91} -5.29150i q^{93} -11.1652 q^{97} -5.58258i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} + 8 q^{17} - 8 q^{33} + 48 q^{41} + 24 q^{49} - 32 q^{57} - 96 q^{73} + 8 q^{81} + 16 q^{89} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(4351\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.37780 1.65465 0.827327 0.561721i \(-0.189860\pi\)
0.827327 + 0.561721i \(0.189860\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 5.58258i 1.68321i 0.540094 + 0.841605i \(0.318389\pi\)
−0.540094 + 0.841605i \(0.681611\pi\)
\(12\) 0 0
\(13\) − 4.37780i − 1.21418i −0.794632 0.607092i \(-0.792336\pi\)
0.794632 0.607092i \(-0.207664\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.58258 1.35397 0.676987 0.735995i \(-0.263285\pi\)
0.676987 + 0.735995i \(0.263285\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0 0
\(21\) 4.37780i 0.955315i
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) − 2.55040i − 0.473598i −0.971559 0.236799i \(-0.923902\pi\)
0.971559 0.236799i \(-0.0760982\pi\)
\(30\) 0 0
\(31\) −5.29150 −0.950382 −0.475191 0.879883i \(-0.657621\pi\)
−0.475191 + 0.879883i \(0.657621\pi\)
\(32\) 0 0
\(33\) −5.58258 −0.971802
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.55040i 0.419283i 0.977778 + 0.209642i \(0.0672297\pi\)
−0.977778 + 0.209642i \(0.932770\pi\)
\(38\) 0 0
\(39\) 4.37780 0.701009
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 11.1652i 1.70267i 0.524623 + 0.851335i \(0.324206\pi\)
−0.524623 + 0.851335i \(0.675794\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.92820 1.01058 0.505291 0.862949i \(-0.331385\pi\)
0.505291 + 0.862949i \(0.331385\pi\)
\(48\) 0 0
\(49\) 12.1652 1.73788
\(50\) 0 0
\(51\) 5.58258i 0.781717i
\(52\) 0 0
\(53\) 7.84190i 1.07717i 0.842572 + 0.538584i \(0.181041\pi\)
−0.842572 + 0.538584i \(0.818959\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) − 1.58258i − 0.206034i −0.994680 0.103017i \(-0.967150\pi\)
0.994680 0.103017i \(-0.0328496\pi\)
\(60\) 0 0
\(61\) − 10.5830i − 1.35501i −0.735516 0.677507i \(-0.763060\pi\)
0.735516 0.677507i \(-0.236940\pi\)
\(62\) 0 0
\(63\) −4.37780 −0.551551
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 3.16515i − 0.386685i −0.981131 0.193342i \(-0.938067\pi\)
0.981131 0.193342i \(-0.0619328\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.92820 0.822226 0.411113 0.911584i \(-0.365140\pi\)
0.411113 + 0.911584i \(0.365140\pi\)
\(72\) 0 0
\(73\) −12.0000 −1.40449 −0.702247 0.711934i \(-0.747820\pi\)
−0.702247 + 0.711934i \(0.747820\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 24.4394i 2.78513i
\(78\) 0 0
\(79\) −5.29150 −0.595341 −0.297670 0.954669i \(-0.596210\pi\)
−0.297670 + 0.954669i \(0.596210\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 7.16515i − 0.786478i −0.919436 0.393239i \(-0.871355\pi\)
0.919436 0.393239i \(-0.128645\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.55040 0.273432
\(88\) 0 0
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) − 19.1652i − 2.00905i
\(92\) 0 0
\(93\) − 5.29150i − 0.548703i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −11.1652 −1.13365 −0.566825 0.823838i \(-0.691828\pi\)
−0.566825 + 0.823838i \(0.691828\pi\)
\(98\) 0 0
\(99\) − 5.58258i − 0.561070i
\(100\) 0 0
\(101\) − 0.723000i − 0.0719412i −0.999353 0.0359706i \(-0.988548\pi\)
0.999353 0.0359706i \(-0.0114523\pi\)
\(102\) 0 0
\(103\) 0.723000 0.0712393 0.0356197 0.999365i \(-0.488660\pi\)
0.0356197 + 0.999365i \(0.488660\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.00000i 0.386695i 0.981130 + 0.193347i \(0.0619344\pi\)
−0.981130 + 0.193347i \(0.938066\pi\)
\(108\) 0 0
\(109\) 1.82740i 0.175033i 0.996163 + 0.0875166i \(0.0278931\pi\)
−0.996163 + 0.0875166i \(0.972107\pi\)
\(110\) 0 0
\(111\) −2.55040 −0.242073
\(112\) 0 0
\(113\) 13.5826 1.27774 0.638871 0.769314i \(-0.279402\pi\)
0.638871 + 0.769314i \(0.279402\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.37780i 0.404728i
\(118\) 0 0
\(119\) 24.4394 2.24036
\(120\) 0 0
\(121\) −20.1652 −1.83320
\(122\) 0 0
\(123\) 6.00000i 0.541002i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 9.47860 0.841090 0.420545 0.907272i \(-0.361839\pi\)
0.420545 + 0.907272i \(0.361839\pi\)
\(128\) 0 0
\(129\) −11.1652 −0.983037
\(130\) 0 0
\(131\) 6.41742i 0.560693i 0.959899 + 0.280346i \(0.0904494\pi\)
−0.959899 + 0.280346i \(0.909551\pi\)
\(132\) 0 0
\(133\) 17.5112i 1.51841i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.4174 −0.890021 −0.445010 0.895525i \(-0.646800\pi\)
−0.445010 + 0.895525i \(0.646800\pi\)
\(138\) 0 0
\(139\) 7.16515i 0.607740i 0.952713 + 0.303870i \(0.0982789\pi\)
−0.952713 + 0.303870i \(0.901721\pi\)
\(140\) 0 0
\(141\) 6.92820i 0.583460i
\(142\) 0 0
\(143\) 24.4394 2.04373
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 12.1652i 1.00336i
\(148\) 0 0
\(149\) − 14.9608i − 1.22564i −0.790224 0.612819i \(-0.790036\pi\)
0.790224 0.612819i \(-0.209964\pi\)
\(150\) 0 0
\(151\) 15.8745 1.29185 0.645925 0.763401i \(-0.276472\pi\)
0.645925 + 0.763401i \(0.276472\pi\)
\(152\) 0 0
\(153\) −5.58258 −0.451324
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 16.4068i 1.30941i 0.755886 + 0.654703i \(0.227206\pi\)
−0.755886 + 0.654703i \(0.772794\pi\)
\(158\) 0 0
\(159\) −7.84190 −0.621903
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 4.00000i − 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0290 0.930832 0.465416 0.885092i \(-0.345905\pi\)
0.465416 + 0.885092i \(0.345905\pi\)
\(168\) 0 0
\(169\) −6.16515 −0.474242
\(170\) 0 0
\(171\) − 4.00000i − 0.305888i
\(172\) 0 0
\(173\) 6.01450i 0.457274i 0.973512 + 0.228637i \(0.0734269\pi\)
−0.973512 + 0.228637i \(0.926573\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.58258 0.118954
\(178\) 0 0
\(179\) 1.58258i 0.118287i 0.998249 + 0.0591436i \(0.0188370\pi\)
−0.998249 + 0.0591436i \(0.981163\pi\)
\(180\) 0 0
\(181\) 1.82740i 0.135830i 0.997691 + 0.0679148i \(0.0216346\pi\)
−0.997691 + 0.0679148i \(0.978365\pi\)
\(182\) 0 0
\(183\) 10.5830 0.782318
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 31.1652i 2.27902i
\(188\) 0 0
\(189\) − 4.37780i − 0.318438i
\(190\) 0 0
\(191\) 13.8564 1.00261 0.501307 0.865269i \(-0.332853\pi\)
0.501307 + 0.865269i \(0.332853\pi\)
\(192\) 0 0
\(193\) 15.1652 1.09161 0.545806 0.837912i \(-0.316224\pi\)
0.545806 + 0.837912i \(0.316224\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 22.0797i − 1.57311i −0.617518 0.786557i \(-0.711862\pi\)
0.617518 0.786557i \(-0.288138\pi\)
\(198\) 0 0
\(199\) −12.2197 −0.866232 −0.433116 0.901338i \(-0.642586\pi\)
−0.433116 + 0.901338i \(0.642586\pi\)
\(200\) 0 0
\(201\) 3.16515 0.223253
\(202\) 0 0
\(203\) − 11.1652i − 0.783640i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −22.3303 −1.54462
\(210\) 0 0
\(211\) − 7.16515i − 0.493269i −0.969109 0.246635i \(-0.920675\pi\)
0.969109 0.246635i \(-0.0793248\pi\)
\(212\) 0 0
\(213\) 6.92820i 0.474713i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −23.1652 −1.57255
\(218\) 0 0
\(219\) − 12.0000i − 0.810885i
\(220\) 0 0
\(221\) − 24.4394i − 1.64397i
\(222\) 0 0
\(223\) −4.37780 −0.293159 −0.146580 0.989199i \(-0.546826\pi\)
−0.146580 + 0.989199i \(0.546826\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.1652i 1.00655i 0.864127 + 0.503273i \(0.167871\pi\)
−0.864127 + 0.503273i \(0.832129\pi\)
\(228\) 0 0
\(229\) 12.0290i 0.794899i 0.917624 + 0.397450i \(0.130105\pi\)
−0.917624 + 0.397450i \(0.869895\pi\)
\(230\) 0 0
\(231\) −24.4394 −1.60800
\(232\) 0 0
\(233\) −10.4174 −0.682468 −0.341234 0.939978i \(-0.610845\pi\)
−0.341234 + 0.939978i \(0.610845\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 5.29150i − 0.343720i
\(238\) 0 0
\(239\) −21.1660 −1.36912 −0.684558 0.728959i \(-0.740005\pi\)
−0.684558 + 0.728959i \(0.740005\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 17.5112 1.11421
\(248\) 0 0
\(249\) 7.16515 0.454073
\(250\) 0 0
\(251\) 2.41742i 0.152586i 0.997085 + 0.0762932i \(0.0243085\pi\)
−0.997085 + 0.0762932i \(0.975691\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −24.7477 −1.54372 −0.771860 0.635792i \(-0.780674\pi\)
−0.771860 + 0.635792i \(0.780674\pi\)
\(258\) 0 0
\(259\) 11.1652i 0.693769i
\(260\) 0 0
\(261\) 2.55040i 0.157866i
\(262\) 0 0
\(263\) 1.82740 0.112682 0.0563412 0.998412i \(-0.482057\pi\)
0.0563412 + 0.998412i \(0.482057\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.00000i 0.122398i
\(268\) 0 0
\(269\) 6.20520i 0.378338i 0.981945 + 0.189169i \(0.0605794\pi\)
−0.981945 + 0.189169i \(0.939421\pi\)
\(270\) 0 0
\(271\) −15.4931 −0.941139 −0.470570 0.882363i \(-0.655952\pi\)
−0.470570 + 0.882363i \(0.655952\pi\)
\(272\) 0 0
\(273\) 19.1652 1.15993
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 9.47860i 0.569514i 0.958600 + 0.284757i \(0.0919129\pi\)
−0.958600 + 0.284757i \(0.908087\pi\)
\(278\) 0 0
\(279\) 5.29150 0.316794
\(280\) 0 0
\(281\) 32.3303 1.92866 0.964332 0.264695i \(-0.0852714\pi\)
0.964332 + 0.264695i \(0.0852714\pi\)
\(282\) 0 0
\(283\) − 11.1652i − 0.663699i −0.943332 0.331850i \(-0.892327\pi\)
0.943332 0.331850i \(-0.107673\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 26.2668 1.55048
\(288\) 0 0
\(289\) 14.1652 0.833244
\(290\) 0 0
\(291\) − 11.1652i − 0.654513i
\(292\) 0 0
\(293\) − 0.913701i − 0.0533790i −0.999644 0.0266895i \(-0.991503\pi\)
0.999644 0.0266895i \(-0.00849653\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 5.58258 0.323934
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 48.8788i 2.81733i
\(302\) 0 0
\(303\) 0.723000 0.0415353
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 4.00000i 0.228292i 0.993464 + 0.114146i \(0.0364132\pi\)
−0.993464 + 0.114146i \(0.963587\pi\)
\(308\) 0 0
\(309\) 0.723000i 0.0411300i
\(310\) 0 0
\(311\) −3.65480 −0.207245 −0.103622 0.994617i \(-0.533043\pi\)
−0.103622 + 0.994617i \(0.533043\pi\)
\(312\) 0 0
\(313\) −0.834849 −0.0471884 −0.0235942 0.999722i \(-0.507511\pi\)
−0.0235942 + 0.999722i \(0.507511\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 34.1087i 1.91574i 0.287208 + 0.957868i \(0.407273\pi\)
−0.287208 + 0.957868i \(0.592727\pi\)
\(318\) 0 0
\(319\) 14.2378 0.797164
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) 0 0
\(323\) 22.3303i 1.24249i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1.82740 −0.101056
\(328\) 0 0
\(329\) 30.3303 1.67216
\(330\) 0 0
\(331\) 10.3303i 0.567805i 0.958853 + 0.283902i \(0.0916292\pi\)
−0.958853 + 0.283902i \(0.908371\pi\)
\(332\) 0 0
\(333\) − 2.55040i − 0.139761i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 26.3303 1.43430 0.717151 0.696917i \(-0.245446\pi\)
0.717151 + 0.696917i \(0.245446\pi\)
\(338\) 0 0
\(339\) 13.5826i 0.737704i
\(340\) 0 0
\(341\) − 29.5402i − 1.59969i
\(342\) 0 0
\(343\) 22.6120 1.22093
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.834849i 0.0448170i 0.999749 + 0.0224085i \(0.00713345\pi\)
−0.999749 + 0.0224085i \(0.992867\pi\)
\(348\) 0 0
\(349\) 24.4394i 1.30821i 0.756403 + 0.654106i \(0.226955\pi\)
−0.756403 + 0.654106i \(0.773045\pi\)
\(350\) 0 0
\(351\) −4.37780 −0.233670
\(352\) 0 0
\(353\) −11.9129 −0.634059 −0.317029 0.948416i \(-0.602685\pi\)
−0.317029 + 0.948416i \(0.602685\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 24.4394i 1.29347i
\(358\) 0 0
\(359\) −6.92820 −0.365657 −0.182828 0.983145i \(-0.558525\pi\)
−0.182828 + 0.983145i \(0.558525\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) − 20.1652i − 1.05840i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −11.6874 −0.610078 −0.305039 0.952340i \(-0.598669\pi\)
−0.305039 + 0.952340i \(0.598669\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 34.3303i 1.78234i
\(372\) 0 0
\(373\) 11.3060i 0.585403i 0.956204 + 0.292701i \(0.0945542\pi\)
−0.956204 + 0.292701i \(0.905446\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −11.1652 −0.575035
\(378\) 0 0
\(379\) − 23.1652i − 1.18991i −0.803758 0.594957i \(-0.797169\pi\)
0.803758 0.594957i \(-0.202831\pi\)
\(380\) 0 0
\(381\) 9.47860i 0.485604i
\(382\) 0 0
\(383\) −29.9216 −1.52892 −0.764462 0.644669i \(-0.776995\pi\)
−0.764462 + 0.644669i \(0.776995\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 11.1652i − 0.567557i
\(388\) 0 0
\(389\) 8.03260i 0.407269i 0.979047 + 0.203635i \(0.0652755\pi\)
−0.979047 + 0.203635i \(0.934725\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −6.41742 −0.323716
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 2.55040i − 0.128001i −0.997950 0.0640005i \(-0.979614\pi\)
0.997950 0.0640005i \(-0.0203859\pi\)
\(398\) 0 0
\(399\) −17.5112 −0.876657
\(400\) 0 0
\(401\) 22.0000 1.09863 0.549314 0.835616i \(-0.314889\pi\)
0.549314 + 0.835616i \(0.314889\pi\)
\(402\) 0 0
\(403\) 23.1652i 1.15394i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −14.2378 −0.705742
\(408\) 0 0
\(409\) −37.1652 −1.83770 −0.918849 0.394609i \(-0.870880\pi\)
−0.918849 + 0.394609i \(0.870880\pi\)
\(410\) 0 0
\(411\) − 10.4174i − 0.513854i
\(412\) 0 0
\(413\) − 6.92820i − 0.340915i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −7.16515 −0.350879
\(418\) 0 0
\(419\) − 16.7477i − 0.818180i −0.912494 0.409090i \(-0.865846\pi\)
0.912494 0.409090i \(-0.134154\pi\)
\(420\) 0 0
\(421\) 29.5402i 1.43970i 0.694129 + 0.719851i \(0.255790\pi\)
−0.694129 + 0.719851i \(0.744210\pi\)
\(422\) 0 0
\(423\) −6.92820 −0.336861
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 46.3303i − 2.24208i
\(428\) 0 0
\(429\) 24.4394i 1.17995i
\(430\) 0 0
\(431\) 38.2958 1.84464 0.922322 0.386421i \(-0.126289\pi\)
0.922322 + 0.386421i \(0.126289\pi\)
\(432\) 0 0
\(433\) 1.66970 0.0802405 0.0401203 0.999195i \(-0.487226\pi\)
0.0401203 + 0.999195i \(0.487226\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −29.7309 −1.41898 −0.709490 0.704716i \(-0.751074\pi\)
−0.709490 + 0.704716i \(0.751074\pi\)
\(440\) 0 0
\(441\) −12.1652 −0.579293
\(442\) 0 0
\(443\) 31.1652i 1.48070i 0.672221 + 0.740351i \(0.265340\pi\)
−0.672221 + 0.740351i \(0.734660\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 14.9608 0.707622
\(448\) 0 0
\(449\) 28.3303 1.33699 0.668495 0.743717i \(-0.266939\pi\)
0.668495 + 0.743717i \(0.266939\pi\)
\(450\) 0 0
\(451\) 33.4955i 1.57724i
\(452\) 0 0
\(453\) 15.8745i 0.745849i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.83485 −0.226165 −0.113082 0.993586i \(-0.536072\pi\)
−0.113082 + 0.993586i \(0.536072\pi\)
\(458\) 0 0
\(459\) − 5.58258i − 0.260572i
\(460\) 0 0
\(461\) 1.10440i 0.0514371i 0.999669 + 0.0257185i \(0.00818737\pi\)
−0.999669 + 0.0257185i \(0.991813\pi\)
\(462\) 0 0
\(463\) 29.1986 1.35697 0.678487 0.734612i \(-0.262636\pi\)
0.678487 + 0.734612i \(0.262636\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.834849i 0.0386322i 0.999813 + 0.0193161i \(0.00614889\pi\)
−0.999813 + 0.0193161i \(0.993851\pi\)
\(468\) 0 0
\(469\) − 13.8564i − 0.639829i
\(470\) 0 0
\(471\) −16.4068 −0.755986
\(472\) 0 0
\(473\) −62.3303 −2.86595
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 7.84190i − 0.359056i
\(478\) 0 0
\(479\) 31.7490 1.45065 0.725325 0.688407i \(-0.241690\pi\)
0.725325 + 0.688407i \(0.241690\pi\)
\(480\) 0 0
\(481\) 11.1652 0.509087
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 16.7882 0.760746 0.380373 0.924833i \(-0.375796\pi\)
0.380373 + 0.924833i \(0.375796\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) − 12.7477i − 0.575297i −0.957736 0.287648i \(-0.907127\pi\)
0.957736 0.287648i \(-0.0928735\pi\)
\(492\) 0 0
\(493\) − 14.2378i − 0.641239i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 30.3303 1.36050
\(498\) 0 0
\(499\) − 18.3303i − 0.820577i −0.911956 0.410289i \(-0.865428\pi\)
0.911956 0.410289i \(-0.134572\pi\)
\(500\) 0 0
\(501\) 12.0290i 0.537416i
\(502\) 0 0
\(503\) −28.0942 −1.25266 −0.626330 0.779558i \(-0.715444\pi\)
−0.626330 + 0.779558i \(0.715444\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 6.16515i − 0.273804i
\(508\) 0 0
\(509\) − 39.4002i − 1.74638i −0.487376 0.873192i \(-0.662046\pi\)
0.487376 0.873192i \(-0.337954\pi\)
\(510\) 0 0
\(511\) −52.5336 −2.32395
\(512\) 0 0
\(513\) 4.00000 0.176604
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 38.6772i 1.70102i
\(518\) 0 0
\(519\) −6.01450 −0.264007
\(520\) 0 0
\(521\) −34.6606 −1.51851 −0.759254 0.650794i \(-0.774436\pi\)
−0.759254 + 0.650794i \(0.774436\pi\)
\(522\) 0 0
\(523\) − 18.3303i − 0.801528i −0.916181 0.400764i \(-0.868745\pi\)
0.916181 0.400764i \(-0.131255\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −29.5402 −1.28679
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 1.58258i 0.0686779i
\(532\) 0 0
\(533\) − 26.2668i − 1.13774i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1.58258 −0.0682932
\(538\) 0 0
\(539\) 67.9129i 2.92521i
\(540\) 0 0
\(541\) − 36.8498i − 1.58430i −0.610328 0.792149i \(-0.708962\pi\)
0.610328 0.792149i \(-0.291038\pi\)
\(542\) 0 0
\(543\) −1.82740 −0.0784213
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 25.4955i 1.09011i 0.838401 + 0.545053i \(0.183491\pi\)
−0.838401 + 0.545053i \(0.816509\pi\)
\(548\) 0 0
\(549\) 10.5830i 0.451672i
\(550\) 0 0
\(551\) 10.2016 0.434603
\(552\) 0 0
\(553\) −23.1652 −0.985082
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.18710i 0.177413i 0.996058 + 0.0887066i \(0.0282733\pi\)
−0.996058 + 0.0887066i \(0.971727\pi\)
\(558\) 0 0
\(559\) 48.8788 2.06735
\(560\) 0 0
\(561\) −31.1652 −1.31579
\(562\) 0 0
\(563\) 29.4955i 1.24309i 0.783380 + 0.621543i \(0.213494\pi\)
−0.783380 + 0.621543i \(0.786506\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 4.37780 0.183850
\(568\) 0 0
\(569\) −36.3303 −1.52305 −0.761523 0.648138i \(-0.775548\pi\)
−0.761523 + 0.648138i \(0.775548\pi\)
\(570\) 0 0
\(571\) − 20.0000i − 0.836974i −0.908223 0.418487i \(-0.862561\pi\)
0.908223 0.418487i \(-0.137439\pi\)
\(572\) 0 0
\(573\) 13.8564i 0.578860i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 15.1652 0.631334 0.315667 0.948870i \(-0.397772\pi\)
0.315667 + 0.948870i \(0.397772\pi\)
\(578\) 0 0
\(579\) 15.1652i 0.630242i
\(580\) 0 0
\(581\) − 31.3676i − 1.30135i
\(582\) 0 0
\(583\) −43.7780 −1.81310
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 5.66970i − 0.234013i −0.993131 0.117007i \(-0.962670\pi\)
0.993131 0.117007i \(-0.0373299\pi\)
\(588\) 0 0
\(589\) − 21.1660i − 0.872130i
\(590\) 0 0
\(591\) 22.0797 0.908238
\(592\) 0 0
\(593\) 35.9129 1.47477 0.737383 0.675475i \(-0.236062\pi\)
0.737383 + 0.675475i \(0.236062\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 12.2197i − 0.500119i
\(598\) 0 0
\(599\) −14.2378 −0.581741 −0.290871 0.956762i \(-0.593945\pi\)
−0.290871 + 0.956762i \(0.593945\pi\)
\(600\) 0 0
\(601\) 13.1652 0.537018 0.268509 0.963277i \(-0.413469\pi\)
0.268509 + 0.963277i \(0.413469\pi\)
\(602\) 0 0
\(603\) 3.16515i 0.128895i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 35.7454 1.45086 0.725431 0.688295i \(-0.241641\pi\)
0.725431 + 0.688295i \(0.241641\pi\)
\(608\) 0 0
\(609\) 11.1652 0.452435
\(610\) 0 0
\(611\) − 30.3303i − 1.22703i
\(612\) 0 0
\(613\) − 32.4720i − 1.31153i −0.754964 0.655766i \(-0.772346\pi\)
0.754964 0.655766i \(-0.227654\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.5826 0.546814 0.273407 0.961898i \(-0.411849\pi\)
0.273407 + 0.961898i \(0.411849\pi\)
\(618\) 0 0
\(619\) − 45.4955i − 1.82862i −0.405019 0.914308i \(-0.632735\pi\)
0.405019 0.914308i \(-0.367265\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.75560 0.350786
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 22.3303i − 0.891786i
\(628\) 0 0
\(629\) 14.2378i 0.567699i
\(630\) 0 0
\(631\) −12.2197 −0.486459 −0.243229 0.969969i \(-0.578207\pi\)
−0.243229 + 0.969969i \(0.578207\pi\)
\(632\) 0 0
\(633\) 7.16515 0.284789
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 53.2566i − 2.11010i
\(638\) 0 0
\(639\) −6.92820 −0.274075
\(640\) 0 0
\(641\) −4.33030 −0.171037 −0.0855183 0.996337i \(-0.527255\pi\)
−0.0855183 + 0.996337i \(0.527255\pi\)
\(642\) 0 0
\(643\) − 18.3303i − 0.722877i −0.932396 0.361438i \(-0.882286\pi\)
0.932396 0.361438i \(-0.117714\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17.8926 0.703431 0.351716 0.936107i \(-0.385598\pi\)
0.351716 + 0.936107i \(0.385598\pi\)
\(648\) 0 0
\(649\) 8.83485 0.346798
\(650\) 0 0
\(651\) − 23.1652i − 0.907914i
\(652\) 0 0
\(653\) 22.0797i 0.864046i 0.901863 + 0.432023i \(0.142200\pi\)
−0.901863 + 0.432023i \(0.857800\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 12.0000 0.468165
\(658\) 0 0
\(659\) − 25.5826i − 0.996556i −0.867017 0.498278i \(-0.833966\pi\)
0.867017 0.498278i \(-0.166034\pi\)
\(660\) 0 0
\(661\) − 17.8926i − 0.695942i −0.937505 0.347971i \(-0.886871\pi\)
0.937505 0.347971i \(-0.113129\pi\)
\(662\) 0 0
\(663\) 24.4394 0.949148
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) − 4.37780i − 0.169256i
\(670\) 0 0
\(671\) 59.0804 2.28077
\(672\) 0 0
\(673\) 40.0000 1.54189 0.770943 0.636904i \(-0.219785\pi\)
0.770943 + 0.636904i \(0.219785\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 28.6265i − 1.10021i −0.835097 0.550103i \(-0.814588\pi\)
0.835097 0.550103i \(-0.185412\pi\)
\(678\) 0 0
\(679\) −48.8788 −1.87580
\(680\) 0 0
\(681\) −15.1652 −0.581130
\(682\) 0 0
\(683\) 5.49545i 0.210278i 0.994458 + 0.105139i \(0.0335287\pi\)
−0.994458 + 0.105139i \(0.966471\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −12.0290 −0.458935
\(688\) 0 0
\(689\) 34.3303 1.30788
\(690\) 0 0
\(691\) − 40.6606i − 1.54680i −0.633917 0.773401i \(-0.718554\pi\)
0.633917 0.773401i \(-0.281446\pi\)
\(692\) 0 0
\(693\) − 24.4394i − 0.928376i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 33.4955 1.26873
\(698\) 0 0
\(699\) − 10.4174i − 0.394023i
\(700\) 0 0
\(701\) − 45.9470i − 1.73540i −0.497093 0.867698i \(-0.665599\pi\)
0.497093 0.867698i \(-0.334401\pi\)
\(702\) 0 0
\(703\) −10.2016 −0.384761
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 3.16515i − 0.119038i
\(708\) 0 0
\(709\) − 15.6838i − 0.589018i −0.955649 0.294509i \(-0.904844\pi\)
0.955649 0.294509i \(-0.0951561\pi\)
\(710\) 0 0
\(711\) 5.29150 0.198447
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 21.1660i − 0.790459i
\(718\) 0 0
\(719\) 30.9862 1.15559 0.577795 0.816182i \(-0.303913\pi\)
0.577795 + 0.816182i \(0.303913\pi\)
\(720\) 0 0
\(721\) 3.16515 0.117876
\(722\) 0 0
\(723\) − 10.0000i − 0.371904i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −49.6018 −1.83963 −0.919815 0.392353i \(-0.871661\pi\)
−0.919815 + 0.392353i \(0.871661\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 62.3303i 2.30537i
\(732\) 0 0
\(733\) 29.1986i 1.07848i 0.842154 + 0.539238i \(0.181288\pi\)
−0.842154 + 0.539238i \(0.818712\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 17.6697 0.650872
\(738\) 0 0
\(739\) 20.0000i 0.735712i 0.929883 + 0.367856i \(0.119908\pi\)
−0.929883 + 0.367856i \(0.880092\pi\)
\(740\) 0 0
\(741\) 17.5112i 0.643290i
\(742\) 0 0
\(743\) 47.4328 1.74014 0.870071 0.492927i \(-0.164073\pi\)
0.870071 + 0.492927i \(0.164073\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 7.16515i 0.262159i
\(748\) 0 0
\(749\) 17.5112i 0.639846i
\(750\) 0 0
\(751\) −33.0043 −1.20434 −0.602172 0.798366i \(-0.705698\pi\)
−0.602172 + 0.798366i \(0.705698\pi\)
\(752\) 0 0
\(753\) −2.41742 −0.0880958
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 18.2342i − 0.662734i −0.943502 0.331367i \(-0.892490\pi\)
0.943502 0.331367i \(-0.107510\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −22.0000 −0.797499 −0.398750 0.917060i \(-0.630556\pi\)
−0.398750 + 0.917060i \(0.630556\pi\)
\(762\) 0 0
\(763\) 8.00000i 0.289619i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.92820 −0.250163
\(768\) 0 0
\(769\) −23.4955 −0.847268 −0.423634 0.905834i \(-0.639246\pi\)
−0.423634 + 0.905834i \(0.639246\pi\)
\(770\) 0 0
\(771\) − 24.7477i − 0.891268i
\(772\) 0 0
\(773\) − 30.4539i − 1.09535i −0.836691 0.547676i \(-0.815513\pi\)
0.836691 0.547676i \(-0.184487\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −11.1652 −0.400548
\(778\) 0 0
\(779\) 24.0000i 0.859889i
\(780\) 0 0
\(781\) 38.6772i 1.38398i
\(782\) 0 0
\(783\) −2.55040 −0.0911439
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 36.0000i − 1.28326i −0.767014 0.641631i \(-0.778258\pi\)
0.767014 0.641631i \(-0.221742\pi\)
\(788\) 0 0
\(789\) 1.82740i 0.0650572i
\(790\) 0 0
\(791\) 59.4618 2.11422
\(792\) 0 0
\(793\) −46.3303 −1.64524
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 53.0659i − 1.87969i −0.341599 0.939846i \(-0.610969\pi\)
0.341599 0.939846i \(-0.389031\pi\)
\(798\) 0 0
\(799\) 38.6772 1.36830
\(800\) 0 0
\(801\) −2.00000 −0.0706665
\(802\) 0 0
\(803\) − 66.9909i − 2.36406i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −6.20520 −0.218433
\(808\) 0 0
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) 0 0
\(811\) 0.834849i 0.0293155i 0.999893 + 0.0146577i \(0.00466587\pi\)
−0.999893 + 0.0146577i \(0.995334\pi\)
\(812\) 0 0
\(813\) − 15.4931i − 0.543367i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −44.6606 −1.56248
\(818\) 0 0
\(819\) 19.1652i 0.669685i
\(820\) 0 0
\(821\) 6.20520i 0.216563i 0.994120 + 0.108282i \(0.0345348\pi\)
−0.994120 + 0.108282i \(0.965465\pi\)
\(822\) 0 0
\(823\) 9.47860 0.330403 0.165202 0.986260i \(-0.447172\pi\)
0.165202 + 0.986260i \(0.447172\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28.0000i 0.973655i 0.873498 + 0.486828i \(0.161846\pi\)
−0.873498 + 0.486828i \(0.838154\pi\)
\(828\) 0 0
\(829\) − 36.8498i − 1.27985i −0.768439 0.639924i \(-0.778966\pi\)
0.768439 0.639924i \(-0.221034\pi\)
\(830\) 0 0
\(831\) −9.47860 −0.328809
\(832\) 0 0
\(833\) 67.9129 2.35304
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 5.29150i 0.182901i
\(838\) 0 0
\(839\) 55.8070 1.92667 0.963336 0.268297i \(-0.0864608\pi\)
0.963336 + 0.268297i \(0.0864608\pi\)
\(840\) 0 0
\(841\) 22.4955 0.775705
\(842\) 0 0
\(843\) 32.3303i 1.11351i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −88.2790 −3.03330
\(848\) 0 0
\(849\) 11.1652 0.383187
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 7.65120i − 0.261972i −0.991384 0.130986i \(-0.958186\pi\)
0.991384 0.130986i \(-0.0418143\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −29.5826 −1.01052 −0.505261 0.862967i \(-0.668604\pi\)
−0.505261 + 0.862967i \(0.668604\pi\)
\(858\) 0 0
\(859\) − 24.8348i − 0.847354i −0.905813 0.423677i \(-0.860739\pi\)
0.905813 0.423677i \(-0.139261\pi\)
\(860\) 0 0
\(861\) 26.2668i 0.895171i
\(862\) 0 0
\(863\) −50.7062 −1.72606 −0.863030 0.505153i \(-0.831436\pi\)
−0.863030 + 0.505153i \(0.831436\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 14.1652i 0.481074i
\(868\) 0 0
\(869\) − 29.5402i − 1.00208i
\(870\) 0 0
\(871\) −13.8564 −0.469506
\(872\) 0 0
\(873\) 11.1652 0.377883
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 17.8528i − 0.602846i −0.953490 0.301423i \(-0.902538\pi\)
0.953490 0.301423i \(-0.0974617\pi\)
\(878\) 0 0
\(879\) 0.913701 0.0308184
\(880\) 0 0
\(881\) 36.3303 1.22400 0.612000 0.790858i \(-0.290365\pi\)
0.612000 + 0.790858i \(0.290365\pi\)
\(882\) 0 0
\(883\) − 34.3303i − 1.15531i −0.816282 0.577653i \(-0.803969\pi\)
0.816282 0.577653i \(-0.196031\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −47.0514 −1.57983 −0.789916 0.613215i \(-0.789876\pi\)
−0.789916 + 0.613215i \(0.789876\pi\)
\(888\) 0 0
\(889\) 41.4955 1.39171
\(890\) 0 0
\(891\) 5.58258i 0.187023i
\(892\) 0 0
\(893\) 27.7128i 0.927374i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.4955i 0.450099i
\(900\) 0 0
\(901\) 43.7780i 1.45846i
\(902\) 0 0
\(903\) −48.8788 −1.62659
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 17.4955i 0.580927i 0.956886 + 0.290464i \(0.0938095\pi\)
−0.956886 + 0.290464i \(0.906191\pi\)
\(908\) 0 0
\(909\) 0.723000i 0.0239804i
\(910\) 0 0
\(911\) 7.30960 0.242178 0.121089 0.992642i \(-0.461361\pi\)
0.121089 + 0.992642i \(0.461361\pi\)
\(912\) 0 0
\(913\) 40.0000 1.32381
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 28.0942i 0.927753i
\(918\) 0 0
\(919\) 11.8383 0.390510 0.195255 0.980753i \(-0.437447\pi\)
0.195255 + 0.980753i \(0.437447\pi\)
\(920\) 0 0
\(921\) −4.00000 −0.131804
\(922\) 0 0
\(923\) − 30.3303i − 0.998334i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −0.723000 −0.0237464
\(928\) 0 0
\(929\) −30.6606 −1.00594 −0.502971 0.864303i \(-0.667760\pi\)
−0.502971 + 0.864303i \(0.667760\pi\)
\(930\) 0 0
\(931\) 48.6606i 1.59479i
\(932\) 0 0
\(933\) − 3.65480i − 0.119653i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −14.3303 −0.468151 −0.234075 0.972218i \(-0.575206\pi\)
−0.234075 + 0.972218i \(0.575206\pi\)
\(938\) 0 0
\(939\) − 0.834849i − 0.0272443i
\(940\) 0 0
\(941\) − 28.4358i − 0.926981i −0.886102 0.463491i \(-0.846597\pi\)
0.886102 0.463491i \(-0.153403\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 52.0000i − 1.68977i −0.534946 0.844886i \(-0.679668\pi\)
0.534946 0.844886i \(-0.320332\pi\)
\(948\) 0 0
\(949\) 52.5336i 1.70531i
\(950\) 0 0
\(951\) −34.1087 −1.10605
\(952\) 0 0
\(953\) 26.2432 0.850100 0.425050 0.905170i \(-0.360257\pi\)
0.425050 + 0.905170i \(0.360257\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 14.2378i 0.460243i
\(958\) 0 0
\(959\) −45.6054 −1.47268
\(960\) 0 0
\(961\) −3.00000 −0.0967742
\(962\) 0 0
\(963\) − 4.00000i − 0.128898i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −26.9898 −0.867934 −0.433967 0.900929i \(-0.642887\pi\)
−0.433967 + 0.900929i \(0.642887\pi\)
\(968\) 0 0
\(969\) −22.3303 −0.717353
\(970\) 0 0
\(971\) 4.08712i 0.131162i 0.997847 + 0.0655810i \(0.0208901\pi\)
−0.997847 + 0.0655810i \(0.979110\pi\)
\(972\) 0 0
\(973\) 31.3676i 1.00560i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7.25227 0.232021 0.116010 0.993248i \(-0.462989\pi\)
0.116010 + 0.993248i \(0.462989\pi\)
\(978\) 0 0
\(979\) 11.1652i 0.356840i
\(980\) 0 0
\(981\) − 1.82740i − 0.0583444i
\(982\) 0 0
\(983\) 2.20880 0.0704498 0.0352249 0.999379i \(-0.488785\pi\)
0.0352249 + 0.999379i \(0.488785\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 30.3303i 0.965424i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 11.8383 0.376056 0.188028 0.982164i \(-0.439790\pi\)
0.188028 + 0.982164i \(0.439790\pi\)
\(992\) 0 0
\(993\) −10.3303 −0.327822
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 12.7520i − 0.403860i −0.979400 0.201930i \(-0.935279\pi\)
0.979400 0.201930i \(-0.0647214\pi\)
\(998\) 0 0
\(999\) 2.55040 0.0806911
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4800.2.k.r.2401.8 8
4.3 odd 2 inner 4800.2.k.r.2401.1 8
5.2 odd 4 960.2.d.f.289.3 yes 8
5.3 odd 4 960.2.d.e.289.5 yes 8
5.4 even 2 4800.2.k.q.2401.1 8
8.3 odd 2 inner 4800.2.k.r.2401.5 8
8.5 even 2 inner 4800.2.k.r.2401.4 8
15.2 even 4 2880.2.d.i.289.6 8
15.8 even 4 2880.2.d.j.289.4 8
20.3 even 4 960.2.d.f.289.5 yes 8
20.7 even 4 960.2.d.e.289.3 8
20.19 odd 2 4800.2.k.q.2401.8 8
40.3 even 4 960.2.d.e.289.4 yes 8
40.13 odd 4 960.2.d.f.289.4 yes 8
40.19 odd 2 4800.2.k.q.2401.4 8
40.27 even 4 960.2.d.f.289.6 yes 8
40.29 even 2 4800.2.k.q.2401.5 8
40.37 odd 4 960.2.d.e.289.6 yes 8
60.23 odd 4 2880.2.d.i.289.4 8
60.47 odd 4 2880.2.d.j.289.6 8
80.3 even 4 3840.2.f.i.769.5 8
80.13 odd 4 3840.2.f.k.769.1 8
80.27 even 4 3840.2.f.k.769.8 8
80.37 odd 4 3840.2.f.i.769.4 8
80.43 even 4 3840.2.f.k.769.4 8
80.53 odd 4 3840.2.f.i.769.8 8
80.67 even 4 3840.2.f.i.769.1 8
80.77 odd 4 3840.2.f.k.769.5 8
120.53 even 4 2880.2.d.i.289.5 8
120.77 even 4 2880.2.d.j.289.3 8
120.83 odd 4 2880.2.d.j.289.5 8
120.107 odd 4 2880.2.d.i.289.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
960.2.d.e.289.3 8 20.7 even 4
960.2.d.e.289.4 yes 8 40.3 even 4
960.2.d.e.289.5 yes 8 5.3 odd 4
960.2.d.e.289.6 yes 8 40.37 odd 4
960.2.d.f.289.3 yes 8 5.2 odd 4
960.2.d.f.289.4 yes 8 40.13 odd 4
960.2.d.f.289.5 yes 8 20.3 even 4
960.2.d.f.289.6 yes 8 40.27 even 4
2880.2.d.i.289.3 8 120.107 odd 4
2880.2.d.i.289.4 8 60.23 odd 4
2880.2.d.i.289.5 8 120.53 even 4
2880.2.d.i.289.6 8 15.2 even 4
2880.2.d.j.289.3 8 120.77 even 4
2880.2.d.j.289.4 8 15.8 even 4
2880.2.d.j.289.5 8 120.83 odd 4
2880.2.d.j.289.6 8 60.47 odd 4
3840.2.f.i.769.1 8 80.67 even 4
3840.2.f.i.769.4 8 80.37 odd 4
3840.2.f.i.769.5 8 80.3 even 4
3840.2.f.i.769.8 8 80.53 odd 4
3840.2.f.k.769.1 8 80.13 odd 4
3840.2.f.k.769.4 8 80.43 even 4
3840.2.f.k.769.5 8 80.77 odd 4
3840.2.f.k.769.8 8 80.27 even 4
4800.2.k.q.2401.1 8 5.4 even 2
4800.2.k.q.2401.4 8 40.19 odd 2
4800.2.k.q.2401.5 8 40.29 even 2
4800.2.k.q.2401.8 8 20.19 odd 2
4800.2.k.r.2401.1 8 4.3 odd 2 inner
4800.2.k.r.2401.4 8 8.5 even 2 inner
4800.2.k.r.2401.5 8 8.3 odd 2 inner
4800.2.k.r.2401.8 8 1.1 even 1 trivial